高二数学上:选修2-1答案
- 格式:docx
- 大小:44.68 KB
- 文档页数:29
高中数学人教a版高二选修2-1-章末综合测评1有答案(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“若某2<1,则-1<某<1”的逆否命题是()A.若某2≥1,则某≥1,或某≤-1B.若-1<某<1,则某2<1C.若某>1,或某<-1,则某2>1D.若某≥1或某≤-1,则某2≥1【解析】命题“若p,则q”的逆否命题为“若綈q,则綈p”.【答案】D2.命题“所有能被2整除的整数都是偶数”的否定是()A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数【解析】把全称量词改为存在量词并把结论否定.【答案】D3.命题p:某+y≠3,命题q:某≠1或y≠2,则命题p是q的()A.充分不必要条件C.充要条件B.必要不充分条件D.既不充分也不必要条件【解析】命题“若p,则q”的逆否命题为:“若某=1且y=2,则某+y=3”,是真命题,故原命题为真,反之不成立.【答案】A4.设点P(某,y),则“某=2且y=-1”是“点P在直线l:某+y-1=0上”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件第-1-页共8页【解析】当某=2且y=-1时,满足方程某+y-1=0,即点P(2,-1)在直线l上.点P′(0,1)在直线l上,但不满足某=2且y=-1,∴“某=2且y=-1”是“点P(某,y)在直线l上”的充分而不必要条件.【答案】A5.“关于某的不等式f(某)>0有解”等价于()A.某0∈R,使得f(某0)>0成立B.某0∈R,使得f(某0)≤0成立C.某∈R,使得f(某)>0成立D.某∈R,f(某)≤0成立【解析】“关于某的不等式f(某)>0有解”等价于“存在实数某0,使得f(某0)>0成立”.故选A.【答案】A6.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】若四边形ABCD为菱形,则AC⊥BD,反之,若AC⊥BD,则四边形ABCD不一定是菱形,故选A.【答案】A7.命题p:函数y=lg(某2+2某-c)的定义域为R;命题q:函数y=lg(某2+2某-c)的值域为R.记命题p为真命题时c的取值集合为A,命题q为真命题时c的取值集合为B,则A∩B=()A.C.{c|c≥-1}B.{c|c【解析】命题p为真命题,即某2+2某-c>0恒成立,则有Δ=4+4c<0,解得c第-2-页共8页【答案】A8.对某∈R,k某2-k某-1<0是真命题,则k的取值范围是()A.-4≤k≤0C.-4<k≤0B.-4≤k<0D.-4<k<0【解析】由题意知k某2-k某-1<0对任意某∈R恒成立,当k=0时,-1<0恒k<0,成立;当k≠0时,有即-4<k<0,所以-4<k≤0.2Δ=k+4k<0,【答案】C9.已知命题p:若(某-1)(某-2)≠0,则某≠1且某≠2;命题q:存在实数某0,使2某0<0.下列选项中为真命题的是()A.綈pC.綈q∧pB.綈p∨qD.q【解析】很明显命题p为真命题,所以綈p为假命题;由于函数y=2某,某∈R的值域是(0,+∞),所以q是假命题,所以綈q是真命题.所以綈p∨q为假命题,綈q∧p为真命题,故选C.【答案】C10.设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件a1>0,a1<0,【解析】等比数列{an}为递增数列的充要条件为或故“q>1”是q>10“”“{an}为递增数列”的既不充分也不必要条件.【答案】D11.已知命题p:某>0,总有(某+1)e某>1,则綈p为()A.某0≤0,使得(某0+1)e某0≤1B.某0>0,使得(某0+1)e某0≤1C.某>0,总有(某+1)e某≤1第-3-页共8页D.某≤0,使得(某+1)e某≤1【解析】因为全称命题某∈M,p(某)的否定为某0∈M,綈p(某),故綈p:某0>0,使得(某0+1)e某0≤1.【答案】B12.已知p:点P在直线y=2某-3上;q:点P在直线y=-3某+2上,则使p∧q为真命题的点P的坐标是()A.(0,-3)C.(1,-1)B.(1,2)D.(-1,1)【解析】因为p∧q为真命题,所以p,q均为真命题.所以点P为直线y=2某y=2某-3,某=1,-3与直线y=-3某+2的交点.解方程组得即点P的坐标为(1,y=-3某+2,y=-1,-1).【答案】C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.命题p:若a,b∈R,则ab=0是a=0的充分条件,命题q:函数y=某-3的定义域是[3,+∞),则“p∨q”“p∧q”“綈p”中是真命题的为________.【解析】p为假命题,q为真命题,故p∨q为真命题,綈p为真命题.【答案】p∨q与綈p14.“末位数字是1或3的整数不能被8整除”的否定形式是________________,否命题是________________.【解析】命题的否定仅否定结论,所以该命题的否定形式是:末位数字是1或3的整数能被8整除;而否命题要同时否定原命题的条件和结论,所以否命题是:末位数字不是1且不是3的整数能被8整除.【答案】末位数字是1或3的整数能被8整除末位数字不是1且不是3的整数能被8整除15.已知f(某)=某2+2某-m,如果f(1)>0是假命题,f(2)>0是真命题,则实数m的取值范围是______.f(1)=3-m≤0,【解析】依题意,∴3≤m<8.f(2)=8-m>0,第-4-页共8页【答案】[3,8)16.给出以下判断:①命题“负数的平方是正数”不是全称命题;3②命题“某∈N,某3>某2”的否定是“某0∈N,使某0>某2;0”③“b=0”是“函数f(某)=a某2+b某+c为偶函数”的充要条件;④“正四棱锥的底面是正方形”的逆命题为真命题.其中正确命题的序号是________.【解析】①②④是假命题,③是真命题.【答案】③三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定,并判断其真假,同时说明理由.(1)q:所有的矩形都是正方形;(2)r:某0∈R,某20+2某0+2≤0;(3):至少有一个实数某0,使某30+3=0.【解】(1)綈q:至少存在一个矩形不是正方形,真命题.这是由于原命题是假命题.(2)綈r:某∈R,某2+2某+2>0,真命题.这是由于某∈R,某2+2某+2=(某+1)2+1≥1>0恒成立.(3)綈:某∈R,某+3≠0,假命题.这是由于当某=-3时,某3+3=0.18.(本小题满分12分)指出下列命题中,p是q的什么条件?(1)p:{某|某>-2或某<3};q:{某|某2-某-6<0};(2)p:a与b都是奇数;q:a+b是偶数;(3)p:03【解】(1)因为{某|某2-某-6<0}={某|-2-2或某<3}/{某|-2-2或某<3}.所以p是q的必要不充分条件.第-5-页共8页33(2)因为a,b都是奇数a+b为偶数,而a+b为偶数/a,b都是奇数,所以p是q的充分不必要条件.(3)m某2-2某+3=01Δ>0,4-12m>0,mm>0m>0m>03所以p是q的充要条件.19.(本小题满分12分)已知命题p:不等式2某-某2q:m2-2m-3≥0,如果“綈p”与“p∧q”同时为假命题,求实数m的取值范围.【解】2某-某2=-(某-1)2+1≤1,所以p为真时,m>1.由m2-2m-3≥0得m≤-1或m≥3,所以q为真时,m≤-1或m≥3.因为“綈p”与“p∧q”同时为假命题,所以p为真命题,q为假命题,所以得m>1,-1即120.(本小题满分12分)已知两个命题p:in某+co某>m,q:某2+m某+1>0,如果对任意某∈R,有p∨q为真,p∧q为假,求实数m的取值范围.