2.2.1条件概率练习题
- 格式:doc
- 大小:98.50 KB
- 文档页数:2
2.2 二项分布及其应用2.2.1 条件概率内容 标 准学 科 素 养 1.理解条件概率的定义. 2.掌握条件概率的计算方法.3.利用条件概率公式解决一些简单的实际问题.利用数学抽象 发展数学建模 提升数学运算授课提示:对应学生用书第32页[基础认识]知识点 条件概率预习教材P 51-53,思考并完成以下问题(1)三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小?提示:如果三张奖券分别用X 1,X 2,Y 表示,其中Y 表示那张中奖奖券,那么三名同学的抽奖结果共有六种可能:X 1X 2Y ,X 1YX 2,X 2X 1Y ,X 2YX 1,YX 1X 2,YX 2X 1.用B 表示事件“最后一名同学抽到中奖奖券”,则B 仅包含两个基本事件:X 1X 2Y ,X 2X 1Y .由古典概型计算概率的公式可知,最后一名同学抽到中奖奖券的概率为P (B )=26=13.(2)如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率又是多少?提示:因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有X 1X 2Y ,X 1YX 2,X 2X 1Y 和X 2YX 1.而“最后一名同学抽到中奖奖券”包含的基本事件仍是X 1X 2Y 和X 2X 1Y .由古典概型计算概率的公式可知,最后一名同学抽到中奖奖券的概率为24,即12.知识梳理 1.条件概率 (1)事件个数法:P (B |A )=n AB n A(2)定义法:P (B |A )=P AB P A(1)0≤P (B |A )≤1.(2)如果B 和C 是两个互斥的事件,则P (B ∪C |A )=P (B |A )+P (C |A ).[自我检测]1.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( )A.8225B.12C.38D.34 答案:C2.某人一周晚上值班2次,在已知他周日一定值班的条件下,他在周六晚上或周五晚上值班的概率为________.答案:13授课提示:对应学生用书第32页探究一 求条件概率[阅读教材P 53例1]在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率. 题型:求事件的概率及条件概率方法步骤:(1)先计算出不放回地依次抽2次的试验结果总数; (2)分别计算出第1次抽到理科题和两次都抽到的试验结果总数; (3)由概率的计算公式得出所求概率.[例1] 盒内装有除型号和颜色外完全相同的16个球,其中6个是E 型玻璃球,10个是F 型玻璃球.E 型玻璃球中有2个是红色的,4个是蓝色的;F 型玻璃球中有3个是红色的,7个是蓝色的.现从中任取1个,已知取到的是蓝球,问该球是E 型玻璃球的概率是多少?[解析] 由题意得球的分布如下:E 型玻璃球F 型玻璃球总计 红 2 3 5 蓝 4 7 11 总计61016设A ={取得蓝球法一:∵P (A )=1116,P (AB )=416=14,∴P (B |A )=P AB P A =141116=411. 法二:∵n (A )=11,n (AB )=4, ∴P (B |A )=n AB n A=411. 方法技巧 求条件概率P (B |A )的关键就是抓住事件A 为条件和A 与B 同时发生这两点,公式P (B |A )=n AB n A=P AB P A既是条件概率的定义,也是求条件概率的公式,应熟练掌握.跟踪探究 1.集合A ={1,2,3,4,5,6},甲、乙两人各从A 中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下.(1)求乙抽到的数比甲抽到的数大的概率; (2)求乙抽到偶数的概率;(3)集合A ={1,2,3,4,5,6},甲乙两人各从A 中任取一球.若甲先取(放回),乙后取,若事件A :“甲抽到的数大于4”;事件B :“甲、乙抽到的两数之和等于7”,求P (B |A ).