条件概率公式与全概率公式
- 格式:ppt
- 大小:389.00 KB
- 文档页数:23
条件概率与全概率公式
条件概率是指在一定条件下某事件发生的概率,例如,已知某人感染了疾病,求这个人的年龄在40岁以下的概率。
这里,已知某人感染了疾病就是条件,年龄在40岁以下是事件。
条件概率的公式为:P(A|B) = P(A∩B)/P(B),其中,P(A|B)表示在条件B下事件A发生的概率,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
全概率公式是指将一个事件拆分成多个互不重叠的子事件,并计算每个子事件的概率,然后将它们相加得到整个事件发生的概率。
例如,某医院有三个科室,分别是内科、外科和儿科,每个科室的病人比例为60%、30%和10%。
现在需要求这个医院的所有病人中,感染肺炎的比例。
这里,感染肺炎是整个事件,内科、外科和儿科是子事件。
全概率公式为:P(A) = Σ P(A|Bi) * P(Bi),其中,P(A)表示事件A的概率,P(A|Bi)表示在条件Bi下事件A发生的概率,P(Bi)表示事件Bi发生的概率,Σ表示对所有的i求和。
在这个例子中,感染肺炎的比例为:P(肺炎) = P(肺炎|内科) * P(内科) + P(肺炎|外科) * P(外科) + P(肺炎|儿科) * P(儿科)。
- 1 -。
全概率和条件概率的关系全概率和条件概率两个概念在概率论中都有着重要的作用,它们之间存在着密切的联系。
本文将介绍全概率和条件概率的定义及其关系。
一、全概率全概率公式是概率论中很重要的一个公式,它用来计算一个事件的概率,可以用于许多问题的求解。
全概率的定义:设$B_1$,$B_2$,$B_3$,$\cdots$,$B_n$是样本空间$\omega$的一组完全事件组,$A$是$\omega$的任一事件,则有下面的公式:$P(A)=\sum\limits_{i=1}^nP(A|B_i)P(B_i)$其中$P(B_i)$是随机事件$B_i$发生的概率,$P(A|B_i)$是在事件$B_i$发生的条件下,事件$A$发生的概率。
这个公式的意义就是把事件$A$拆分成若干个互不相交的事件$A|B_i$,每个事件$A|B_i$的概率都很容易求出来,然后计算它们的加权平均就可以得到事件$A$的概率。
二、条件概率条件概率是指在已知某一事件发生的条件下,另一个事件发生的概率。
在实际应用中,条件概率经常用于解决诸如贝叶斯定理等问题。
$P(A|B)=\dfrac{P(A\cap B)}{P(B)}$其中$P(A\cap B)$表示事件$A$和事件$B$同时发生的概率。
全概率公式和条件概率公式之间存在着紧密的联系。
在求解一个事件的概率时,我们可以采用两种不同的方法:通过全概率公式或者通过条件概率公式。
反过来,我们在用条件概率公式计算事件$A$的概率时,可以采用全概率公式把$P(A\cap B)$拆分成若干个不相交的事件,然后通过条件概率公式求出这些事件的概率,最后加起来即可:综上所述,全概率和条件概率是概率论中两个基本且重要的概念,它们之间存在着密切的联系,我们可以根据需要灵活地使用它们来解决各种概率问题。
条件概率与全概率公式
全概率公式定义
全概率公式是求解其中一事件发生的概率的一种统计技术。
全概率公
式又称为贝叶斯概率定理,是比较常见的概率公式之一、全概率公式表述为:设事件B1,B2,...Bn在样本空间S的一致性事件,事件A在样本空间
S中发生的概率为:
P(A)=∑P(A,Bi)P(Bi)
其中P(Bi)是事件B1,B2,...Bn发生的概率;P(A,Bi)是在事件
Bi发生的条件下,事件A发生的概率。
条件概率定义
条件概率是指在其中一条件下事件A发生的概率,它的计算方法是:
在该条件下,事件A发生的概率为:P(A,B)=P(A,B)/P(B)。
其中P(B)是事件B发生的概率;P(A,B)是事件A和B同时发生的概率。
由此可见,条件概率是指在条件B出现的情况下的概率事件A发生的
概率,而全概率公式则是求解其中一事件A的发生概率,即P(A)的值,
以上是全概率公式与条件概率的定义。
全概率公式与条件概率的关系
P(A)=∑P(A,Bi)P(Bi)
=P(A,B1)P(B1)+P(A,B2)P(B2)+···+P(A,Bn)P(Bn)
根据上面的表达式,可以看出,全概率公式实际上是将多个不相关的
结果。
