纳米材料发展史
- 格式:doc
- 大小:794.25 KB
- 文档页数:24
纳米级芯片发展史
纳米级芯片是指在尺寸范围在1-100纳米内的芯片,具有超小体积、高性能和低功耗等优势。
下面是纳米级芯片发展史。
2000年,第一颗纳米级晶体管问世。
这一里程碑事件标志着纳米级芯片的诞生。
2003年,IBM的科学家成功地制造出了直径6纳米的纳米线。
2004年,Intel公司的科学家成功地制造出了一块由30亿个晶体管组成的芯片。
2007年,美国加州大学伯克利分校的科学家成功地制造出了直径为1毫米的纳米机器人。
2011年,日本东京大学的科学家用银纳米线成功制造出了纳米级透明电极。
2015年,英特尔公司宣布在14纳米技术下制造出了全球最小的晶体管。
2018年,美国IBM公司宣布制造出了全球最小的纳米级晶体管,其尺寸仅为1纳米。
纳米级芯片是半导体技术的一个重要分支,随着纳米技术的发展和进步,纳米级芯片的应用领域将越来越广泛。
富勒烯发展史富勒烯是一种碳原子构成的分子,其结构呈现为一个或多个六角形连接在一起形成球状、管状或者是其他几何形状,是一种具有特殊物理和化学性质的纳米材料。
自从1990年发现以来,富勒烯就引起了广泛的关注和研究。
富勒烯不仅在化学领域有着许多应用,还在材料科学、医学和生物学等领域展现出巨大的潜力。
富勒烯的发展史可以追溯到20世纪80年代末,当时美国科学家哈罗德·克罗托(Harold Kroto)等人通过实验意外地合成出了C60富勒烯,并于1996年获得了诺贝尔化学奖。
这一发现引发了科学界对富勒烯的研究热潮。
不久之后,科学家们又成功地合成出了其他形式的富勒烯,如C70、碳纳米管等,为富勒烯的进一步研究拓展了新的方向。
随着对富勒烯的研究不断深入,人们逐渐认识到了富勒烯的广泛应用潜力。
在材料科学领域,富勒烯被应用于制备高强度、高导电性的纳米材料,例如富勒烯纳米管具有优异的导电性和导热性,被认为是未来电子器件和传感器的候选材料。
在医学领域,富勒烯因其良好的生物相容性和抗氧化性能而被用作药物载体和抗氧化剂,为疾病治疗和预防提供了新的可能性。
在环保领域,富勒烯还可以被应用于废水处理、环境监测等方面,具有重要的环保意义。
然而,尽管富勒烯具有诸多优异的性质和广泛的应用前景,但其在商业化生产和大规模应用方面仍面临诸多挑战。
首先,富勒烯的制备成本较高,且合成方法繁杂,需要进一步优化和提高效率。
其次,富勒烯作为一种新型纳米材料,其安全性和环境影响等方面尚需深入研究,以确保其在应用过程中不会对人类健康和环境造成危害。
此外,富勒烯的稳定性和储存性能也需要进一步改进,以满足不同领域对其性能的要求。
为了克服这些挑战和推动富勒烯的应用,科学家们正在不断探索新的合成方法和应用领域。
例如,利用光化学方法、微生物代谢工程等技术可以降低富勒烯的合成成本,提高其产量和纯度。
同时,研究人员还在不断探索富勒烯在电子器件、光电子器件、催化剂等方面的应用,为其商业化生产和工业化应用奠定基础。
中国纳米材料的发展历史可以追溯到上世纪80年代末和90年代初。
以下是一些重要的发展阶段和里程碑事件:
1.1980年代末:中国开始了对纳米材料的研究,主要集中在粉体技术和纳米结构的合成
方面。
2.1990年代初:中国科学家开始探索纳米材料的制备方法,并取得了一些关键性突破。
例如,1991年成功合成了中国第一个纳米粒子,1994年制备了国内首批金属纳米线。
3.1990年代中后期:中国政府逐渐重视纳米科技的发展,并设立了专门的研究机构和实
验室。
2000年成立的中国科学院纳米技术与纳米仿生研究所是中国最早的纳米科研机构之一。
4.2000年代初:中国的纳米材料研究进入了一个快速发展的阶段。
大量的研究论文发表,
涉及纳米材料的合成、性能调控和应用等方面。
5.2000年代后期至今:中国纳米材料领域取得了许多重要突破和成就。