解析:(1)设“甲抽到奇数”为事件C , “乙抽到的数比甲抽到的数大”为事件D ,则事件C 包含的基本事件总数为C 13·C 15=15个,事件CD 同时发生包含的基本事件总数为5+3+1=9个, 故P (D |C )=915=35.(2)在甲抽到奇数的情形中,乙抽到偶数的有(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),共9个,所以所求概率P =915=35.(3)甲抽到的数大于4的情形有:(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共12个,其中甲、乙抽到的两数之和等于7的情形有:(5,2),(6,1),共2个.所以P (B |A )=212=16.探究二 条件概率的性质及应用[阅读教材P 53例2]一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率. 题型:互斥事件的条件概率方法步骤:(1)不超过2次就按对包含“第1次按对”和“第1次没按对,第2次按对”两事件的和事件;(2)分别求出“第1次按对”和“第1次没按对,第2次按对”的概率; (3)由互斥事件概率的计算公式得出所求概率.[例2] 在某次考试中,要从20道题中随机抽出6道题,若考生至少能答对其中4道题即可通过,至少能答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.[解析] 记事件A 为“该考生6道题全答对”,事件B 为“该考生答对了其中5道题,另一道答错”,事件C 为“该考生答对了其中4道题,另2道题答错”,事件D 为“该考生在这次考试中通过”,事件E 为“该考生在这次考试中获得优秀”,则A ,B ,C 两两互斥,且D =A ∪B ∪C ,E =A ∪B ,可知P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=C 610C 620+C 510C 110C 620+C 410C 210C 620=12 180C 620, P (AD )=P (A ),P (BD )=P (B ), P (E |D )=P (A |D )+P (B |D )=P A P D+P BPD =210C 62012 180C 620+2 520C 62012 180C 620=1358. 故获得优秀成绩的概率为1358.方法技巧 当所求事件的概率相对较复杂时,往往把该事件分成两个(或多个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用P (B ∪C |A )=P (B |A )+P (C |A )便可求得较复杂事件的概率.跟踪探究 2.在一个袋子中装有除颜色外其他都相同的10个球,其中有1个红球,2个黄球,3个黑球,4个白球,从中依次不放回地摸2个球,求在摸出的第一个球是红球的条件下,第二个球是黄球或黑球的概率.解析:法一:设“摸出的第一个球为红球”为事件A ,“摸出的第二个球为黄球”为事件B ,“摸出的第二个球为黑球”为事件C ,则P (A )=110,P (AB )=1×210×9=145,P (AC )=1×310×9=130.∴P (B |A )=P AB P A =145110=1045=29, P (C |A )=P AC P A =130110=13. ∴P (B ∪C |A )=P (B |A )+P (C |A )=29+13=59.故所求的条件概率为59.法二:∵n (A )=1×C 19=9,n [(B ∪C )∩A ]=C 12+C 13=5,∴P (B ∪C |A )=59.故所求的条件概率为59.授课提示:对应学生用书第33页[课后小结](1)条件概率:P (B |A )=P AB P A=n AB n A.(2)概率P (B |A )与P (AB )的区别与联系:P (AB )表示在样本空间Ω中,计算AB 发生的概率,而P (B |A )表示在缩小的样本空间ΩA 中,计算B 发生的概率.用古典概型公式,则P (B |A )=AB 中样本点数ΩA 中样本点数,P (AB )=AB 中样本点数Ω中样本点数.[素养培优]1.因把基本事件空间找错而致错一个家庭中有两名小孩,假定生男、生女是等可能的.已知这个家庭有一名小孩是女孩,问另一名小孩是男孩的概率是多少?