概率论的公式大全概率论是数学的一个分支,研究随机事件发生的概率。
以下是概率论中常用的公式。
1.基本概率公式:P(A)=n(A)/n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A的样本空间中的有利结果数量,n(S)表示样本空间中的总结果数量。
2.加法公式:P(A或B)=P(A)+P(B)-P(A且B)其中,P(A或B)表示事件A或事件B发生的概率,P(A且B)表示事件A和事件B同时发生的概率。
3.乘法公式:P(A且B)=P(A)×P(B,A)其中,P(B,A)表示在事件A发生的条件下,事件B发生的概率。
4.条件概率公式:P(A,B)=P(A且B)/P(B)其中,P(A,B)表示在事件B发生的条件下,事件A发生的概率。
5.全概率公式:P(A)=Σ(P(A,Bi)×P(Bi))其中,P(A)表示事件A的概率,Bi表示S的一个划分,P(A,Bi)表示在事件Bi发生的条件下,事件A发生的概率,P(Bi)表示事件Bi的概率。
6.贝叶斯公式:P(Bi,A)=(P(A,Bi)×P(Bi))/Σ(P(A,Bj)×P(Bj))其中,P(Bi,A)表示在事件A发生的条件下,事件Bi发生的概率,P(A,Bi)表示在事件Bi发生的条件下,事件A发生的概率,P(Bi)表示事件Bi的概率。
7.期望值公式:E(X)=Σ(Xi×P(Xi))其中,E(X)表示随机变量X的期望值,Xi表示X的取值,P(Xi)表示X取值为Xi的概率。
8.方差公式:Var(X) = Σ((Xi - E(X))^2 × P(Xi))其中,Var(X)表示随机变量X的方差,Xi表示X的取值,E(X)表示X 的期望值,P(Xi)表示X取值为Xi的概率。
9.标准差公式:SD(X) = √Var(X)其中,SD(X)表示随机变量X的标准差,Var(X)表示X的方差。
10.二项分布的概率公式:P(X=k)=C(n,k)×p^k×(1-p)^(n-k)其中,P(X=k)表示X取值为k的概率,C(n,k)表示组合数,p表示单次实验成功的概率,n表示试验重复的次数,k表示成功发生的次数。
全概率和条件概率的关系
全概率和条件概率是概率论中非常重要的概念,它们之间存在着密切的关系。
全概率是指在一个随机试验中,所有可能结果的概率之和为1。
通常用全概率公式来计算,即在所有可能事件E1、E2、E3…En的基础上,计算它们的概率P(Ei),并乘以对应的条件概率P(A|Ei),然后将所有结果加起来得到P(A)。
条件概率则是在给定某一事件发生的前提下,另一事件发生的概率。
通常用条件概率公式来计算,即在已知某一事件A的情况下,另一事件B发生的概率为P(B|A)。
全概率和条件概率之间的关系在于,全概率公式中的条件概率
P(A|Ei)可以通过条件概率公式来计算,即P(A|Ei) = P(A∩Ei) / P(Ei)。
这意味着全概率公式可以转化为P(A) = Σ P(Ei) * P(A|Ei),其中P(A|Ei)可以用条件概率公式来计算。
因此,全概率和条件概率是概率论中相互依存的概念,它们的关系在实际应用中非常广泛,例如在贝叶斯定理、风险评估、统计推断等领域中都有重要应用。
- 1 -。
概率论与数理统计公式1.概率公式:
1.1概率加法公式:
P(A∪B)=P(A)+P(B)-P(A∩B)
1.2条件概率公式:
P(A,B)=P(A∩B)/P(B)
P(B,A)=P(A∩B)/P(A)
1.3乘法公式:
P(A∩B)=P(A)*P(B,A)
P(A∩B)=P(B)*P(A,B)
1.4全概率公式:
P(A)=ΣP(A,B_i)*P(B_i)
1.5贝叶斯公式:
P(B,A)=P(A,B)*P(B)/P(A)
2.数理统计中的基本概念和公式:
2.1样本均值:
样本均值 = (x1 + x2 + ... + xn) / n
2.2总体均值:
总体均值=(样本均值*n-x)/(n-1)
2.3样本方差:
样本方差 = Σ(xi - x̄)² / (n-1)
2.4总体方差:
总体方差= Σ(xi - µ)² / N
2.5样本标准差:
样本标准差=√(样本方差)
2.6总体标准差:
总体标准差=√(总体方差)
2.7样本中位数:
样本中位数=(x[n/2]+x[(n+1)/2])/2(当n为偶数时)
2.8样本四分位数:
样本四分位数Q1=x[(n+3)/4]
样本四分位数Q3=x[(3n+1)/4]
