条件概率与全概率公式_课件
- 格式:pptx
- 大小:7.14 MB
- 文档页数:26
概率论与数理统计主讲:四川大学四川大学第10讲条件概率(III): 全概率公式贝叶斯公式1§1.5 条件概率四川大学第10讲条件概率(III): 全概率公式贝叶斯公式3第10讲条件概率(III)全概率公式贝叶斯公式四川大学四川大学第10讲条件概率(III): 全概率公式贝叶斯公式4四川大学第10讲条件概率(III): 全概率公式贝叶斯公式5在前面两讲,我们讲了条件概率和乘法公式。
现在来讲全概率公式和贝叶斯公式()()(|)P AB P A P B A =(()0)P A >(一)全概率公式四川大学第10讲条件概率(III): 全概率公式贝叶斯公式6A ()(|)B P A B1AB 2AB 3AB 4AB 5AB )B1AB2AB 3AB 4AB 5AB四川大学第10讲条件概率(III): 全概率公式贝叶斯公式11全概率公式的意义事件A 的发生有各种可能的原因B i (i =1,…,n )。
如果A 是由原因B i 引起,则A 发生的概率为()()(|)i i i P AB P B P A B 每一个原因都可能导致A 发生,故A 发生的概率是全部原因引起A 发生的概率的总和,即为全概率公式。
由此可以形象地把全概率公式看成是“由原因推结果”的公式,每个原因对结果的发生有一定的作用,结果发生的可能性与各种原因的作用大小有关,全概率公式就表达了它们之间的关系。
四川大学四川大学第10讲条件概率(III): 全概率公式贝叶斯公式12在很多实际问题中,P (A )不容易直接求得,但却容易找到S 的一个划分B 1, B 2,…, B n ,且P (B i )和P (A |B i )容易求得,那么就可以用全概率公式求出P (A )。
使用全概率公式的关键是作出S 的一个划分。
何时用全概率公式求A 的概率?四川大学1()()(|)ni i i P A P B P A B ==∑四川大学第10讲条件概率(III): 全概率公式贝叶斯公式16例2 有12个足球都是新球,每次比赛时取出3个,比赛后又放回去,求第三次比赛时取到的3 个足球都是新球的概率。
第三节条件概率全概率公式条件概率、全概率公式是概率论中两个重要的概念和方法。
在实际问题中,我们常常需要考虑一些事件发生的条件下,另一个事件发生的概率,即条件概率。
而全概率公式则是一种根据一组互斥事件的概率可以计算出其他事件概率的方法。
本节将详细介绍条件概率和全概率公式的概念、性质以及应用。
一、条件概率条件概率是指在一个已知事件B发生的条件下,事件A发生的概率。
记为P(A,B),读作“A在B下的概率”。
其计算公式为:P(A,B)=P(A∩B)/P(B)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。
条件概率具有以下性质:1.非负性:对于任意的事件A和B,有P(A,B)≥0。
2.规范性:当P(B)>0时,有P(B,B)=13.直积性:对于任意的事件A和B,有P(A∩B)=P(B)×P(A,B)。
4.反转性:若P(B)>0,有P(A,B)=P(A∩B)/P(B)=P(B,A)×P(A)/P(B)。
条件概率在实际应用中非常重要。
例如,在医学诊断中,我们常常需要计算一些疾病在一些检查结果呈阳性的条件下的概率,以判断该疾病的可能性大小。
全概率公式是指通过一组互斥事件的概率可以计算出另一个事件的概率的方法。
假设事件B1、B2、..、Bn互不相容且构成样本空间S,即B1、B2、..、Bn是一组完备事件,且P(Bi)>0,那么对任意事件A有:P(A)=P(A,B1)×P(B1)+P(A,B2)×P(B2)+...+P(A,Bn)×P(Bn)全概率公式的核心思想是将事件A在各个互斥事件的条件下进行考虑,并加权求和得到事件A的概率。
全概率公式的应用非常广泛。
例如,在市场营销中,一个产品的销量可能受到不同市场环境的影响。
我们可以通过对不同市场环境下产品销售的数据进行分析,运用全概率公式计算出在不同市场环境下产品销售的概率,进而制定相应的营销策略。