易错分析:解决条件概率的方法有两种,第一种是利用公式P (B |A )=P AB P A.第二种为P (B |A )=n AB n A,其中找对基本事件空间是关键.考查数学建模的学科素养.自我纠正:法一:一个家庭的两名小孩只有4种可能:{两名都是男孩},{第一名是男孩,第二名是女孩},{第一名是女孩,第二名是男孩},{两名都是女孩}.由题意知这4个事件是等可能的,设基本事件空间为Ω,“其中一名是女孩”为事件A ,“其中一名是男孩”为事件B ,则Ω={(男,男),(男,女),(女,男),(女,女)},A ={(男,女),(女,男),(女,女)},B ={(男,男),(男,女),(女,男)},AB ={(男,女),(女,男)}.∴P (AB )=24=12,P (A )=34.∴P (B |A )=P AB P A =1234=23. 法二:由方法一可知n (A )=3,n (AB )=2. ∴P (B |A )=n AB n A =23. 2.“条件概率P (B |A )”与“积事件的概率P (A ·B )”混同袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次,求第二次才取到黄色球的概率.易错分析:本题错误在于P (AB )与P (B |A )的含义没有弄清,P (AB )表示在样本空间S 中,A 与B 同时发生的概率;而P (B |A )表示在缩减的样本空间S A 中,作为条件的A 已经发生的条件下事件B 发生的概率.考查数学建模的学科素养.自我纠正:P (C )=P (AB )=P (A )·P (B |A )=410×69=415.。
2.2.1条件概率练习题(总2页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--条件概率练习题1.已知P(B|A)=103,P(A)=51,则P(AB)=( ) A .21 B.23 C .32 D.503 2.由“0”、“1” 组成的三位数码组中,若用A 表示“第二位数字为0”的事件,用B 表示“第一位数字为0”的事件,则P(A|B)=( ) A.21 B.31 C.41 D.813.某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为152,既刮风又 下雨的概率为101,则在下雨天里,刮风的概率为( ) A.2258 B.21 C.83 D.43 4.袋中有5个球,3个白球,2个黑球,现每次取一个,无放回地抽取两次,第二次 抽到白球的概率为( ) A.53 B.43 C.21 D. 1035.6位同学参加百米短跑初赛,赛场有6条跑道,则已知甲同学排在第一跑道,乙同 学排在第二跑道的概率( ) A.52 B.51 C.92 D. 736.一个袋中有9张标有1,2,3,…,9的票,从中依次取两张,则在第一张是奇数的 条件下第二张也是奇数的概率( ) A.52 B.51 C.21 D. 737.福娃是2008年北京第二十九届奥运会的吉祥物,每组福娃都由“贝贝”“晶晶” “欢欢”“迎迎”和“妮妮”这五个福娃组成,甲、乙两人随机地从一组五个福娃中选 取一个留作纪念。
按甲先选乙再选的顺序不放回的选择,则在他俩选择的福娃中“贝贝” 和“晶晶”一只也没有被选中的概率是( ) A.101 B.53 C.103 D.528.任意向(0,1)区间上投掷一个点,用x 表示该点的坐标,则 ={x|0<x<1},事件 A={x|0<x<},B={x|<x<1},P (B|A )=___________________________9.设n 件产品中含有m 件废品,今从中任取两件,在已知其中一件是废品的前提下, 另一件也是废品的概率为________________________10.根据历年气象资料统计,某地四月份刮东风的概率是308,既刮东风又下雨的概率 是307。