在纳米材料的合
成、特性控制、应用开发等方面取得了显著进展。
中国的纳米技术已经应用于多个领域,包括电子、能源、生物医药、环境保护等。
6.2010年代:中国政府将纳米科技列为重点发展领域之一,并出台了一系列支持政策和
计划,以推动纳米材料的研究和产业化。
同时,中国还加强了与国际纳米科技组织和机构的合作,促进了纳米材料领域的交流和合作。
总的来说,中国纳米材料的发展经历了数十年的积累和努力,逐步形成了一定的产业基础和科研实力。
随着技术和应用的不断发展,中国在纳米材料领域正逐渐崭露头角,为科技创新和产业升级提供了重要支撑。
纳米材料的发展史1965年诺贝尔物理学奖获得者、美国加利福尼亚工学院教授费曼(R.P.Feynman)曾在1959年预言:“如果有一天可以按照人的意志来安排一个个原子,将会产生怎样的奇迹?”时间仅仅过去了二十几年,到了1982年,费曼的预言便成了现实。
国际商用机器公司研制成了扫描隧道显微镜(简称STM),它不仅能使人类观察到了原子,而且能够利用仪器的针尖来操纵原子,德国科学家宾尼(G.Binnig)等利用扫描隧道显微镜在镍板上将硅原子组成了“IBM”(国际商用机器公司的英文缩略语)的字样。
不久,日本科学家又将硅原子堆成了一个金字塔。
于是,人类也像大自然一样,成了主宰原子和分子的主人,而不仅仅是被动地去认识和利用大自然造就的原子和分子。
这样,到了20和21世纪之交,人类正在悄悄地进入一个崭新的科技时代──纳米科技时代。
纳米科技是在纳米的尺度上研究和应用原子、分子及其结构信息的高新技术,它的最终目标是直接用具有纳米尺度的原子、分子制造有特定功能的材料,被称为纳米材料(由粒径1~100 nm的粒子组成的固体材料),它是21世纪很有希望和前途的新型材料。
(1)纳米材料的发现组成材料的物质颗粒变小了,“小不点”会不会与“大个子”的性质很不相同呢?这便是纳米材料的发现者德国物理学家格莱特(Grant)的科学思路。
那是1980年的一天,格莱特到澳大利亚旅游,当他独自驾车横穿澳大利亚的大沙漠时,空旷、寂寞和孤独的环境反而使他的思维特别活跃和敏锐。
他长期从事晶体材料的研究,了解晶体的晶粒大小对材料的性能有很大的影响:晶粒越小,强度就越高。
格莱特上面的设想只是材料的一般规律,他的想法一步一步地深入:如果组成材料的晶体的晶粒细到只有几个纳米大小,材料会是个什么样子呢?或许会发生“翻天覆地”的变化吧!格莱特带着这些想法回国后,立即开始试验。
经过将近4年的努力,终于在1984年制得了只有几个纳米大小的超细粉末,包括各种金属、无机化合物和有机化合物的超细粉末。
纳米催化材料
纳米催化材料是近年来广泛应用于各种领域的一种新型催化剂,其发展历史可以追溯到上世纪末的十年。
纳米材料的特点是其尺寸小,表面积大,比表面积大的传统材料具有更高的催化效率。
由于其大的反应面,可以提高催化剂的催化活性,从而显著提高反应的速率和效率。
同时,纳米催化材料具有良好的稳定性,可以抵抗化学环境的变化,进一步提高反应的稳定性。
纳米催化材料可以用于大多数催化反应,包括水解反应、催化氧化反应、催化裂解反应和光催化反应。
它可以改变原有的反应梯度,使原有的反应梯度更快转化为有效反应,从而提高反应速率和效率,这为工业生产、环境污染防治等领域带来了巨大的技术优势。
纳米催化材料的制备技术也有了很大的进步。
为了提高反应活性,研究者们开发了各种新型制备工艺,使其具有更高的反应速度,更高的催化效率和更强的稳定性。
例如,湿法制备和超声波制备可以提高材料的催化性能。
此外,还可以采用有机-无机复合材料的制备工艺,使其具有更高的催化效率和稳定性。
纳米催化材料的发展也受到了越来越多的关注。
包括研究新型纳米催化材料的制备方法和催化性能,以及改善现有纳米催化材料的结构和性能的研究,因此,可以有望在未来的发展中发现更多新型纳米催化剂,并有望在工业生产和环境污染领域产生更大的影响。
