直线与双曲线交点个数
- 格式:ppt
- 大小:210.50 KB
- 文档页数:10
直线与双曲线交点总结直线和双曲线是数学中常见的图形,它们在平面几何和解析几何中都有重要的应用。
而直线与双曲线的交点问题,也是一个常见的问题,对于理解和运用这两种图形都有着重要的意义。
在本文中,我们将总结直线与双曲线的交点问题,希望能够对读者有所帮助。
首先,我们来看直线与双曲线的交点问题。
直线与双曲线的交点可以分为两种情况,一种是直线与双曲线相切于一个交点,另一种是直线与双曲线相交于两个交点。
对于第一种情况,我们可以通过求解直线和双曲线的方程组来确定交点的坐标。
而对于第二种情况,我们可以通过求解直线和双曲线的方程组来确定交点的坐标,并且需要注意直线与双曲线的位置关系,以确定是否有两个交点。
其次,我们来讨论一些特殊情况下的直线与双曲线的交点问题。
当直线平行于双曲线的渐近线时,直线与双曲线将没有交点;当直线与双曲线的渐近线重合时,直线与双曲线将有无穷多个交点;当直线垂直于双曲线的渐近线时,直线与双曲线将有两个交点。
这些特殊情况需要我们特别注意,并且在求解交点时需要进行相应的讨论。
最后,我们需要总结一些常见的解题方法和技巧。
在求解直线与双曲线的交点时,我们可以利用直线和双曲线的方程进行求解,也可以通过几何分析和图形性质进行求解。
同时,我们还可以利用参数方程和极坐标系等方法来求解直线与双曲线的交点。
在实际问题中,我们需要根据具体情况选择合适的方法,并且需要注意化简计算和检查结果的合理性。
综上所述,直线与双曲线的交点问题是一个重要且常见的问题,对于理解和运用直线和双曲线都有着重要的意义。
在解决这类问题时,我们需要注意特殊情况的讨论,选择合适的方法进行求解,并且需要进行合理的化简和检查。
希望本文的总结能够对读者有所帮助,也希望读者能够在实际问题中灵活运用这些知识,解决相关的问题。
【感悟情境】
两千多年前,古希腊数学家最先开始研究圆锥曲线,并且获得了大量的成果.古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线.用垂直于锥轴的平面去截圆锥,得到的是圆;把在双曲线标准方程x a 2-y b
2=)
-y 3
=利用双曲线的标准方程a 2-b
2=都适合不等式a
2≥得x ≥a 或x ≤-a .因此,双曲线位于两直线x =a 和x =-a 所夹平面区域的外侧,
如图所示: 类似于对椭圆对称性的讨论,可知双曲线是以x 轴、y 轴为对称轴的轴对称图形;也是以原点为对称中心的中心对称图形,双曲线的对称中心叫做双曲线的中心.可知双曲线与x 轴有两个交点,,这个方程没有实数根,说明双曲线与B 2(0,b )画在y 轴上,如图.
x ≤-a 或x ≥a
y ≤-a 或y ≥a
关于x 轴、轴及原点都对称
y 2a 2-x 2
b 2=1(a >0,b >0)。
过定点的直线与双曲线交点情况的探讨1任意直线与双曲线交点情况备注:此情况下m≠0,如果m=0,一次方程无解,直线L就会与渐近线重合,则与双曲线无交点。
备注:由以上结论可知,任意一条直线与双曲线的交点最多为2个,最少为0个,也有1个的情况(直线与双曲线相切或者直线与渐近线平行)。
2过定点与双曲线仅一个交点的直线情况接下来重点讨论过定点与双曲线只有一个交点的直线条数情况,总共有以下6种情况。
①定点P在双曲线内,如下图绿色区域(不包含在双曲线上的情况):此时,过定点P与双曲线只有一个交点的直线有两条,且这两条直线分别与对应的两条渐近线平行,具体如下:备注:根据上图点P在双曲线内,很明显可以看出过定点P与双曲线有两个交点的直线有无数条,与双曲线无交点的直线有0条,所以此处只探讨过定点P与双曲线只有一个交点的直线条数这种相对复杂的情况,并且这种情况也是常考点!②定点P在双曲线与渐近线之间,如下图绿色区域(不包含原点,在双曲线上和渐近线上的情况):此时,过定点P与双曲线只有一个交点的直线有四条,其中两条直线分别与对应的两条渐近线平行(蓝色),另外两条直线与双曲线相切(粉色),且切点相切在双曲线的同一支上,具体如下:③定点P在两条渐近线之间,如下图绿色区域(不包含原点,在渐近线上的情况):此时,过定点P与双曲线只有一个交点的直线有四条,其中两条直线分别与对应的两条渐近线平行(蓝色),另外两条直线与双曲线相切(粉色),且切点相切在双曲线的两支上,具体如下:④定点P在双曲线上,如下图绿色区域:此时,过定点P与双曲线只有一个交点的直线有三条,其中两条直线分别与对应的两条渐近线平行(蓝色),另外一条直线与双曲线相切(粉色),具体如下:⑤定点P在渐近线上,如下图绿色区域(不包含原点):此时,过定点P与双曲线只有一个交点的直线有两条,其中一条直线与对应的渐近线平行(蓝色),另外一条直线与双曲线相切(粉色),具体如下:⑥定点P在原点上,如下图:可知此时过原点,与双曲线只有一个交点的直线是不存在,即0条。