【解】当命题p是真命题时,π由于某∈R,则in某+co某=2in某+≥-2,4所以有m<-2.当命题q是真命题时,由于某∈R,某2+m某+1>0,则Δ=m2-4<0,解得-2<m<2.由于p∨q为真,p∧q为假,所以p与q一真一假.考虑到函数f(某)=某2+m某+1的图象为开口向上的抛物线,对任意的某∈R,某2+m某第-6-页共8页+1≤0不可能恒成立.所以只能是p为假,q为真,m≥-2,此时有-2<m<2,解得-2≤m<2,所以实数m的取值范围是[-2,2).21.(本小题满分12分)已知命题p:对数loga(-2t2+7t-5)(a>0,且a≠1)有意义;命题q:实数t满足不等式t2-(a+3)t+a+2<0.(1)若命题p为真,求实数t的取值范围;(2)若p是q的充分不必要条件,求实数a的取值范围.5【解】(1)因为命题p为真,则对数的真数-2t2+7t-5>0,解得125所以实数t的取值范围是1,2.(2)因为p是q解集的真子集.5的充分不必要条件,所以t1的法一因为方程t2-(a+3)t+a+2=0的两根为1和a+2,51所以只需a+2>,解得a>.22即实数a的取值范围为2,+∞.法二令f(t)=t2-(a+3)t+a+2,因为f(1)=0,15所以只需f2<0,解得a>.2即实数a的取值范围为2,+∞.22.(本小题满分12分)设a,b,c为△ABC的三边,求证:方程某2+2a某+b2=0与某2+2c某-b2=0有公共根的充要条件是∠A=90°.【证明】充分性:∵∠A=90°,∴a2=b2+c2.于是方程某2+2a某+b2=0可化为某2+2a某+a2-c2=0,∴某2+2a某+(a+c)(a-c)=0.第-7-页共8页∴[某+(a+c)][某+(a-c)]=0.∴该方程有两根某1=-(a+c),某2=-(a-c),同样另一方程某2+2c某-b2=0也可化为某2+2c某-(a2-c2)=0,即[某+(c+a)][某+(c-a)]=0,∴该方程有两根某3=-(a+c),某4=-(c-a).可以发现,某1=某3,∴方程有公共根.必要性:设某是方程的公共根,某2+2a某+b2=0,①则22某+2c某-b=0,②由①+②,得某=-(a+c),某=0(舍去).代入①并整理,可得a2=b2+c2.∴∠A=90°.∴结论成立.第-8-页共8页。
1.3.1推出与充分条件、必要条件一、选择题1.(2009·北京)“α=π6+2k π(k ∈Z )”是“cos2α=12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 [答案] A[解析] 考查任意角的三角函数值. “α=π6+2k π(k ∈Z )”⇒“cos2α=12,“cos2α=12”“α=π6+2k π”(k ∈Z )因为α还可以等于2k π-π6(k ∈Z ),∴选A.2.(2009·湖南)对于非零向量a 、b ,“a +b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件 [答案] A[解析] 考查平面向量平行的条件. ∵a +b =0,∴a =-b .∴a ∥b .反之,a =3b 时也有a ∥b ,但a +b ≠0.故选A.3.(2009·福建,7)设m ,n 是平面α内的两条不同直线,l 1,l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A .m ∥β且l 1∥αB .m ∥l 1且n ∥l 2C .m ∥β且n ∥βD .m ∥β且n ∥l 2[答案] B[解析] 本小题主要考查线面平行、面面平行、充要条件等基础知识.易知选项A 、C 、D 推不出α∥β,只有B 可推出α∥β,且α∥β不一定推出B , B 项为α∥β的一个充分而不必要条件,选B.4.(2009·浙江,2)已知a ,b 是实数,则“a >0且b >0”是“a +b >0且ab >0”的( ) A .充分而不必要条件C .充分必要条件D .既不充分也不必要条件 [答案] C[解析] 本小题主要考查不等式的性质及充要条件. 当a >0且b >0时, a +b >0且ab >0; 当ab >0时,a ,b 同号,又a +b >0, ∴a >0,且b >0.故选C.5.若集合P ={1,2,3,4},Q ={x |0<x <5,x ∈R },则( ) A .“x ∈P ”是“x ∈Q ”的充分条件但不是必要条件 B .“x ∈P ”是“x ∈Q ”的必要条件但不是充分条件 C .“x ∈P ”是“x ∈Q ”的充要条件D .“x ∈P ”既不是“x ∈Q ”的充分条件也不是“x ∈Q ”的必要条件 [答案] A[解析] P ={1,2,3,4},Q ={x |0<x <5,x ∈R }, x ∈P ⇒x ∈Q .但x ∈Qx ∈p ,∴x ∈P 是x ∈Q 的充分不必要条件.故选A.6..(2010·福建文,8)若向量a =(x,3)(x ∈R ),则“x =4”是“|a |=5”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分又不必要条件[答案] A[解析] 本题主要考查充分必要条件问题. 当x =4时,|a |=42+32=5 当|a |=x 2+9=5时,解得x =±4.所以“x =4”是“|a |=5”的充分而不必要条件.7.(2010·广东理,5)“m <14”是“一元二次方程x 2+x +m =0有实数解”的( )A .充分非必要条件B .充分必要条件C .必要非充分条件D .非充分非必要条件[答案] A[解析] 一元二次方程式x 2+x +m =0有实数解,则Δ=1-4m ≥0,∴m ≤14,故“m <14”是“一元二次方程x 2+x +m =0”有实数解的充分不必要条件.8.a <0是方程ax 2+1=0有一个负数根的( )B .充分必要条件C .充分不必要条件D .既不充分也不必要条件 [答案] B[解析] ①∵a <0,ax 2+1=0⇒x 2=-1a >0.∴ax 2+1=0有一个负根. ∴充分性成立.②若ax 2+1=0有一个负根, 那么x 2=-1a >0,可是a <0.∴必要性成立.故选B.9.“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件 [答案] C[解析] 充分性:当a =1时,直线x +y =0和直线x -y =0垂直;必要性:若直线x +y =0和x -ay =0垂直,由-1·1a=-1,∴a =1,故选C.10.(2009·山东)已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“α⊥β”是“m ⊥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 [答案] B[解析] 本小题主要考查空间线面的垂直关系和应用充要条件解题的能力. 由已知m ⊂α,若α⊥β则有m ⊥β,或m ∥β或m 与β相交;反之,若m ⊥β, ∵m ⊂α,∴由面面垂直的判定定理知α⊥β. ∴α⊥β是l ⊥β的必要不充分条件.故选B. 二、填空题11.条件甲:“a >1”是条件乙:“a >a ”的__________条件.[答案] 充要[解析] a >1⇒a >a 成立反之:a >a 时即a 2-a >0解得a >1.12.“lg x >lg y ”是“x >y ”的______________条件. [答案] 充分不必要[解析] 由lgx >lgy ⇒x >y >0⇒x >y 充分条件成立.又由x >y 成立,当y =0时,lgx >lgy 不成立,必要条件不成立.13.不等式ax 2+ax +a +3>0对一切实数x 恒成立的充要条件是________. [答案] a ≥0[解析] ①当a =0时,原不等式为3>0,恒成立; ②当a ≠0时,用数形结合的方法则有⎩⎨⎧a >0Δ=a 2-4a (a +3)<0⇒a >0. ∴由①②得a ≥0.14.