2.9标准正态分布的累积分布函数的逆函数:
Zα=Φ^(-1)(α),其中Φ(z)表示标准正态分布的累积分布函数。
2.10卡方分布的累积分布函数的逆函数:
x^2α=χ^2^(-1)(α),其中χ^2(x)表示卡方分布的累积分布函数。
高中数学+条件概率与全概率公式+课件条件概率与全概率公式在高中数学中是一个非常重要的概念,理解它可以帮助学生更好地解决概率问题。
在介绍条件概率与全概率公式前,先了解一下什么是概率。
概率是指在一定条件下,某件事情发生的可能性大小。
事件的概率是以0到1之间的数值表示的,如果一个事件的概率为0,则表示这个事件不可能发生,而如果一个事件的概率为1,则表示这个事件一定会发生。
条件概率是指在已知某个条件下,发生某个事件的概率。
条件概率可用下式表示:P(B|A) = P(A ∩ B) / P(A)其中,P(B|A)表示在已知事件A发生的情况下,事件B发生的概率。
P(A ∩ B)表示事件A与事件B同时发生的概率。
P(A)表示事件A发生的概率。
举个例子来说明条件概率的概念。
某班有60名学生,其中男生40名,女生20名。
学生中有10名拥有iPhone手机,其中男生6名,女生4名。
现在想知道一个随机选中的拥有iPhone 手机的学生是女生的概率。
解答:在已知某个学生拥有iPhone的情况下,这个学生是女生的概率可以用条件概率来表示。
其中,事件A是指拥有iPhone手机的学生,事件B是指选中的学生是女生。
则事件A与事件B的交集为选中的学生既拥有iPhone手机又是女生的概率,即4/60。
事件A的概率为拥有iPhone手机的学生总数10/60。
则根据条件概率公式可得:P(B|A) = P(A ∩ B) / P(A) = 4/60 / 10/60 = 0.4因此,选中的拥有iPhone手机的学生是女生的概率为0.4。
了解了条件概率,我们再来介绍一下全概率公式。
全概率公式是指对于一个事件A,如果可以将它分解成几个互不相交的事件B1、B2、B3......Bn,那么可以利用这些子事件的性质来计算事件A的概率。
全概率公式可用下式表示:P(A) = ∑(i=1 to n) P(Bi) * P(A|Bi)其中,P(Bi)表示事件Bi发生的概率。
1963.3条件概率及全概率公式教学要求本节要求学生正确理解条件概率的概念及其运算公式, 学会运用概率的乘法定理. 对于全概率公式不但要求能深刻理解其内在含义,而且要求学生会熟练运用此公式去解决实际问题. 要求学生掌握两个事件独立的概念,了解多个事件相互独立的条件.知识点1. 条件概率2. 概率的乘法定理3. 全概率公式4. 两个事件的独立性5. 多个事件的独立性 *6.贝叶斯(Bayes )公式 *7.贝努里(Bernoulli )概型3.3.1 条件概率在实际问题中, 除了要知道事件A 的概率P (A )外, 有时还需要知道在事件B 已发生的条件下,事件A 发生的概率, 这就是我们所要讲的条件概率, 将它记为P (A |B ).我们先通过一个例子来引入条件概率的概念. 掷一颗骰子, 观察其出现点数, 令事件A 表示“出现点数小于4”, 则P (A )=1/2, 如果已知事件B 表示“出现偶数点”, 且B 已发生, 这时只剩下三种可能, 即“2点”,“4点”或“6点”. 从而在B 已发生的条件下, A 发生的概率为P (A |B )=1/3, 注意P (B )=1/2, P (AB )=1/6, 此时有)()()()|(A P B P AB P B A P ≠=. 定义.设A ﹑B 是随机试验E 的二个事件, 且P (B )>0, 则称 )()()|(B P AB P B A P =为事件B 发生条件下事件A 发生的条件概率.不难验证, 条件概率P (A |B )也是一种概率, 它符合概率的三个条件. 由前面的条件概率的定义, 我们可以知道, 计算条件P (A |B )有两种方法: (1)在样本空间Ω的缩减后的样本空间ΩB (事件B 发生时的样本空间)上计算A 发生的(无条件)概率, 就可以得到P (A |B ).(2)样本空间Ω中, 先计算P (AB ) ﹑P (B ), 然后由定义公式求得P (A |B ).197例3.3.1 全年级100名学生中, 有男生(以事件A 表示)80人, 女生20人; 来自北京的(以事件B 表示)有20人, 其中男生12人, 女生8人; 免修英语的(用事件C 表示)40人中有32名男生, 8名女生. 