总之,纳米催化材料具有良好的催化活性,可以提高反应的速率和效率,改善环境污染,对于工业生产有重要的意义,发展前景广阔。
因此,有必要对纳米催化材料进行深入研究,以期取得更多有效的纳米催化材料,为工业发展和环境保护做出更大的贡献。
纳米科技发展史纳米材料的概念只出现了二十几年,但是人类使用纳米材料的历史可追溯到两千年以前。
我国占代收集蜡烛的烟灰作为墨的原料,所作字画可历经千年而不褪色,原因就在于所使用的原料实际上为纳米级的炭黑,我国古代制造的铜镜之所以不十锈则是因为表面自一层纳米氧化锡薄膜起到了防锈层的作用。
制造于公元4世纪古罗马的策格拉斯的雕花玻璃酒杯(Lycurgus Cup).在反射光下呈绿色、在透射光下呈红色,这种奇妙的颜色变化就源于在玻璃杯的内层形成了微量的金、银纳米微粒。
最近的研究表明,在两千多年前的希腊-罗马时期,占埃及人掌握了一种把头发染黑的技术,其机理是通过原位反应得方式,在头发的皮质层及表层形成了平均粗径约5nm 的方铅矿纳米微粒。
古人利用纳米材料的类似例子还有很多,当然,古人对纳米材料的制备与应用都属于“无意之作”。
最早提出纳米尺度上科学和技术问题的是著名物理学家、诺贝尔奖获得者理查德·费恩曼。
1959年他在一次著名的讲演中提出:如果人类能够在原子/分子的尺度上来加工材料、制备装置,我们将有许多激动人心的新发现。
他指出,我们需要新型的微型化仪器来操纵纳米结构并测定其性质。
那时,化学将变成根据人们的意愿逐个地准确放置原子的问题。
1974年,Taniguchi最早使用纳米技术(nanotechnology)一词描述精细机械加工。
20世纪70年代后期,麻省理工学院德雷克斯勒教授提倡纳米科技的研究,但当时多数主流科学家对此持怀疑态度。
到了1 9世纪中叶,人们开始有意识地制备超细粒子。
1857年,法拉第成功地制备出了红色的纳米金溶胶,1861年胶体化学建立,人们开始通过各种不同方法制备纳米级的胶体粒子,但是对纳米微粒所具备的独特性能仍然缺乏足够的认识,这种状况一直延伸到20世纪中期人们先后开发了辉光放电、气相蒸发等方法,制备出多种金属及氧化物超细粒子。
纳米科技的迅速发展是在80年代末、90年代初。
80年代初发明了费恩曼所期望的纳米科技研究的重要仪器——扫描隧道显微镜(STM)、原子力显微镜(AFM)等微观表征和操纵技术,它们对纳米科技的发展起到了积极的促进作用。
从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代江业革命之前)、毫米时代江业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)>i n。
自20世纪80年代初,德国科学家Gleite}2]提出‘纳米晶体材料’,的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料已引起世界各国科技界及产业界的广泛关注。
纳米材料是指特征尺寸在纳米数量级通常指1一100 rm)的极细颗粒组成的固体材料。
从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。
通常分为零维材料哟米微粒久一维材料值径为纳米量级的纤维久二维材料(}度为纳米量级的薄膜与多层膜久以及基于上述低维材料所构成的固体。
从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体客观世界的新层次,是交叉学科跨世纪的战略科技领域。
1国内外研究现状50年代末,美国著名物理学家Richard.P Feyn-man曾经设想“如果有一天能按人的意志安排一个个原子和分子,将会产生什么样的奇迹?”他提出逐级地缩小生产装置,以致最后直接由人类按需排布原子以制造产品。