函数y =x 2+bx +c ,x ∈[0,+∞)是单调函数的充要条件为________. [答案] b ≥0[解析] 对称轴为x =-b2,要使y =x 2+bx +c 在x ∈[0,+∞)上单调, 只需满足-b2≤0,即b ≥0.三、解答题15.是否存在实数p ,使“4x +p <0”是“x 2-x -2>0”的充分条件?如果存在,求出p 的取值范围.[解析] x 2-x -2>0的解是x >2或x <-1,由4x +p <0得x <-p4.要想使x <-p 4时x >2或x <-1成立,必须有-p 4≤-1,即p ≥4,所以当p ≥4时,-p4≤-1⇒x <-1⇒x 2-x -2>0.所以p ≥4时,“4x +p <0”是“x 2-x -2>0”的充分条件.16.已知p :x 2-8x -20>0,q :x 2-2x +1-a 2>0.若p 是q 的充分不必要条件,求正实数a 的取值范围.[解析] 解不等式x 2-8x -20>0,得p :A ={x |x >10或x <-2}. 解不等式x 2-2x +1-a 2>0得 q :B ={x |x >1+a 或x <1-a ,a >0}依题意:p ⇒q ,但是q 不能推出p ,说明A B .于是有⎩⎪⎨⎪⎧a >01+a ≤101-a ≥-2(说明“1+a ≤10”与“1-a ≥-2”中等号不能同时取到)解得0<a ≤3.∴正实数a 的取值范围是0<a ≤3.17.设a ,b ,c 为△ABC 的三边,求证:x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°.[解析] 充分性:∵∠A =90°,∴a 2=b 2+c 2,于是方程x 2+2ax +b 2=0可化为x 2+2ax +a 2-c 2=0, 即x 2+2ax +(a +c )(a -c )=0, ∴[x +(a +c )][x +(a -c )]=0,∴该方程有两个根x 1=-(a +c ),x 2=-(a -c ), 同样,另一方程x 2+2cx -b 2=0也可化为 x 2+2cx -(a 2-c 2)=0, 即x 2+2cx -(a -c )(a +c )=0, ∴[x +(c +a )][x +(c -a )]=0,∴该方程有两个根x 3=-(a +c ),x 4=-(c -a ), 可以发现x 1=x 3, ∴这两个方程有公共根.必要性:设β是两方程的公共根,则⎩⎪⎨⎪⎧β2+2aβ+b 2=0 ①β2+2cβ-b 2=0 ②, 由①+②得:β=-(a +c )或β=0(舍去), 将β=-(a +c )代入①并整理可得:a 2=b 2+c 2, ∴∠A =90°.18.求ax 2+2x +1=0至少有一个负实根的充要条件.[解析] 由于二次项系数是字母,因此,首先要对方程ax 2+2x +1=0判定是一元一次方程还是一元二次方程.(1)当a =0时,为一元一次方程,其根为x =-12,符合要求;(2)当a ≠0时,为一元二次方程,它有实根的充要条件是判别式Δ≥0即4-4a ≥0从而a ≤1;又设方程ax 2+2x +1=0的根为x 1·x 2,则x 1+x 2=-2a x 1·x 2=1a.①因而方程ax 2+2x +1=0有一个正根、一个负根的充要条件是⎩⎪⎨⎪⎧a ≤11a <0⇒a <0;②方程ax 2+2x +1=0有两个负根的充要条件是⎩⎪⎨⎪⎧a ≤1-2a1a >0⇒0<a ≤1,综上所述,ax 2+2x +1=0至少有一个负根的充要条件是a ≤1.。
1.4 全称量词与存在量词基础练习1.命题“所有能被2整除的整数都是偶数”的否定是( ) A .所有不能被2整除的整数都是偶数 B .所有能被2整除的整数都不是偶数 C .存在一个不能被2整除的整数是偶数 D .存在一个能被2整除的整数不是偶数 【答案】D【解析】原命题是全称命题,其否定是:存在一个能被2整除的数不是偶数. 2.给出下列几个命题:①至少有一个x 0,使x 20+2x 0+1=0成立; ②对任意的x ,都有x 2+2x +1=0成立; ③对任意的x ,都有x 2+2x +1=0不成立; ④存在x 0,使x 20+2x 0+1=0成立. 其中是全称命题的个数为( ) A .1 B .2 C .3 D .0【答案】B【解析】命题②③都含有全称量词“任意的”,故②③是全称命题. 3.以下四个命题既是特称命题又是真命题的是( ) A .锐角三角形的内角是锐角或钝角 B .至少有一个实数x ,使x 2≤0 C .两个无理数的和必是无理数 D .存在一个负数x ,使1x>2【答案】B【解析】选项A 中锐角三角形的内角是锐角或钝角是全称命题;选项B 中x =0时,x 2=0,所以选项B 既是特称命题又是真命题;选项C 中因为3+(-3)=0,所以选项C 是假命题;D 中对于任一个负数x ,都有1x<0,所以选项D 是假命题.4.已知命题p :∀x ∈R ,2x <3x ;命题q :∃x 0∈R ,x 30=1-x 20,则下列命题中为真命题的是( )A .p ∧qB .(¬p )∧qC .p ∧(¬q )D .(¬p )∧(¬q )【答案】B【解析】因为x =-1时,2-1>3-1,所以命题p :“∀x ∈R,2x <3x”为假命题,则¬p 为真命题.令f (x )=x 3+x 2-1,因为f (0)=-1<0,f (1)=1>0,所以函数f (x )=x 3+x 2-1在(0,1)上存在零点,即命题q :“∃x 0∈R ,x 30=1-x 20”为真命题.则(¬p )∧q 为真命题.故选B .5.命题“∃x 0∈R ,x 20-x 0+3=0”的否定是__________. 【答案】∀x ∈R ,x 2-x +3≠0【解析】∵命题“∃x ∈R ,x 2-x +3=0”是特称命题,∴其否定命题为“∀x ∈R ,x 2-x +3≠0”.6.给出下列命题: ①正方形的四条边相等;②有两个角相等的三角形是等腰三角形; ③正数的平方根不等于0; ④至少有一个正整数是偶数.其中是全称命题的是________;是特称命题的是________.(填序号) 【答案】①②③④【解析】①可表述为“每一个正方形的四条边相等”,是全称命题;②是全称命题,即“凡是有两个角相等的三角形都是等腰三角形”;③可表述为“所有正数的平方根不等于0”是全称命题;④是特称命题.7.判断下列命题的真假,并写出这些命题的否定. (1)∀x ∈N ,x 3>x 2;(2)所有可以被5整除的整数,末位数字都是0; (3)∃x ∈R ,x 2-x +1≤0;(4)存在一个四边形,它的对角线互相垂直且平分.解:(1)当x =1时,13=12,∴x =1时,x 3>x 2不成立,即此命题是假命题. 命题的否定:∃x 0∈N ,x 30≤x 20.(2)15可以被5整除,但15的末位数字不是0, ∴此命题是假命题.命题的否定:有些可以被5整除的整数,末位数字不是0.(3)∵x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0恒成立,∴此命题是假命题.命题的否定:∀x ∈R ,x 2-x +1>0.(4)菱形的对角线互相垂直且平分,∴此命题是真命题.命题的否定:任何一个四边形,它的对角线不互相垂直或不互相平分.8.已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x∈R,x2+2ax+2-a=0”,若命题“p且q”是真命题,某某数a的取值X围.解:若命题p:“∀x∈[1,2],x2-a≥0”为真命题,则a≤x2在区间[1,2]恒成立,所以a≤(x2)min=1.若命题q:“∃x∈R,x2+2ax+2-a=0”为真命题,则Δ=4a2-4(2-a)≥0,所以a≥1或a≤-2.