( )一、选择题条件概率课后练习题1. 小明早上步行从家到学校要经过有红绿灯的两个路口,根据经验,在第一个路口遇到红灯的概率为 0.4,在第二个路口遇到红灯的概率为 0.5,在两个路口连续遇到红灯的概率是 0.2. 某天早上小明在第一个路口遇到了红灯,则他在第二个路口也遇到红灯的概率是( )A. 0.2B. 0.3C. 0.4D. 0.52. 甲乙两人从 1,2,3, ……15 这 15 个数中,依次任取一个数(不放回),则在已知甲取到的数是 5 的倍数的情况下,甲所取的数大于乙所取的数的概率是( )A.1 2B.15C.14 D.153. 小赵、小钱、小孙、小李到 4 个景点旅游,每人只去一个景点,设事件 A =“4 个人去的景P A B =点不相同”,事件 B = “小赵独自去一个景点”,则 ( )A.29B.13 C.4 9 2D.5 94. 已知甲、乙、丙三名同学同时独立地解答一道导数试题,每人均有 3 的概率解答正确,且三个人解答正确与否相互独立,在三人中至少有两人解答正确的条件下,甲解答不正确的概 率 ( ) A. 1320B.9 20C. 1 5D.1 205. 将三枚骰子各掷一次,设事件 A 为“三个点数都不相同”,事件 B 为“至少出现一个 6 点”,则概率 P (A | B) 的值为( ) A. 6091二、填空题B. 1 2C.5 18D.2166. 一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩是男孩的概率是 .7. 某校高三年级要从 5 名男生和 2 名女生中任选 3 名代表参加数学竞赛(每人被选中的机会均等),则在男生甲被选中的情况下,男生乙和女生丙至少一个被选中的概率是 . 8.篮子里装有 2 个红球,3 个白球和 4 个黑球。
某人从篮子中随机取出两个球,记事件A =“取 出的两个球颜色不同”,事件B =“取出一个红球,一个白球”, P (B A )= .三、解答题9.高考数学考试中有 12 道选择题,每道选择题有 4 个选项,其中有且仅有一个是正确的.评分标准规定:“在每小题中给出的四个选项中,只有一项是符合题目要求的,答对得 5 分,不答或答错得 0 分”.某考生每道选择题都选出一个答案,能确定其中有 8 道题的答案是正确的,而其余题中,有两道题都可判断出两个选项是错误的,有一道题能判断出一个选项是错误的,还有一道题因不理解题意只能乱猜.试求出该考生的选择题:(Ⅰ)得 60 分的概率;(Ⅱ)得多少分的概率最大?10.在盒子里有大小相同,仅颜色不同的乒乓球共10 个,其中红球5 个,白球3 个,蓝球2 个。
第二章 2.2 2.2.1A 级 基础巩固一、选择题1.抛掷红、黄两枚质地均匀的骰子,当红色骰子的点数为4或6时,两枚骰子的点数之积大于20的概率是( B )A .14 B .13 C .12D .35[解析] 抛掷红、黄两枚骰子共有6×6=36个基本事件,其中红色骰子的点数为4或6的有12个基本事件,此时两枚骰子点数之积大于20包含4×6,6×4,6×5,6×6,共4个基本事件.所求概率为13.2.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P(B|A)=( B )A .18B .14C .25D .12[解析] ∵P(A)=C 23+C 22C 25=25,P(AB)=C 22C 25=110,∴P(B|A)=P (AB )P (A )=14.3.抛掷一枚质地均匀的骰子所得点数的样本空间为Ω={1,2,3,4,5,6},令事件A ={2,3,5},B ={1,2,4,5,6},则P(A|B)等于( A )A .25B .12C .35D .45[解析] ∵A∩B={2,5},∴n(AB)=2.又∵n(B)=5,∴P(A|B)=n (AB )n (B )=25.4.在区间(0,1)内随机投掷一个点M(其坐标为x),若A ={x|0<x<12},B ={x|14<x<34},则P(B|A)等于( A )A .12B .14C .13D .34[解析] P(A)=121=12.因为A∩B={x|14<x<12},所以P(AB)=141=14,P(B|A)=P (AB )P (A )=1412=12.5.已知某产品的次品率为4%,其合格品中75%为一级品,则任选一件为一级品的概率为( C ) A .75% B .96% C .72%D .78.125%[解析] 记“任选一件产品是合格品”为事件A, 则P(A)=1-P(A )=1-4%=96%.记“任选一件产品是一级品”为事件B .由于一级品必是合格品,所以事件A 包含事件B,故P(AB)=P(B).由合格品中75%为一级品知P(B|A)=75%; 故P(B)=P(AB)=P(A)P(B|A)=96%×75%=72%.6.