第六章橡胶弹性
- 格式:ppt
- 大小:815.50 KB
- 文档页数:45
第六章橡胶弹性一、概念1、熵弹性2、热塑性弹性体二、选择答案1、你会选( A )聚合物用作液氮罐的软密封。
(液氮沸点为77K)A、硅橡胶,B、顺丁橡胶,C、天然橡胶,D、丁苯橡胶2、橡胶试样快速拉伸,温度升高的原因是(C )。
⑴分子链从蜷曲到伸展,熵减小放热,⑵分子内摩擦放热,⑶拉伸诱导结晶放热。
A、⑴B、⑴⑵C、⑴⑵⑶D、以上皆不对三、填空题1、交联橡胶的状态方程为,只有在形变很小时,交联橡胶的应力-应变关系才符合虎克定律。
2、橡胶高弹性的热力学本质为熵弹性,即橡胶拉伸时,内能几乎不变,而主要引起熵值的变化。
四、回答下列问题1、交联橡胶弹性统计理论的根据是什么?写出由它得出的交联橡胶的状态方程,并说明状态方程的意义。
2、在一具有适当交联度软橡皮试条下端掛一砝码(不是过重),达到平衡形变后,升高温度,会观察到什么现象?为什么?橡胶的模量随温度升高而增高,外力不变,则由状态方程可得出伸长率减少。
故升高温度,会观察到交联度软橡皮试条回缩。
5-4 当迅速拉一块橡胶时,测量温度有些升高,当外力去掉,温度又有所下降,请解释这种现象?解:根据橡胶热力学分析,得出公式为发fDl=-TdQ当拉伸时dl>0 所以dQ<0 是放热反应当外力去掉回缩时dl<0 所以dQ>0 是吸热反应当压缩时,受力与拉力大小相同,方向相反,dl<0,f<0 所以dQ<0 是放热反应这是因为在拉伸前,分子排列是不规整的,熵值是大的,因混乱程度大,经拉伸时分子排列规整,混乱程度减小,分子链从一种构象变成另一种构象,熵值减小,再者,分子间的内摩擦生热,所以是放热,当外力去掉以后,分子链段由约束状态,变成自由状态,也就是由有序态变成无序态,熵值在增加,热运动在增加,但此时,所需的热量,不可能自身供给,只能来自外界,这就是回缩时需要吸热。
5-5 一硫化橡胶,链段分子量为10000,密度为,问于下拉长1倍时的张力为多少?解:根据公式先求出单位体积中链数目T=273+25=298KR=1.38拉伸一倍的情况代入公式五、计算题1、天然橡胶硫化后,网链平均分子量为6000,密度为0.90g/cm3。
第六章高聚物的力学性能(1)6.1 概述6.1.1 高聚物力学性能的特点(形变性能、断裂性能)高弹形变:平衡高弹形变:瞬时、平衡、可逆的高弹形变;非平衡高弹形变:瞬时粘弹性,与时间有关高弹性:准平衡态高弹形变,由高分子构象熵的改变引起,处于链段无规自由热运动橡胶(弹性体)→外力作用(拉伸力)→ 链段运动对外响应→可逆的弹性形变(伸长数倍)普弹性:内能的改变引起粘弹性:呈粘性流体的性质、弹性和粘性同时出现。
表现在力学松弛现象(蠕变、应力松弛)及动态力学行为。
高聚物的力学行为:依赖于时间、温度。
必须同时考虑应力、应变、时间和温度来描述。
研究目的:(1)力学性能宏观描述和测试合理化;(2)宏观力学性能与微观各个层次的结构因素的关系。
6.1.2 形变类型和描述力学行为的基本物理量(1)简单剪切(形状改变,体积不变)剪切应力:σ = F/A,剪切应变:γ= tgθ,剪切模量(刚度):G = σ/γ,剪切柔量:J = 1/G = γ/σ(2)本体(体积)压缩(形状不变,体积改变)本体应变:Δ= ΔV / V,本体模量:K = P/Δ = P / (- ΔV / V),本体柔量(可压缩度):B = 1 / K(3)单向拉伸(形状和体积同时改变)拉伸应力:σ = F/A0(张应力,工程应力),拉伸应变:ε1 = (l-10)/10=Δl/10(张应力,工程应变,习用应变),杨氏模量:E = σ / ε1 (高聚物 E = 0.1MPa~500MPa),拉伸柔量:D = 1 / E横向应变:ε2 =(b - b0)/ b0,ε3 =(d - d0)/ d0)泊松比:γ = -ε2 / ε1= -ε3 / ε1 (拉伸试验中横向应变与纵向应变的比值的负数)对于大多数高聚物:橡胶,γ = 0.5,体积几乎不变,没有横向收缩。
塑料,γ = 0.2~0.4。
对各向同性的理想材料:G = E /(1+γ),K = E(1 - 2γ),E = 9KG /(3K + G),若体积几乎不变,即γ = 1/2, 则 E = 3G;对于各向异性材料情况比较复杂,不止有两个的独立弹性模量,通常至少有5或6个。
第六章橡胶弹性一、思考题1.与金属材料相比,高聚物的力学性能有哪些特点?2.与金属的普弹性相比,高聚物的高弹性有哪些特点?为什么称高弹性为熵弹性?3.影响橡胶高弹性的几个主要因素是什么?4.何谓交联橡胶单轴拉伸状态方程?该方程在什么情况下与实际橡胶相差最大?何谓橡胶的拉伸弹性模量、剪切模量?二、选择题1.关于交联橡胶以下那条不正确。
( ) ○1具有熵弹性○2快速拉伸时吸热○3形变很小时符合Hooke定律2.高聚物处于橡胶态时其弹性模量( ) ○1随着形变增大而增大○2随着形变增大而减小○3随形变变化很小3 高聚物弹性的热力学本质是;○1能弹性○2熵弹性○3对外界做功引起三、简答题1.当温度升高时,高聚物的高弹模量下降。
解释该现象。
2.不受外力作用时橡皮筋受热伸长,而在恒定外力作用下却受热收缩,试用高弹性热力学理论解释。
四、计算题1.某硫化橡胶的密度为1.03g/cm3,网链平均相对分子质量为5000g/mol,试求在27℃下将该橡胶拉长至原长的1.8倍时应力等于多少?若考虑该橡胶交联之前数均相对分子质量为2.0×105时,则修正后应力为多少?2.某种硫化橡胶的密度为964kg/m3,其试件在27℃下拉长一倍时的拉应力为7.25×105N/m2。
试求:(1) 1m3中的网链数目;(2)初始的拉伸模量与剪切模量;(3)网链的平均相对分子质量M。
c3.有一根长4cm、截面积为0.05cm2的交联橡胶,25℃时被拉伸到8cm,已知该橡胶的密度为1.0g/cm3,未交联时其数均相对分子质量为5×106,交联后网链平均相对分子质量为1×104。
试用橡胶弹性理论(经过自由末端校正)计算拉伸该橡胶所用的力及该橡胶的弹性模量。