命题“p且q”为真命题,即命题p,q都为真命题,所以取两个X围的交集,实数a的取值X围为a≤-2或a=1.能力提升9.(2019年某某某某模拟)已知函数f(x)的定义域为(a,b),若“∃x0∈(a,b),f(x0)+f(-x0)≠0”是假命题,则f(a+b)的值为( )A.-1 B.0C.1 D.2【答案】B【解析】若“∃x0∈(a,b),f(x0)+f(-x0)≠0”是假命题,则“∀x∈(a,b),f(x)+f(-x)=0”是真命题,即f(-x)=-f(x),则函数f(x)是奇函数,则a+b=0,即f(a+b)=f(0)=0.10.(2019年某某某某期中)下列关于函数f(x)=x2与函数g(x)=2x的描述,正确的是( )A.∃a0∈R,当x>a0时,总有f(x)<g(x)B.∀x∈R,f(x)<g(x)C.∀x<0,f(x)≠g(x)D.方程f(x)=g(x)在(0,+∞)内有且只有一个实数解【答案】A【解析】在同一坐标系内作出两函数的大致图象,两交点为(2,4),(4,16).当x>4时,由图象知f(x)<g(x),选项A正确,选项B,C,D均错误.11.已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若同时满足条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(-∞,-4),f(x)g(x)<0.则m的取值X围是________.【答案】(-4,-2)【解析】由题意知m ≠0,∴f (x )=m (x -2m )(x +m +3)为二次函数.若∀x ∈R ,f (x )<0或g (x )<0,则f (x )必须开口向下,即m <0.f (x )=0的两根x 1=2m ,x 2=-m -3,则x 1-x 2=3m +3.(1)当x 1>x 2,即m >-1时,必须大根x 1=2m <1,即m <12;(2)当x 1<x 2,即m <-1时,大根x 2=-m -3<1,即m >-4;(3)当x 1=x 2,即m =-1时,x 1=x 2=-2<1也满足条件.∴满足条件①的m 的取值X 围为-4<m <0.若∃x ∈(-∞,-4),f (x )g (x )<0,则满足方程f (x )=0的小根小于-4.(1)当m >-1时,小根x 2=-m -3<-4且m <0,无解;(2)当m <-1时,小根x 1=2m <-4且m <0,解得m <-2;(3)当m =-1时,f (x )=-(x +2)2≤0恒成立,∴不满足②.∴满足①②的m 的取值X 围是-4<m <-2.12.已知命题p :∃x ∈R ,使得x 2-2ax +2a 2-5a +4=0;命题q :∀x ∈[0,1],都有(a 2-4a +3)x -3<0.若“p 或q ”为真命题,“p 且q ”为假命题,某某数a 的取值X 围.解:若p 为真命题,则Δ=4a 2-4(2a 2-5a +4)≥0, 解得1≤a ≤4.对于q ,令f (x )=(a 2-4a +3)x -3,若q 为真命题,则f (0)<0且f (1)<0,即⎩⎪⎨⎪⎧-3<0,a 2-4a <0,解得0<a <4.由“p 或q ”为真命题,“p 且q ”为假命题,知p ,q 一真一假,所以⎩⎪⎨⎪⎧1≤a ≤4,a ≤0或a ≥4或⎩⎪⎨⎪⎧a <1或a >4,0<a <4.解得0<a <1 或a =4.故a 的取值X 围是{a |0<a <1 或a =4}.。
椭圆及其标准方程(一)导学案【学习要求】1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程、椭圆标准方程的推导与化简过程. 2.掌握椭圆的定义、标准方程及几何图形.【学法指导】1.通过自己亲自动手尝试画图,发现椭圆的形成过程进而归纳出椭圆的定义,培养观察、辨析、归纳问题的能力.2.通过经历椭圆方程的化简,增强战胜困难的意志并体会数学的简洁美、对称美,通过讨论椭圆方程推导的等价性,养成扎实严谨的科学态度【知识要点】1.椭圆:平面内与两个定点F 1,F 2的 的点的轨迹叫做椭圆(ellipse).这两个定点叫做椭圆的 ,两焦点间的距离叫做椭圆的 . 2.探究点一 椭圆的定义问题1 给你两个图钉、一根无弹性的细绳、一张纸板,能画出椭圆吗?问题2 动点P 到两定点A 、B 的距离之和|P A |+|PB |=2a (a >0且a 为常数)的轨迹一定是椭圆吗?探究点二 椭圆的标准方程问题1 观察椭圆的形状,你认为怎样选择坐标系才能使椭圆的方程较简单?并写出求解过程.问题2 建系时如果焦点在y 轴上会得到何种形式的椭圆方程?怎样判定给定的椭圆焦点在哪个坐标轴上?问题3 椭圆方程中的a 、b 以及参数c 有什么意义,它们满足什么关系?例1 (1)已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点⎝⎛⎭⎫52,-32,求它的标准方程; (2)若椭圆经过两点(2,0)和(0,1),求椭圆的标准方程.跟踪训练1 (1)已知中心在原点,以坐标轴为对称轴,椭圆过点Q (2,1)且与椭圆x 29+y 24=1有公共的焦点,求椭圆的标准方程;(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过P 1(6,1),P 2(-3,-2)两点,求椭圆的标准方程.例2 已知方程x 2k -4-y 2k -10=1表示焦点在x 轴上的椭圆,则实数k 的取值范围为__________.跟踪训练2 若方程x 2m -y 2m 2-2=1表示焦点在y 轴上的椭圆,那么实数m 的取值范围是 ( )A .m >0B .0<m <1C .-2<m <1D .m >1且m ≠ 2探究点三 椭圆的定义及标准方程的应用例3 已知椭圆的方程为x 24+y 23=1,椭圆上有一点P 满足∠PF 1F 2=90°(如图).求△PF 1F 2的面积.跟踪训练3 已知椭圆x 249+y 224=1上一点P 与椭圆两焦点F 1、F 2的连线夹角为直角,则|PF 1|·|PF 2|=________【当堂检测】1.椭圆x 225+y 2=1上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为 ( )A .5B .6C .7D .82.若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是 ( )A .-9<m <25B .8<m <25C .16<m <25D .m >83.椭圆x 216+y 232=1的焦距为________.4.已知椭圆经过点(3,0)且与椭圆x 24+y 29=1的焦点相同,则这个椭圆的标准方程为____________【课堂小结】1.平面内到两定点F 1,F 2的距离之和为常数,即|MF 1|+|MF 2|=2a , 当2a >|F 1F 2|时,轨迹是椭圆;当2a =|F 1F 2|时,轨迹是一条线段F 1F 2; 当2a <|F 1F 2|时,轨迹不存在.2.对于求解椭圆的标准方程一般有两种方法:可以通过待定系数法求解,也可以通过椭圆的定义进行求解. 3.用待定系数法求椭圆的标准方程时,若已知焦点的位置,可直接设出标准方程;若焦点位置不确定,可分两种情况求解;也可设Ax 2+By 2=1(A >0,B >0,A ≠B )求解,避免了分类讨论,达到了简化运算的目的.【拓展提高】1.已知P 是椭圆13422=+y x 上的点,21F F 、分别是椭圆的左、右焦点,21=,则21PF F ∆的面积为( ) A .33B .3C .32D .33 2.已知椭圆的两焦点为P F F ),0,1()0,1(21、-为椭圆上一点,且21212PF PF F F += (1)求此椭圆方程(2)若点P 在第二象限,21012,120F PF PF F ∆=∠求的面积3.如果点),(y x M 在运动过程中总满足关系10)3()3(2222=+++-+y x y x ,点M 的轨迹是 ,它的方程是 4. 椭圆22194x y +=的焦点为F 1、F 2,点P 为其上的动点,当21PF F ∠为钝角时,求P 点横坐标的取值范围。