试写出P (A )、P (B )、P (B |A )、 P (A |B ) 、P (AB )、P (C )、P (C |A )、)|(B A P 、P (AC ).解.根据题意有P (A )=80/100=0.8; P (B )=20/100=0.2; P (B |A )=P (AB )/P (A )=12/80=0.15; P (A |B )=P (AB )/P (B )=12/20=0.6 ;P (AB )=12/100=0.12; P (C )=40/100=0.4; P (C |A )=P (AC )/P (A )=32/80=0.4; )|(B A P )()(B P B A P ==15.08012=;P (AC )=32/100=0.32.例3.3.2 8个乒乓球中有5个新的,3个旧的. 第一次比赛时, 同时取出2个, 用完后放回去; 第二次比赛时又取出2个球, 求第一次取到1个新球的条件下, 第二次取到2个新球的概率.解. 设事件A =“第一次取到1个新球”;事件B =“第二次取到2个新球”.由于第一次比赛后, 球被放回去, 因此在A 已发生的条件下, 再取2个球时, 总球数仍为8. 但是, 因第一次比赛所用的一个新球已变成旧球,其新旧比例已变化为: 新球4个, 旧球4个, 所以所求的概率为: 143)|(2824==C C A B P . 由条件概率,我们可以得到概率的乘法定理及两个事件的独立性.3.3.2 概率的乘法定理由前面的条件概率的定义公式,可得到下面的定理.概率的乘法定理. 设A ﹑B 为随机试验E 中的两个事件,且P (B )>0,则有 P (AB )=P (A |B )P (B ).198这个公式称为概率的乘法公式. 同样地,概率的乘法公式还有另一种形式:若P (A )>0, P (AB )=P (B |A )P (A ).例3.3.3. 设在一盒子中装有4个蓝色球和6个红色球, 取球两次, 一次取1个, 取后不放回, 问两次都取到红球的概率是多少? 解. 设事件A =“第一次取到红球”, 事件B =“第二次取到红球” ∵ P (A )=6/10, P (B |A )=5/9,因此 P (AB )=P (B |A )P (A )=1/3.我们还可以将概率的乘法公式推广到3个事件的情形: P (A 1A 2A 3)=P (A 1)P (A 2|A 1)P (A 3|A 1A 2).我们已经学习了条件概率和概率的乘法定理,由此我们可以得到下面的全概率公式.3.3.3 全概率公式前面我们学习了条件概率和概率乘法定理,下面我们介绍一个重要的公式--全概率公式.定理(全概率定理). 如果事件A 1, A 2, …, A n 构成一个完备事件组, 且P (A i )>0,(i =1,2,…,n ). 则对任一事件B , 有 ∑==ni i i A A B P P B P 1)|()()(这个公式称为全概率公式.证明. A 1, A 2,…,A n 是一个完备事件组, 从而A i (i =1,2,…,n )是两两互斥的, 且P (A i )>0, 由于B 被分成n 个部分A i B (i =1,2,…,n )之和, 且A i B (i =1,2,…,n )也是两两互斥的, 于是 B A A B B ni i ni i ∑∑====11.由概率的可加性及概率乘法定理得到:∑∑====ni i ni i B A P B A P B P 11)()()(=∑=ni i i A A P B P 1)()|(.全概率公式应用较广, 它的基本思路是将一个比较复杂的事件分解成若干个较简单且199两两互斥事件的和, 即要找一个完备事件组, 然后利用概率的可加性及概率乘法定理来计算.例3.3.4 设袋中装有5件同样的产品, 其中3件正品, 2件次品, 每次从袋中取1件,无放回地连续取2次, 求第2次取到正品的概率.解. 设事件A 表示“第1次取到正品”, 则A 表示“第1次取到次品”;事件B 表示“第2次取到正品”.事件A A ,构成一个完备事件组, A B BA B +=(即第2次取正品的可能性是与第1次取到正品或次品有关).因A B BA , 互不相容, 则有)()()()(A B P BA P A B BA P B P +=+= )|()()|()(A B P A P A B P A P += =(3/5)×(2/4)+(2/5)×(3/4)=3/5.