这在当时只是一个美好的梦想。
然而,随着时间的推移和科学技术的日益发展,这个梦想正在逐渐地变成现实。
进入60年代后,人们就开始对分立的纳米粒子进行了真正有效的研究;70年代末,德雷克斯勒成立了NST (NanoscaleScience & Technology)研究组;1984年德国科学家G 1e ite r首先制成了金属纳米材料,同年在柏林召开了第二届国际纳米粒子和等离子簇会议,使纳米材料成为世界性的热点之一;1990年在美国巴尔的摩生;1994年在德国斯图加特举行的第二届NST会议,表明纳米材料已成为材料科学和凝聚态物理等领域的焦点。
近年来,世界各国先后对纳米材料给予了极大的关注,对纳米材料的结构与性能、制备技术以及应用前景进行了广泛而深入的研究,并纷纷将其列人近期高科技开发项目。
纳米材料发展史专业 ---------姓名——————学号 _________一、什么是纳米材料纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。
从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下(注1米=100厘米,1厘米=10000微米,1微米=1000纳米,1纳米=10埃),即100纳米以下。
因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。
纳米金属材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。
纳米级结构材料简称为纳米材料(nanometer material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。
由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。
并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。
二.纳米材料的发展历程1959年12月29日理查德•费曼(Richard Feynman)在美国物理学会会议上做了题为“在底部有很多空间”的演讲。
虽然没有使用“”纳米这个词,但他实际上介绍了纳米技术的基本概念。
1974年日本教授谷口纪男(Norio Taniguchi)在一篇题为:“论纳米技术的基本概念“的科技论文中给出了新的名词——纳米(Nano)。
1981年格尔德•宾宁(Gerd Binnig)和海因里希•罗雷尔Heinrich Rohrer发明了扫描隧道显微镜,它使科学家第一次可以观察并操纵单个原子。
1985年赖斯大学的研究人员发现了富勒烯(fullerenes)(更为人熟知的名称是“布基球(buckyballs),由著名未来学家,多面网格球顶的发明人巴克明斯特•富勒(R. Buckminster Fuller)命名,它可以被用来制造碳纳米管,是如今使用最广泛的纳米材料之一。
1986年在苏黎世的IBM研究实验室中,卡尔文•夸特(Calvin Quate)和克里斯托•格柏(Christoph Gerber)与德国物理学家宾尼(Binnig)协作,发明了原子力显微镜。
它成为在纳米尺度成像,测量和操作的最重要的工具之一,这是纳米技术最核心的部分。
1989年在加州圣何塞的IBM阿尔马登研究中心,公司的科学家唐艾•格勒(Don Eigler)和埃哈德•施魏策尔(Erhard Schweizer)使用35个氙原子拼出了IBM公司的标志,进一步表明了纳米颗粒的可操作性。
1991年NEC公司的饭岛澄男(Sumio Iijima)制造出了碳纳米管。
1998年白宫的国家科学技术理事会成立了纳米技术的机构间工作组。
它的任务是:赞助研讨会和研究,以界定纳米科学技术和预测其发展前景。