3.2.3直线与平面的夹角一、选择题1.已知平面α内的角∠APB =60°,射线PC 与PA 、PB 所成角均为135°,则PC 与平面α所成角的余弦值是( )A .-63B.63C.33D .-33[答案] B[解析] 由三余弦公式知cos45°=cos α·cos30°, ∴cos α=63. 2.三棱锥P —ABC 的底面是以AC 为斜边的直角三角形,顶点P 在底面的射影恰好是△ABC 的外心,P A =AB =1,BC =2,则PB 与底面ABC 所成角为( )A .60°B .30°C .45°D .90°[答案] B[解析] 由AB =1,BC =2,知AC =3,∴OA =32, 又∵PA =1,PQ ⊥AC ,∴PO =12,∵OB =OA =32,∴tan θ=33.∴应选B. 3.正方体ABCD —A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的正弦值是( ) A.24 B.23 C.63D.32[答案] C[解析] 由计算得sin θ=23.故选C. 4.在三棱锥P —ABC 中,AB ⊥BC ,AB =BC =12PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值为( )A.216B.833 C.21060D.21030[答案] D[解析] 以O 为原点,射线OA 、OB 、OP 为x 、y 、z 轴建立空间直角坐标系,如图,设AB =a ,则OP =72a ,OD →=(-24a,0,144a ),可求得平面PBC 的法向量为n =(-1,-1,17), ∴cos(OD →,n )=OD →·n |OD →||n |=21030,设OD →与面PBC 的角为θ,则sin θ=21030,故选D.5.若直线l 与平面α所成角为π3,直线a 在平面α内,且与直线l 异面,则直线l 与直线a 所成角的取值范围是( )A.⎣⎡⎦⎤0,2π3 B.⎣⎡⎦⎤π3,2π3 C.⎣⎡π2,2π3D.⎣⎡π3,π2[答案] D6.如果平面的一条斜线段长是它在这个平面上的射影长的3倍,那么斜线段与平面所成角的余弦值为( )A.13B.223C.22D.23[答案] A7.如图,正方体AC 1中,BC 1与对角面BB 1D 1D 所成的角是( ) A .∠C 1BB 1 B .∠C 1BD C .∠C 1BD 1 D .∠C 1BO [答案] D[解析] 由三垂线定理得,OB 为BC 1在平面BB 1D 1D 上的射影.故选D.8.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,E 为CC 1的中点,则直线A 1B 与平面BDE 所成的角为( )A.π6B.π3C.π2D.56π [答案] B[解析] 以D 为原点建立空间直角坐标系,平面BDE 的法向量n =(1,-1,2), 而BA 1→=(0,-1,1),∴cos θ=1+223=32,∴θ=30°.∴直线A 1B 与平面BDE 成60°角.9.正方形纸片ABCD ,沿对角线AC 折起,使点D 在面ABCD 外 ,这时DB 与平面ABC 所成角一定不等于( )A .30°B .45°C .60°D .90°[答案] D[解析] 当沿对角线AC 折起时,BD 在面ABC 上的射影始终在原对角线上,若BD ⊥面ABC ,则此时B 、D 重合为一点,这是不成立的,故选D.10.已知等腰直角△ABC 的一条直角边BC 平行于平面α,点A ∈α,斜边AB =2,AB 与平面α所成的角为30°,则AC 与平面α所成的角为( )A .30°B .45°C .60°D .90°[答案] B[解析] 过B 、C 作BB ′⊥α于B ′,CC ′⊥α于C ′, 则BB ′=CC ′=1,∴sin θ=22,∴θ=45°.故选B. 二、填空题11.正三棱柱ABC —A 1B 1C 1的所有棱长都相等,则AC 1与平面BB 1C 1C 的夹角的余弦值为________.[答案]104[解析] 设三棱柱的棱长为1,以B 为原点,建立坐标系如图,则C 1(0,1,1),A ⎝⎛⎭⎫32,12,0,AC 1→=⎝⎛⎭⎫-32,12,1,又平面BB 1C 1C 的一个法向量n =(1,0,0), 设AC 1与平面BB 1C 1C 的夹角为θ. sin θ=|cos 〈n ,AC 1→〉|=|AC 1→·n ||AC 1→||n |=64,∴cos θ=1-sin 2θ=104. 12.正四棱锥S —ABCD 中,O 为顶点S 在底面内的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面PAC 所成的角是________.[答案] 30°13.AB ∥α,AA ′⊥α, A ′是垂足,BB ′是α的一条斜线段,B ′为斜足,若AA ′=9,BB ′=63,则直线BB ′与平面α所成角的大小为________.[答案] 60°14.正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为AA 1、A 1D 1的中点,则EF 与面A 1C 1所成的角为________.[答案] 45° 三、解答题15.如图所示,ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12SC 与平面ABCD 所成的角.[解析] 解法1:如图所示,设n 是平面α的法向量,AB 是平面α的一条斜线,A ∈α,则AB 与平面α所成的角为π2-arccos |AB →·n ||AB →|·n ;AS →是平面ABCD 的法向量,设CS →与AS →的夹角为φ. ∵CS →=CB →+BA →+AS →,∴AS →·CS →=AS →·(CB →+BA →+AS →)=AS →·AS →=1. |AS →|=1,|CS →|=(CB ―→+BA ―→+AS ―→)2 =|CB ―→|2+|BA ―→|2+|AS ―→|2=3, ∴cos φ=AS →·CS →|AS →|·|CS →|=33.∴φ=arccos33. 从而CS 与平面ABCD 所成的角为π2-arccos 33.解法2:连结AC ,显然∠SCA 即为SC 与平面ABCD 所成的角.计算得:AC =2,∴tan ∠SCA =22,故SC 与平面ABCD 所成角为arctan22. 16.如图,在直三棱柱ABO —A ′B ′O ′中,OO ′=4,OB =3,∠AOB =90°.D 是线段A ′B ′的中点,P 是侧棱BB ′上的一点.若OP ⊥BD ,试求:(1)OP 与底面AOB 所成的角的大小; (2)BD 与侧面AOO ′A ′所成的角的大小.[解析] 如图,以O 为原点建立空间直角坐标系,由题意,有B (3,0,0),D ⎝⎛⎭⎫32,2,4,设P (3,0,z ),则BD →=⎝⎛⎭⎫-32,2,4,OP →=(3,0,z ).∵BD ⊥OP ,∴BD →·OP →=-92+4z =0,z =98.∴P ⎝⎛⎭⎫3,0,98.(1)∵BB ′⊥平面AOB ,∴∠POB 是OP 与底面AOB 所成的角. ∵tan ∠POB =983=38,∴∠POB =arctan 38.故OP 与底面AOB 所成角的大小是arctan 38.(2)∵OB →=(3,0,0),且OB →⊥平面AOO ′A ′, ∴平面AOO ′A ′的法向量为OB →=(3,0,0). 