高中数学直线与双曲线的交点问题
- 格式:ppt
- 大小:562.50 KB
- 文档页数:11
双曲线与直线一、双曲线性质:1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=.6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. 11.AB 是双曲线22221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。
直线与双曲线的位置关系【学习目标】1.能正熟练使用直接法、待定系数法、定义法求双曲线的方程;2.能熟练运用几何性质(如范围、对称性、顶点、离心率、渐近线)解决相关问题;3.能够把直线与双曲线的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题. 【知识网络】【要点梳理】要点一、双曲线的定义及其标准方程 双曲线的定义在平面内,到两个定点1F 、2F 的距离之差的绝对值等于常数2a (a 大于0且122a F F <)的动点P 的轨迹叫作双曲线.这两个定点1F 、2F 叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.双曲线的标准方程:焦点在x 轴上的双曲线的标准方程说明:焦点是F 1(-c ,0)、F 2(c ,0),其中c 2=a 2-b 2焦点在y 轴上的双曲线的标准方程说明:焦点是F 1(0,-c)、F 2(0,c),其中c 2=a 2-b 2要点诠释:求双曲线的标准方程应从“定形”、“定式”和“定值”三个方面去思考.“定形”是指对称中心在原点,以坐标轴为对称轴的情况下,焦点在哪条坐标轴上;“定式”根据“形”设双曲线方程的具体形式;“定量”是指用定义法或待定系数法确定a,b 的值.要点二、双曲线的几何性质双曲线双曲线的定义与标准方程 双曲线的几何性质 直线与双曲线的位置关系 双曲线的综合问题双曲线的弦问题双曲线离心率及渐近线问题22221(0,0)x y a b a b -=>>22221(0,0)y x a b a b -=>>标准方程22221x y a b -=(0,0)a b >> 22221y x a b-=(0,0)a b >> 图形性质焦点 1(,0)F c -,2(,0)F c 1(0,)F c -,2(0,)F c焦距 2212||2()F F c c a b ==+ 2212||2()F F c c a b ==+范围 {}x x a x a ≤-≥或,y R ∈ {}y y a y a ≤-≥或,x R ∈对称性 关于x 轴、y 轴和原点对称顶点 (,0)a ±(0,)a ±轴 实轴长=a 2,虚轴长=2b离心率 (1)ce e a=> 渐近线方程x ab y ±= a y x b =±要点三、直线与双曲线的位置关系 直线与双曲线的位置关系将直线的方程y kx m =+与双曲线的方程22221x y a b-=(0,0)a b >>联立成方程组,消元转化为关于x或y 的一元二次方程,其判别式为Δ.222222222()20b a k x a mkx a m a b ----=若2220,b a k -=即bk a =±,直线与双曲线渐近线平行,直线与双曲线相交于一点; 若2220,b a k -≠即bk a≠±,①Δ>0⇔直线和双曲线相交⇔直线和双曲线相交,有两个交点; ②Δ=0⇔直线和双曲线相切⇔直线和双曲线相切,有一个公共点;③Δ<0⇔直线和双曲线相离⇔直线和双曲线相离,无公共点. 直线与双曲线的相交弦设直线y kx m =+交双曲线22221x y a b-=(0,0)a b >>于点111222(,),(,),P x y P x y 两点,则12||PP12|x x -同理可得1212|||(0)PP y y k =-≠ 这里12||,x x -12||,y y -的求法通常使用韦达定理,需作以下变形:12||x x -12||y y -双曲线的中点弦问题遇到中点弦问题常用“韦达定理”或“点差法”求解.在双曲线22221x y a b -=(0,0)a b >>中,以00(,)P x y 为中点的弦所在直线的斜率2020b x k a y =-;涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来相互转化,同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”. 要点四、双曲线的实际应用与最值问题对于双曲线的实际应用问题,我们要抽象出相应的数学问题,即建立数学模型,一般要先建立直角坐标系,然后利用双曲线定义,构建参数a,b,c 之间的关系,得到双曲线方程,利用方程求解双曲线中的最值问题,按照转化途径主要有以下三种: (1) 利用定义转化(2) 利用双曲线的几何性质 (3) 转化为函数求最值 【典型例题】类型一:双曲线的方程与性质例1.设F 1、F 2是双曲线22221x y a b-=1(a >0,b >0)的两个焦点,点P 在双曲线上,若120PF PF ⋅=,且122PF PF ac ⋅=,其中c =【解析】由双曲线定义知,||PF 1|-|PF 2||=2a , ∴|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=4a 2, 又|PF 1|2+|PF 2|2=4c 2,∴|PF 1|·|PF 2|=2b 2, 又122PF PF ac ⋅=,∴2ac =2b 2,∴b 2=c 2-a 2=ac ,∴e 2-e -1=0,∴e =12,即双曲线的离心率为12+. 【总结升华】根据双曲线的定义,几何性质,找到几何量的关系是解决这类问题的关键。
一直线与双曲线右支有两个交点的斜率范围-概述说明以及解释1.引言1.1 概述在数学领域中,我们常常会研究不同曲线之间的交点情况。
本文将重点讨论一直线与双曲线右支之间存在两个交点的情况,探讨其斜率范围的问题。
通过对一直线和双曲线的定义,以及两者之间存在两个交点的条件进行分析,我们将推导出斜率范围的具体数学表达式。
最终,我们将总结得出结论,并给出相应的应用示例,展望未来可能的研究方向。
通过本文的阐述,读者将更深入地理解一直线与双曲线右支之间交点的特性,以及斜率范围的确定方法。
1.2 文章结构:本文主要分为引言、正文和结论三个部分。
在引言部分,将对本文的内容进行概述,介绍文章的结构和目的。
正文部分将详细讨论一直线与双曲线右支的定义、两个交点的条件以及推导斜率范围的过程。
最后,在结论部分将总结本文的研究结果,并给出应用示例和研究展望。
望": {}}}}请编写文章1.2 文章结构部分的内容1.3 目的:本文的目的是探讨一直线与双曲线右支在平面直角坐标系中的交点问题,特别是关注在右支上存在两个交点的情况。
通过研究这一问题,我们将推导出一直线与双曲线右支两个交点存在的必要条件,并进一步得出斜率范围的结论。
通过本文的研究,读者可以更深入地理解一直线和双曲线的性质,拓展数学知识,培养逻辑推理能力。
同时,通过应用示例,读者可以将理论知识具体应用到实际问题中,展示数学在解决实际问题中的重要性。
最后,本文还会对未来可能的研究方向进行展望,为读者提供更多思考的空间。
2.正文2.1 一直线与双曲线右支的定义在数学中,直线与双曲线右支是两种基本的几何图形。
一直线可以用方程y = mx + c表示,其中m为斜率,c为截距。
双曲线右支的标准方程为\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1,其中a和b为正实数。
当一直线与双曲线右支有两个交点时,我们可以根据这两个图形的性质来确定斜率的范围。