1999年使用纳米技术的消费类产品开始出现在全球市场。
2001年美国总统克林顿建立了国家纳米技术计划,协调联邦研究和开发工作,提高美国在纳米技术上的竞争力。
2002年欧盟以纳米论坛的形式,向公众普及纳米技术知识。
2003年美国国会制定21世纪纳米技术研究和发展条例。
为美国纳米技术计划提供了法律基础,建立项目,分配机构的责任,授权筹资水平,以及启动研究以解决关键问题。
2008年12月10日国家研究委员会批评纳米技术计划的环境,健康和安全研究战略;纳米技术计划回顾后,称它对国家研究委员会的结论持有异议。
2009年9 月29日美国环保局陈述了新的研究策略,以更好地了解如何纳米材料对人体健康和环境的潜在危害。
它还宣布,某些纳米材料的制造商和使用者必须告知环保局它们的使用计划。
2010年1月8日在英国,上议院的科学和技术委员会就纳米技术问题发表了有关纳米技术和食品问题的长篇报告,警告本国的食品工业不要隐瞒纳米技术的使用情况。
2010年3月美国参议院环境和公共工程委员会继续为修订有30年历史的有毒物质控制法收集证据。
美国环保局称,这将有助于规范纳米材料的商业应用。
三、纳米技术的应用纳米技术目前已成功用于许多领域,包括医学、药学、化学及生物检测、制造业、光学以及国防等等。
1、纳米技术在农业上的应用(1)精确农业精确农业是利用重要的作物参数和知识在适当的尺度上优化生产系统管理,根据特定地块的作物潜在生产能力控制不同的投入水平(如肥料、杀虫剂、除草剂等)。
精确农业的核心是对变化因素进行精确管理,变化因素包括:空间因素、时间因素和预测因素。
利用纳米技术生产的微型传感器和监测系统对未来的精确农业产生重大影响。
纳米装置的一个重要作用是增加与全球定位系统有关的自主传感器的应用,用于实时监测。
这些纳米传感器可以遍布田间,用于检测土壤养分和农作物生长情况。
美国和澳大利亚的一些农场已经在使用这种传感器,它们可以及早检测到环境的变化,可以为决策者提供准确信息,帮助农民作出明智的决定,提高农业的生产效率。
(2)智能施药系统20世纪后半叶以来,农业病虫害的控制经历了从利用杀虫剂到传统方法与生物方法相结合的病虫害综合管理系统。
将来具有新型的纳米装置可以运用到农业的智能化中,这类装置可以针对不同的病虫害采取准确的补救措施,它们可以将所发现的问题及时提醒农民,帮助农民定量、定向地给农作物治病。
运用纳米技术生产的新型农药更易于溶于水,也可以自然分解为无害成分。
科学家们正在研究能够针对环境变化施肥和施药的新技术,促进农作物对水、农药和化肥的高效吸收,以降低污染,使农业对环境更加友好。
纳米技术还有助于提高农作物的产量和营养价值图一为营养液纳米杀菌系统图2 为生物助长器2、纳米技术在工业生产中的应用(1)在陶瓷领域的应用随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服陶瓷材料的脆性,使陶瓷具有像金属一样的柔韧性和可加工性。
许多专家认为,如能解决单相纳米陶瓷的烧结过程中抑制晶粒长大的技术问题,则它将具有高硬度、高韧性、低温超塑性、易加工等优点。
如下图为新型现代纳米陶瓷电极灯(2)纳米技术在木材工业中的应用[1]纳米技术改变了木材的细胞结构并控制细胞的生长,新的细胞和优良的材种产生了。
人们对木材的细胞结构、纤维的构造和材种的分类将有一个新的认识和新的观念。
木纤维的定向重组技术将开发出超高强度的纤维板。
[2]木材在变成纳米颗粒以后,木材的材性发生很大的改变,在细粉状态下进行木材液化,不仅环保而且成本低,使木材液化真正工业化。
下图为木材水解为糖后,进一步在水中加热得到各种颜料和纳米颗粒:[3]在造纸业机械高得浆率制浆法可以得到完全实现,小造纸的污染问题得到很好解决。
在纸浆中加入纳米添加剂生产出的纸张具有很强的抗静电,纸的质量明显提高。