又DB →=(3,0,0)-⎝⎛⎭⎫32,2,4=⎝⎛⎭⎫32,-2,-4, ∴OB →·DB { =3×32+(-2)×0+(-4)×0=92.又|OB →|=3, |DB →|=⎝⎛⎭⎫322+(-2)2+(-4)2=892, ∴cos 〈OB →,DB →〉=OB →·DB →|OB →|·|DB →|=923×892=389 .∴BD 与侧面AOO ′A ′所成的角的大小为π2-〈OB →,DB →〉=π2-arccos 389(或写成arcsin389).17.如图,正方体ABCD -A 1B 1C 1D 1中,E 是CC 1的中点,求BE 与平面B 1BD 所成角的正弦值.[解析] 如图,建立空间直角坐标系,设正方体的棱长为2,则B (2,2,0),B 1(2,2,2),E (0,2,1),BD →=(-2,-2,0),BB 1→=(0,0,2),BE →=(-2,0,1).设平面B 1BD 的法向量为n =(x ,y ,z ), ∵n ⊥BD ,n ⊥BB 1∴⎩⎪⎨⎪⎧n ·BD →=-2x -2y =0n ·BB 1→=2z =0,∴⎩⎪⎨⎪⎧x =-y z =0, 令y =1时,则n =(-1,1,0), cos<n ,BE →>=n ·BE →|n ||BE →|=105.即BE 与平面B 1BD 所成的角的正弦值为105.18.(2009·北京)如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(1)求证:BC ⊥平面P AC ;(2)当D 为PB 的中点时,求AD 与平面P AC 所成的角的大小; [解析] 考查线面垂直,直线与平面所成角,以及二面角等内容,可以用直接法实现,也可用向量法.解法一:(1)∵PA ⊥底面ABC ,∴PA ⊥BC . 又∠BCA =90°,∴AC ⊥BC . ∴BC ⊥平面PAC .(2)∵D 为PB 的中点,DE ∥BC ,∴DE =12BC .又由(1)知,BC ⊥平面P AC , ∴DE ⊥平面PAC ,垂足为点E . ∴∠DAE 是AD 与平面P AC 所成的角. ∵PA ⊥底面ABC ,∴PA ⊥AB ,又PA =AB ,∴△ABP 为等腰直角三角形, ∴AD =12AB .在Rt △ABC 中,∠ABC =60°,∴BC =12.∴在Rt △ADE 中,sin ∠DAE =DE AD =BC 2AD =24.∴AD 与平面PAC 所成的角的大小为arcsin24. 解法二:(1)如图,以A 为原点建立空间直角坐标系A -xyz .设PA =a ,由已知可得A (0,0,0),B ⎝⎛⎭⎫-12a ,32a ,0,C ⎝⎛⎭⎫0,32a ,0,P (0,0,a ). (1)∵AP →=(0,0,a ),BC →=⎝⎛⎭⎫12a ,0,0,∴BC →·AP →=0, ∴BC ⊥AP .又∵∠BCA =90°, ∴BC ⊥AC . ∴BC ⊥平面PAC .(2)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴D ⎝⎛⎭⎫-14a ,34a ,12,E ⎝⎛⎭⎫0,34a ,12a .又由(1)知,BC ⊥平面P AC . ∴DE ⊥平面PAC ,垂足为点E . ∴∠DAE 是AD 与平面P AC 所成的角. ∵AD →=⎝⎛⎭⎫-14a ,34a ,12a ,AE →=⎝⎛⎭⎫0,34a ,12a ,∴cos ∠DAE =AD →·AE →|AD →||AE →|=144.∴AD 与平面PAC 所成的角的大小为arccos144.。
高二数学选修2-1测试题(120分钟150分)班级姓名成绩一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题“如果-1≤a≤1,那么关于x的不等式(a2-4)x2+(a+2)x-1≥0的解集为 ”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A.0个B.1个C.2个D.4个【变式训练】命题“若C=90°,则△ABC是直角三角形”与它的逆命题、否命题、逆否命题这4个命题中,真命题的个数是( )A.0B.1C.2D.32.设m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A.m∥β且l1∥αB.m∥l1且n∥l2C.m ∥β且n ∥βD.m∥β且n∥l2【变式训练】有下述说法:①a>b>0是a2>b2的充要条件;②a>b>0是<的充要条件;③a>b>0是a3>b3的充要条件.其中正确的说法有( )A.0个B.1个C.2个D.3个3. “1<m<3”是“方程+=1表示椭圆”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知抛物线y2=2px(p>0)与双曲线-=1(a>0,b>0)有相同的焦点F,点A是两曲线的交点,且AF⊥x轴,则双曲线的离心率为( )A. B.+1 C.+1 D.【变式训练】若双曲线C:x 2-=1(b>0)的顶点到渐近线的距离为,则双曲线的离心率e=( )A.2B.C.3D.5.已知命题p:∀x∈R,x ≥2,那么下列结论正确的是( )A.命题p:∀x∈R,x≤2B.命题p:∃x0∈R,x0<2C.命题p:∀x∈R,x≤-2D.命题p:∃x0∈R,x0<-26.已知矩形ABCD中,AB=1,BC=,将矩形ABCD沿对角线AC折起,使平面ABC与平面ACD垂直,则B与D之间的距离为( )A.1B.C.D.7.过抛物线y2=4x焦点的直线交抛物线于A,B两点,若=10,则AB的中点到y轴的距离等于( )A.1B.2C.3D.48.在四边形ABCD中,“∃λ∈R ,使得=λ,=λ”是“四边形ABCD为平行四边形”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.已知在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成角的大小为( )A.60°B.90°C.45°D.以上都不正确10.设F1,F2是双曲线x2-4y2=4a(a>0)的两个焦点,点P在双曲线上,且满足:·=0,||·||=2,则a的值为( )A.2B.C.1D.11.点P是棱长为1的正方体ABCD-A1B1C1D1的底面A1B1C1D1上一点,则·的取值范围是( )A. B.C.[-1,0]D.12.已知正六边形ABCDEF的边长是2,一条抛物线恰好经过该六边形的四个顶点,则抛物线的焦点到准线的距离是( )A. B. C. D.2二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.抛物线焦点在y轴上,且被y=x+1截得的弦长为5,则抛物线的标准方程为.14.在△ABC中,若∠ACB=90°,∠BAC=60°,AB=8,PC⊥平面ABC,PC=4,M是AB上一点,则PM的最小值为.15.在四棱锥P-ABCD中,ABCD为平行四边形,AC与BD交于O,G为BD上一点,BG=2GD,=a,=b,=c,试用基底{a,b,c}表示向量= .16.曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2的点的轨迹.给出下列四个结论:①曲线C过点(-1,1);②曲线C关于点(-1,1)对称;③若点P在曲线C上,点A,B分别在直线l1,l2上,则+不小于2k.④设P0为曲线C上任意一点,则点P0关于直线x=-1、点(-1,1)及直线y=1对称的点分别为P1,P2,P3,则四边形P0P1P2P3的面积为定值4k2.其中,所有正确结论的序号是.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)设p:关于x的不等式a x>1(a>0且a ≠1)的解集为{x|x<0},q:函数y=l g(ax2-x+a)的定义域为R.