例3.3.5 某厂有甲﹑乙﹑丙三个车间生产同一种产品,其产量分别占总产量的25%﹑35%﹑40%. 各自的废品率为5%﹑4%﹑2%, 今从总产品中任取一件, 求所取出的产品为废品的概率.解.设A 1=“所取产品为甲车间生产的”; A 2=“所取产品为乙车间生产的”; A 3=“所取产品为丙车间生产的”; B =“所取产品为废品”. 则A i (i =1,2,3)构成一个完备事件组, 且P (A 1)=0.25, P (A 2)=0.35, P (A 3)=0.4, P (B |A 1)=0.05, P (B |A 2)=0.04, P (B |A 3)=0.02, 由全概率公式有∑==31)|()()(i i i A A B P P B P=0.25×0.05+0.35×0.04+0.4×0.02=0.0345.由全概率公式我们可以求出,从总产品中任取一件,其为废品的概率是0.0345;反之,若已知从总产品取出一件,其为废品,反过来求它是甲车间(或乙车间﹑丙车间)生产的可能有多大,即为我们后面要讲的贝叶斯公式.3.3.4 两个事件的独立性前面我们讨论了条件概率P(A|B), 一般说来P(A|B)≠P(A)即事件B的发生对事件A发生的概率是有影响. 但当P(A|B)=P(A), 即B的发生对A发生的概率没有影响,此时即说事件A独立于事件B, 此时由概率乘法定理得到P(AB)=P(A|B)P(B)=P(A)P(B). 由此我们可给出两个事件独立的定义.定义. 设A﹑B是试验E的两个事件, 若有P(AB)=P(A)P(B)则称事件A﹑B为相互独立的事件.由概率乘法定理, 容易得出: 当事件A独立于事件B时, 事件B也独立于事件A, 即独立是一个对称性概念.例如, 从具有次品的一批产品中,有放回的连抽取二次, 每次抽取一件. 这样,事件A(第一次抽得正品)的出现并不影响事件B(第二次抽得正品)的概率, 即事件A与事件B是相互独立的两个事件.定理. 设A﹑B是试验E的两个事件, 且有P(B) >0, 则A与B相互独立的充分必要条件为:P(A|B)=P(A).证明. 必要性. 若A﹑B相互独立,则当P(B)>0时,由概率乘法公 式有:P(B)P(A|B)=P(AB)=P(A)P(B)从而 P(A|B)=P(A).充分性. 若P(A|B)=P(A),由概率乘法公式有:P(AB)=P(B)P(A|B)=P(B)P(A)即A﹑B相互独立.在实际问题中, 往往是通过对问题性质的分析来判断事件间是否独立.例3.3.6 甲﹑乙两人同时射击某一目标.设甲击中目标的概率为0.8,乙击中目标的概率为0.5,求目标被击中的概率.解.设事件A=“甲击中目标”,事件B=“乙击中目标”,事件C=“目标被击中”.从题意可知: C=A+B,且200201P (C )=P (A +B )=P (A )+P (B )-P (AB ).由于甲﹑乙射击是相互独立的, 因此可以认为甲﹑乙互不干扰, 从而A 与B 是相互独立的.P (AB )=P (A )P (B )=0.8×0.5=0.4,所以 P (C )=0.8+0.5-0.4=0.9. 例3.3.7 试证A ﹑B 相互独立与以下每一条件等价:(1)事件A 与B 独立;(2)事件A 与B 独立;(3) 事件A 与B 独立.证明.我们在这里只证由A 和B 相互独立,推出A 与B 独立,对于其它情形,由两个事件独立的对称性,同样可以推出.若A 与B 相互独立,则P (AB )=P (A )P (B ).由概率的性质,得到: )(B A P =P (A -AB )=P (A )-P (AB )=P (A )-P (A )P (B )=P (A )(1-P (B )) =)()(B P A P . 故A 与B 相互独立. 此例的结论,我们可用下表来表示: 表3.3.1表中任意一种情形成立, 都可以推出其它情形成立.由两个事件的独立性的概念,我们可以推出多个事件的独立性.3.3.5 多个事件的独立性前面我们学习了两个事件的独立性的概念﹑定理, 由此我们可以给出三个事件的独立性的概念.定义. 若A ﹑B ﹑C 是随机试验E 中的三个事件, 满足下列条件:(1) P (AB )=P (A )P (B ); (2)P (BC )=P (B )P (C );202(3) P (AC )=P (A )P (C ); (4)P (ABC )=P (A )P (B )P (C )。