(3)食品包装与加工运用纳米技术研发的包装系统可以修复小的裂口和破损,可以适应环境的变化,并且能在食品变质的时候提醒消费者。
此外纳米技术可以改进包装的渗透性、提高阻隔性、改进抗损和耐热,形成抗菌表面,阻止食物发生变质。
除包装外,纳米技术对功能食品和互动食品的研发也有很大促进作用,这些食品能够按照人体需求更有效地提供营养。
这类食品可以暂存人体内,需要时再把营养输送给细胞,这个领域的关键是开发纳米胶囊,把它们存入食品中,用于输送营养。
纳米技术令产品的包装焕然一新3、纳米技术在日常生活中的应用衣在纺织和化纤制品中添加纳米微粒,可以除味杀菌。
化纤布虽然结实,但有烦人的静电现象,加入少量金属纳米微粒就可消除静电现象。
图为防静电工作服食利用纳米材料,冰箱可以抗菌。
纳米材料做的无菌餐具、无菌食品包装用品已经面世。
利用纳米粉末,可以使废水彻底变清水,完全达到饮用标准。
纳米食品色香味俱全,还有益健康。
图为世玫瑰纳米抗菌餐具礼盒住纳米技术的运用,使墙面涂料的耐洗刷性可提高10倍。
玻璃和瓷砖表面涂上纳米薄层,可以制成自洁玻璃和自洁瓷砖,根本不用擦洗。
含有纳米微粒的建筑材料,还可以吸收对人体有害的紫外线。
图为纳米牙刷图为纳米玻璃行纳米材料可以提高和改进交通工具的性能指标。
纳米陶瓷有望成为汽车、轮船、飞机等发动机部件的理想材料,能大大提高发动机效率、工作寿命和可靠性。
纳米卫星可以随时向驾驶人员提供交通信息,帮助其安全驾驶。
4、纳米技术在生物医药中的应用(1)万能的机器人有些科学家设想将蛋白质芯片或基因芯片组装成尺寸比人体红细胞还小的纳米机器人,使其具有某些酶的功能,它是纳米机械装置与生物系统的有机结合,在生物医学工程中可充当微型医生,解决传统医生难以解决的问题。
将这些纳米机器人注入血管内,可按照预定程序,直接打通脑血栓,清洁心脏动脉脂肪沉积物等,达到预防和治疗心脑血管疾病的目的。
图为清理血管的纳米机器人(2)灵敏的检测器癌症是人类死亡率极高的疾病之一,但以目前的医疗诊断水平,癌症一旦被确诊通常已发展到晚期,即已无药可救或已过最佳治疗时期。
科学家设想,可制造出纳米传感器植入体内,监控早期癌变信号分子的产生,通过与外界特定的声信号或其他信号的相互作用,将内部信号转化为外部信号。
转贴另外,近年来科学家正尝试应用纳米技术的新型检测仪器和诊断试剂,只需检测少量血液中蛋白质和DNA就可诊断出某人患各种疾病的可能性。
国内外研究者正致力于脑肿瘤、肝癌、肺癌、白血病等癌症的早期纳米诊断手段的研究,并取得了一定的成绩。
5、在国防科技上的应用(1)隐身材料纳米材料由于质轻层薄,具有特殊的光学性能,可实现高吸收、宽频带、红外微波吸收兼顾等要求,是一种非常有发展前途的新型军用雷达波吸收剂,由它制成的材料在很宽的频带范围内可以逃避雷达的侦查,同时也有红外隐身的作用,纳米材料已成为隐身材料重点研究方向之一。
纳米材料因为具有很高的对电磁波的吸收特性,纳米材料现已受到各主要国家的高度重视,并把其作为新一代隐身材料进行探索与研究。
图为全新隐形战机(2)在防护涂层中的应用与传统涂层相比,纳米结构涂层能使强度、韧性、耐腐蚀、耐磨、热障、抗剥蚀、抗氧化和抗热疲劳等性能得到显著改善,且一种涂层可同时具有上述多种性能。
某些纳米微粒还有杀菌、阻燃、导电、绝缘等作用,可用这些纳米粒子制成防生物涂料、阻燃涂料、导电涂料和绝缘涂料。
这些技术可有效解决舰艇动力推进装置螺旋桨的穴蚀问题以及潜艇、舰艇船体涂料的防污问题等。
纳米材料对海军舰艇的防海水腐蚀,增强船体及船内设备抗盐雾能力已处于应用阶段,作为水中武器世界各国也正在加大研制力度。
武汉海军工程大学已将海泰纳米的纳米氧化钛、纳米氧化锌和纳米氧化硅用于军舰的防腐,可以有效的解决上述问题。
6、在科学领域的应用(1)纳米科技促进电子学、光电子学和磁学的发展纳米粒子的宏观隧道效应确立了微电子器件微型化的极限。