如果p和q有且仅有一个正确,求a的取值范围. 18.(12分)如图,正方体ABCD-A1B1C1D1中,M,N分别为AB,B1C的中点.(1)用向量法证明平面A1BD∥平面B1CD1.(2)用向量法证明MN⊥平面A1BD.19.(12分)已知抛物线C:y2=2px(p>0)过点A(1,-2).(1)求抛物线C的方程,并求其准线方程.(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求直线l的方程;若不存在,说明理由.20.(12分)设F1,F2为椭圆+=1的两个焦点,P是椭圆上一点,已知P,F1,F2是一个直角三角形的三个顶点,且|PF1|>|PF2|.(1)求|PF1|的长度.(2)求的值. 21.(12分)如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.(1)求直线BE和平面ABB1A1所成角的正弦值.(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.22.(12分)如图,四棱柱ABCD -A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE.(2)求二面角B1-CE-C1的正弦值.(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.高二数学选修2-1测试题答案一、选择题1、【解析】选C.当-1≤a≤1时,Δ=(a+2)2+4(a2-4)=5--12≤5--12<0,所以原命题为真,逆否命题亦为真.反之,如a=-2时,所给不等式的解集即为空集,但a∉[-1,1],所以逆命题为假,故否命题亦为假.【变式训练】【解析】选C.原命题是真命题.其逆命题为“若△ABC是直角三角形,则C=90°”,这是一个假命题,因为当△ABC为直角三角形时,也可能A或B为直角.这样,否命题是假命题,逆否命题是真命题.因此真命题的个数是2.2.【解析】选B.对于选项A,α,β也可能相交,此时,l1,m都平行于交线,是必要不充分条件;对于选项B,由于l1与l2是相交直线,而且由l1∥m可得l1∥α,同理可得l2∥α,故可得α∥β,充分性成立,而由α∥β不一定能得到l1∥m,它们也可以异面,故必要性不成立,故选项B符合题意;对于选项C,由于m,n不一定相交,故是必要不充分条件;对于选项D,由n∥l2可转化为n∥β,同选项C,故不符合题意,【变式训练】【解析】选 A.a>b>0⇒a2>b2,a2>b2⇒|a|>|b|⇒a>b>0,故①错.a>b>0⇒<,但<⇒a>b>0,故②错.a>b>0⇒a3>b3,但a3>b 3⇒a>b>0故③错故选A.3. 【解析】选 B.当方程+=1表示椭圆时,必有所以1<m<3;但当1<m<3时,该方程不一定表示椭圆,如当m=2时,方程变为x 2+y2=1,它表示一个圆.4【解析】选B.如图,由双曲线-=1,且AF⊥x轴得-=1得|y|=,由抛物线y2=2px的定义得AF=p,即=2c.得b2=2ac,所以=,e2-1=2e,所以e=+1.【拓展延伸】求离心率的方法(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x轴上还是在y轴上都有关系式a2-b2=c2(a2+b2=c2)以及e=.已知其中的任意两个参数,可以求其他的参数.这是基本且常用的方法.(2)方程法:建立参数a与c之间的齐次关系式,从而求出其离心率.这是求离心率的十分重要的思路及方法.(3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.【变式训练】【解析】选B.由双曲线方程知a=1,所以c=,所以一条渐近线的方程为y=bx,即bx-y=0.所以=,解得b=1,所以c=,所以e==.5.【解析】选B.全称命题的否定是特称命题,所以命题p:∃x0∈R,x0<2.6. 【解析】选B.过B,D分别向AC作垂线,垂足分别为M,N.则可求得AM=,BM=,CN=,DN=,MN=1.由于=++,所以||2=(++)2=||2+||2+||2+ 2(·+ ·+·)=+12++2(0+0+0)=,所以||=.7.【解析】选D.抛物线y2=4x的焦点(1,0),准线为l:x=-1,设AB的中点为E,过A,E,B分别作准线的垂线,垂足分别为C,F,D,EF交纵轴于点H,如图所示,则由EF为直角梯形的中位线知,|EF|===5,所以EH=EF-1=5-1=4,即AB的中点到y 轴的距离等于4.8. 【解析】选C.若=λ,=λ,则∥,∥,即AB∥DC,AD∥BC,所以四边形ABCD为平行四边形.反之,若四边形ABCD为平行四边形,则有AB∥DC,AD∥BC且AB=DC,AD=BC ,即=,=,此时λ=1,所以∃λ∈R ,使得=λ,=λ成立.所以“∃λ∈R ,使得=λ,=λ”是“四边形ABCD为平行四边形”的充分必要条件.9. 【解析】选B.以点D为原点,直线DA,DC,DD 1分别为x轴,y轴,z轴,建立空间直角坐标系,如图.由题意知,A1(1,0,2),E(1,1,1),D1(0,0,2),A(1,0,0),所以=(0,1,-1),=(1,1,-1),=(0,-1,-1).设平面A1ED1的一个法向量为n=(x,y,z).则⇒令z=1,得y=1,x=0.所以n=(0,1,1),cos<n ,>===-1.所以<n ,>=180°.所以直线AE与平面A1ED1所成的角的大小为90°.10. 【解析】选C.双曲线方程化为-=1(a>0),因为·=0,所以PF1⊥PF2.所以||2+||2=4c2=20a. ①由双曲线定义||-||=±4,②又已知||·||=2,③由①②③得20a-2×2=16a,所以a=1.11. 【解析】选D.如图所示建立空间直角坐标系,则A(1,0,1),C1(0,1,0).设P(x,y,0)其中0≤x≤1,0≤y≤1.则=(1-x,-y,1) =(-x,1-y,0)所以·=(1-x,-y,1)·(-x,1-y,0)=+-,因为+的几何意义是平面区域到点的距离的平方,所以当x=y=时,+有最小值0,当x=y=0或x=y=1或x=1,y=0或x=0,y=1时,+有最大值,所以-≤+-≤0,即·的取值范围是.12. 【解析】选B.设抛物线方程为y2=2px(p>0),根据对称性可知,正六边形ABCDEF的顶点A,B,C,F在抛物线y2=2px上,设A(x1,1),F(x2,2),则即x2=4x1,又AF==2,即(x1-x2)2=(x1-4x1)2=3,所以=,x1=,即p===.二、填空题13.【解析】设抛物线方程为x2=my,联立抛物线方程与直线方程y=x+1并消元,得:2x2-mx-2m=0,所以x1+x2=,x1x2=-m,所以5=,把x1+x2=,x1x2=-m代入解得m=4或m=-20.所以抛物线的标准方程为x2=4y或x2=-20y. 答案:x2=4y或x2=-20y 14.【解析】由条件知PC,AC,BC 两两垂直,设=a ,=b ,=c,则a·b=b·c=c·a=0,因为∠BAC=60°,AB=8,所以|a |=||=8cos60°=4,|b |=||=8sin60°=4,|c |=||=4.设=x=x(b -a),其中x∈[0,1],则=++=-c+a+x(b-a)=(1-x)a+x b-c,||2=(1-x)2|a|2+x2|b|2+|c|2+2(1-x)x a·b-2x b·c-2(1-x)a·c=16(1-x) 2+48x2+16=32(2x2-x+1)=64+28,所以当x=时,||2取最小值28,所以||min =2. 答案:215. 【解析】因为BG=2GD ,所以=.又=+=-+-=a+c-2b,所以=+=b +(a+c-2b)=a -b +c.答案:a -b +c16.