电视机的使用寿命与显像管开关的次数有关.某品牌的电视机的显像管开关了10000次后还能继续使用的概率是0.80,开关了15000次后还能继续使用的概率是0.60,则已经开关了10000次的电视机显像管还能继续使用到15000次的概率是( A )A .0.75B .0.60C .0.48D .0.20[解析] 记“开关了10000次后还能继续使用”为事件A,记“开关了15000次后还能继续使用”为事件B,根据题意,易得P(A)=0.80,P(B)=0.60,则P(A∩B)=0.60,由条件概率的计算方法,可得P =P (A∩B )P (A )=0.600.80=0.75. 二、填空题7.(2018·淄博二模)从标有1,2,3,4,5的五张卡片中,依次抽出2张,则在第一次抽到偶数的条件下,第二次抽到奇数的概率为__34__.[解析] 在第一次抽到偶数时,还剩下1个偶数,3个奇数, ∴在第一次抽到偶数的条件下, 第二次抽到奇数的概率为34.故答案为34.8.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为__9599__.[解析] 设“第一次抽到次品”为事件A,“第二次抽到正品”为事件B,则P(A)=5100=120,P(AB)=C 15C 195A 2100=19396,所以P(B|A)=P (AB )P (A )=9599. 9.设P(A|B)=P(B|A)=12,P(A)=13,则P(B)等于__13__.[解析] ∵P(B|A)=P (A∩B )P (A ),∴P(A∩B)=P(B|A)·P(A)=12×13=16,∴P(B)=P (A∩B )P (A|B )=1612=13.三、解答题10.一个盒子中有6只好晶体管,4只坏晶体管,任取两次,每次取一只,每一次取后不放回.若已知第一只是好的,求第二只也是好的概率.[解析] 令A i ={第i 只是好的},i =1,2. 解法一:n(A 1)=C 16C 19,n(A 1A 2)=C 16C 15, 故P(A 2|A 1)=n (A 1A 2)n (A 1)=C 16C 15C 16C 19=59.解法二:因事件A 1已发生(已知),故我们只研究事件A 2发生便可,在A 1发生的条件下,盒中仅剩9只晶体管,其中5只好的,所以P(A 2|A 1)=C 15C 19=59.B 级 素养提升一、选择题1.(2019·深圳一模)夏秋两季,生活在长江口外浅海域的中华鲟洄游到长江,历经三千多公里的溯流搏击,回到金沙江一带产卵繁殖,产后待幼鱼长大到15厘米左右,又携带它们旅居外海.一个环保组织曾在金沙江中放生一批中华鱼苗,该批鱼苗中的雌性个体能长成熟的概率为0.15,雌性个体长成熟又能成功溯流产卵繁殖的概率为0.05,若该批鱼苗中的一个诞性个体在长江口外浅海域已长成熟,则其能成功溯流产卵繁殖的概率为( C )A .0.05B .0.0075C .13D .16[解析] 设事件A 为鱼苗中的一个雌性个体在长江口外浅海域长成熟, 事件B 为雌性个体成功溯流产卵繁殖,由题意可知P(A)=0.15,P(AB)=0.05, ∴P(B|A)=P (AB )P (A )=0.050.15=13.故选C .2.(2019·山西一模)甲乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为23,且各局比赛结果相互独立,则在甲获得冠军的情况下,比赛进行了三局的概率为( B )A .13B .25C .23D .45[解析] 由题意,甲获得冠军的概率为23×23+23×13×23+13×23×23=2027,其中比赛进行了3局的概率为23×13×23+13×23×23=827,∴所求概率为827÷2027=25,故选B . 二、填空题3.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为__3350__.[解析] 解法一:根据题意可知取出的一个数是不大于50的数,则这样的数共有50个,其中是2或3的倍数的数共有33个,故所求概率为3350.解法二:设A =“取出的数不大于50”,B =“取出的数是2或3的倍数”,则P(A)=50100=12,P(AB)=33100, ∴P(B|A)=P (AB )P (A )=3350.4.投掷两颗均匀骰子,已知点数不同,设两颗骰子点数之和为ξ,则ξ≤6的概率为__1130__.[解析] 解法一:投掷两颗骰子,其点数不同的所有可能结果共30种,其中点数之和ξ≤6的有(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(3,1),(3,2),(4,1),(4,2),共11种,∴所求概率P =1130.解法二:设A =“投掷两颗骰子,其点数不同”,B =“ξ≤6”,则P(A)=3036=56,P(AB)=1136,∴P(B|A)=P (AB )P (A )=1130.三、解答题5.某校高三(1)班有学生40人,其中共青团员15人.全班平均分成4个小组,其中第一组有共青团员4人.从该班任选一人作学生代表.(1)求选到的是第一组的学生的概率;(2)已知选到的是共青团员,求他是第一组学生的概率. [解析] 设事件A 表示“选到第一组学生”, 事件B 表示“选到共青团员”. (1)由题意,P(A)=1040=14.(2)解法一:要求的是在事件B 发生的条件下,事件A 发生的条件概率P(A|B).不难理解,在事件B 发生的条件下(即以所选到的学生是共青团员为前提),有15种不同的选择,其中属于第一组的有4种选择.因此,P(A|B)=415.解法二:P(B)=1540=38,P(AB)=440=110,∴P(A|B)=P (AB )P (B )=415.6.设b 和c 分别是抛掷一枚骰子先后得到的点数,用随机变量X 表示方程x 2+bx +c =0实根的个数(重根按一个计).(1)求方程x 2+bx +c =0有实根的概率; (2)求X 的分布列;(3)求在先后两次出现的点数中有5的条件下,方程x 2+bx +c =0有实根的概率.[解析] (1)由题意知,设基本事件空间为Ω,记“方程x 2+bx +c =0没有实根”为事件A,“方程x2+bx +c =0有且仅有一个实根”为事件B,“方程x 2+bx +c =0有两个相异实根”为事件C,则Ω={(b,c)|b,c =1,2,…,6},A ={(b,c)|b 2-4c<0,b,c =1,2,...,6} B ={(b,c)|b 2-4c =0,b,c =1,2,...,6} C ={(b,c)|b 2-4c>0,b,c =1,2, (6)∴Ω中的基本事件总数为36个,A 中的基本事件总数为17个,B 中的基本事件总数为2个,C 中的基本事件总数为17个.又∵B 、C 是互斥事件,故所求概率P =P(B)+P(C)=236+1736=1936.(2)由题意,X 的可能取值为0,1,2,则P(X =0)=1736,P(X =1)=118,P(X =2)=1736,故X 的概率分布列为:(3)记“先后两次出现的点数中有5”为事件D,“方程x 2+bx +c =0有实根”为事件E,由上面分析得 P(D)=1136,P(DE)=736,∴P(E|D)=P (DE )P (D )=711.。
学案47 §2.2.1条件概率(习题课)一、基础知识 1、事件的交 2、条件概率: 3、条件概率公式4、概率)|(A B p 和)(AB P 的区别与联系 联系:事件A 和B 都发生了区别:(1)在)|(A B P 中,事件A 和B 发生有时间差异,A 先B 后;在)(AB P 中,事件A 、B 同时发生。
(2)样本空间不同,在)|(A B p 中,样本空间为A,事件)(AB P 中,样本空间仍为Ω 5、P (B|A )的性质:(1)非负性:对任意的A ∈f. 0(|)1P B A ≤≤;(2)规范性:P (Ω|A )=1;(3)可列可加性:如果是两个互斥事件,则(|)(|)(|)P B C A P B A P C A =+ . 二、习题讲解1.已知P(B|A)=103,P(A)=51,则P(AB)=( ) A .21 B.23 C .32 D.5032.由“0”、“1” 组成的三位数码组中,若用A 表示“第二位数字为0”的事件,用B表示“第一位数字为0”的事件,则P(A|B)=( ) A.21 B.31 C.41 D.813.某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为152,既刮风又下雨的概率为101,则在下雨天里,刮风的概率为( )A.2258B.21 C.83D.434.袋中有5个球,3个白球,2个黑球,现每次取一个,无放回地抽取两次,第二次抽到白球的概率为( )A.53 B.43 C.21 D. 1035.6位同学参加百米短跑初赛,赛场有6条跑道,则已知甲同学排在第一跑道,乙同学排在第二跑道的概率( )A.52 B.51 C.92 D. 736.一个袋中有9张标有1,2,3,…,9的票,从中依次取两张,则在第一张是奇数的 条件下第二张也是奇数的概率( )A.52 B.51 C.21 D. 737.任意向(0,1)区间上投掷一个点,用x 表示该点的坐标,则Ω={x|0<x<1},事件 A={x|0<x<0.5},B={x|0.25<x<1},P (B|A )=___________________________ 8.根据历年气象资料统计,某地四月份刮东风的概率是308,既刮东风又下雨的概率是307。
2.2.1 条件概率练习题
1.已知P(B|A)=103,P(A)=5
1,则P(AB)=( )
A .21
B.23 C .32 D.50
3 2.由“0”、“1” 组成的三位数码组中,若用A 表示“第二位数字为0”的事件,用B 表示“第一位数字为0”的事件,则P(A|B)=( ) A.21 B.31 C.41 D.8
1
3.某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为15
2,既刮风又 下雨的概率为10
1,则在下雨天里,刮风的概率为( ) A.2258 B.21 C.8
3 D.43 4.袋中有5个球,3个白球,2个黑球,现每次取一个,无放回地抽取两次,第二次 抽到白球的概率为( ) A.53 B.43 C.21 D. 10
3
5.6位同学参加百米短跑初赛,赛场有6条跑道,则已知甲同学排在第一跑道,乙同 学排在第二跑道的概率( ) A.52 B.51 C.92 D. 7
3
6.一个袋中有9张标有1,2,3,…,9的票,从中依次取两张,则在第一张是奇数的 条件下第二张也是奇数的概率( ) A.52 B.51 C.21 D. 7
3
7.福娃是2008年北京第二十九届奥运会的吉祥物,每组福娃都由“贝贝”“晶晶” “欢欢”“迎迎”和“妮妮”这五个福娃组成,甲、乙两人随机地从一组五个福娃中选 取一个留作纪念。
按甲先选乙再选的顺序不放回的选择,则在他俩选择的福娃中“贝贝” 和“晶晶”一只也没有被选中的概率是( ) A.101 B.53 C.103 D.5
2
8.任意向(0,1)区间上投掷一个点,用x 表示该点的坐标,则 ={x|0<x<1},事件 A={x|0<x<0.5},B={x|0.25<x<1},P (B|A )=___________________________
9.设n 件产品中含有m 件废品,今从中任取两件,在已知其中一件是废品的前提下, 另一件也是废品的概率为________________________
10.根据历年气象资料统计,某地四月份刮东风的概率是30
8,既刮东风又下雨的概率 是30
7。
问该地四月份刮东风时下雨的概率是____________________
11.一个口袋内装有2个白球,3个黑球,则
(1)先摸出1个白球后放回,再摸出1个白球的概率?
(2)先摸出1个白球后不放回,再摸出1个白球的概率?
12.某种元件用满6000小时未坏的概率是43,用满10000小时未坏的概率是2
1,现有
一个此种元件,已经用过6000小时未坏,求它能用到10000小时的概率
13.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽 取一粒,求这粒种子能成长为幼苗的概率。
14.某种电路开关闭合后,会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的 概率是21,在第一次闭合出现红灯的条件下第二次闭合还出现红灯的概率是3
1,求两次闭
合都出现红灯的概率。
15.市场供应的灯泡中,甲厂产品占有70%,乙厂产品占有30%,甲厂产品的合格率为 95%,乙厂产品的合格率为80%。
现从市场中任取一灯泡,假设A=“甲厂生产的产品”,
A =“乙厂生产的产品”
,B=“合格灯泡”,B =“不合格灯泡”,求: (1)P(B|A) ;(2)P(B |A) ;(3)P(B|A ) ;(4)P(B |A ).。