【解析】设动点为(x,y),则由条件可知·=k2,①,将(-1,1)代入得0=k2,因为k>0,所以不成立,故方程不过点(-1,1),①错误.②,把方程中的x用-2-x代换,y用2-y代换,方程不变,故此曲线关于点(-1,1)对称,②正确.③,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则≥,≥,所以+≥2=2k,故③正确.④,由题意知点P0在曲线C上,根据对称性,则四边形P0P1P2P3的面积为2·2=4·=4k2,所以④正确.综上所述,正确结论的序号是②③④.答案:②③④三、解答题17.【解析】当p真时,0<a<1,当q 真时,即a>,所以p假时,a>1,q假时,a ≤.又p和q有且仅有一个正确,当p真q假时,0<a ≤;当p假q真时,a>1. 综上a 的取值范围为∪(1,+∞). 18.【证明】(1)在正方体ABCD-A1B1C1D1中,=-,=-,又因为=,=,所以=,所以BD∥B1D1.又B1D1⊂平面B1CD1,BD⊄平面B1CD1,所以BD∥平面B1CD1,同理可证A1B∥平面B1CD1.又BD∩A1B=B,所以平面A1BD∥平面B1CD1.(2)=++=++(+)=++(-+)=++.设=a ,=b ,=c,则=(a+b+c).又=-=b-a,所以·=(a+b+c)·(b-a)=(b2-a2+c·b-c·a).又因为⊥,⊥,所以c·b=0,c·a=0.又|b|=|a|,所以b2=a2.所以b2-a2=0.所以·=0.所以MN⊥BD.同理可证,MN⊥A1B.又A1B∩BD=B,所以MN⊥平面A1BD.19.【解析】(1)将A(1,-2)代入y2=2px,得(-2)2=2p·1,所以p=2.故所求抛物线C的方程为y2=4x,其准线方程为x=-1.(2)假设存在符合题意的直线l,其方程为y=-2x+t.由得y2+2y-2t=0.因为直线l与抛物线C有公共点,所以Δ=4+8t≥0,解得t≥-.由直线OA与l的距离d=,可得=,解得t=±1.因为-1∉,1∈,所以符合题意的直线l存在,其方程为2x+y-1=0.20.【解析】(1)若∠PF2F1是直角,则|PF1|2=|PF2|2+|F1F2|2,即|PF1|2=(12-|PF1|)2+80,得|PF1|=,若∠F1PF2是直角,则|PF1|2+(12-|PF1|)2=80,即2|PF1|2-24|PF1|+64=0,得|PF1|=8.(2)若∠PF2F1是直角,则|PF1|2=|PF2|2+|F1F2|2,即|PF1|2=(12-|PF1|)2+80,得|PF1|=,|PF2|=,所以=.若∠F1PF2是直角,则|PF1|2+(12-|PF1|)2=80,即2|PF1|2-24|PF1|+64=0,得|PF1|=8,|PF2|=4,所以=2,综上,=2或.21.【解析】设正方体的棱长为1.如图所示,以,,为单位正交基底建立空间直角坐标系Axyz.(1)依题意,得B(1,0,0),E,A(0,0,0),D(0,1,0),所以=,=(0,1,0).在正方体ABCD-A1B1C1D1中,因为AD⊥平面ABB1A1,所以是平面ABB1A1的一个法向量.设直线BE和平面ABB1A1所成的角为θ,则sinθ===.故直线BE和平面ABB1A1所成的角的正弦值为.(2)在棱C1D1上存在点F,使B1F∥平面A1BE.证明如下:依题意,得A1(0,0,1),=(-1,0,1),=.设n=(x,y,z)是平面A1BE的一个法向量,则由n ·=0,n ·=0,得所以x=z,y=z.取z=2,得n=(2,1,2).因为F是棱C1D1上的点,则F(t,1,1)(0≤t≤1). 又B1(1,0,1),所以=(t-1,1,0).而B1F⊄平面A1BE,于是B1F∥平面A1BE ⇒·n=0⇔(t-1,1,0)·(2,1,2)=0⇔2(t-1)+1=0⇔t=⇔F为棱C1D1的中点.这说明在棱C1D1上存在点F(C1D1的中点),使B1F∥平面A1BE.22.【解题指南】方法一:(1)建立空间直角坐标系,写出,的坐标,利用数量积证明.(2)求出平面B1CE与平面CEC1的法向量,由法向量的夹角余弦值求二面角的正弦值.(3)用直线AM的方向向量与平面ADD1A1的法向量表示直线AM与平面ADD1A1所成角的正弦,确定向量的坐标,由向量的模求线段AM的长.方法二:(1)要证明线线垂直,先证明线面垂直,关键是找出与线B1C1垂直的平面CC1E,然后进行证明.(2)要求二面角B1-CE-C1的正弦值,关键是构造出二面角B1-CE-C1的平面角,然后在三角形中求解.(3)首先构造三角形,设AM=x,在直角三角形AHM,C1D1E中用x表示出AH,EH的长度,最后在三角形AEH中利用余弦定理求解.【解析】如图,以点A为坐标原点建立空间直角坐标系,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).(1)易得=(1,0,-1),=(-1,1,-1),于是·=0,所以B1C1⊥CE.(2)=(1,-2,-1),设平面B1CE的法向量m=(x,y,z),则即消去x,得y+2z=0,不妨设z=1,可得一个法向量为m=(-3,-2,1).由(1)知B1C1⊥CE,又CC1⊥B1C1,可得B1C1⊥平面CEC1,故=(1,0,-1)为平面CEC1的一个法向量.于是cos<m ,>===-,从而sin<m ,>=.所以二面角B1-CE-C1的正弦值为.(3)=(0,1,0),=(1,1,1),设=λ=(λ,λ,λ),0≤λ≤1,有=+=(λ,λ+1,λ).可取=(0,0,2)为平面ADD1A1的一个法向量.设θ为直线AM与平面ADD1A1所成的角,则sinθ====.于是=,解得λ=,所以AM=.【一题多解】(1)因为侧棱CC1⊥底面A1B1C1D1,B1C1⊂平面A1B1C1D1,所以CC1⊥B1C1,经计算可得B1E=,B1C1=,EC1=,从而B1E2=B 1+E,所以在△B1EC1中,B1C1⊥C1E,又CC1,C1E⊂平面CC1E,CC1∩C1E=C1,所以B1C1⊥平面CC1E,又CE⊂平面CC1E,故B1C1⊥CE.(2)过B1作B1G⊥CE于点G,连接C1G,由(1)知,B1C1⊥CE,B1C1,B1G⊂平面B1C1G,B1C1∩B1G=B1,故CE⊥平面B1C1G,又C1G⊂平面B1C1G ,得CE⊥C1G,所以∠B1GC1为二面角B1-CE-C1的平面角.在△CC1E中,由CE=C1E=,CC1=2,可得C1G=.在Rt△B1C1G中,B1G=,所以sin∠B1GC1=,即二面角B1-CE-C1的正弦值为.(3)连接D1E,过点M作MH⊥ED1于点H,可得MH⊥平面ADD1A1,连接AH,AM,则∠MAH为直线AM与平面ADD1A1所成的角.设AM=x,从而在Rt△AHM中,有MH=x,AH=x,在Rt△C1D1E中,C1D1=1,ED1=,得EH=MH=x,在△AEH中,∠AEH=135°,AE=1,由AH2=AE2+EH2-2AE·EHcos135°,得x2=1+x2+x,整理得5x2-2x-6=0,解得x=.所以线段AM的长为.。
2.1 曲线与方程2.1.1 曲线与方程2.1.2 求曲线的方程1.结合已学过的曲线与方程的实例,了解曲线与方程的对应关系.(了解)2.理解“曲线的方程”与“方程的曲线”的概念.(重点)3.通过具体的实例掌握求曲线方程的一般步骤,会求曲线的方程.(难点)[基础·初探]教材整理1曲线的方程与方程的曲线阅读教材P34~P35例1以上部分内容,完成下列问题.一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是____________;(2)以这个方程的解为坐标的点都是__________,那么,这个方程叫做________,这条曲线叫做方程的曲线.【答案】这个方程的解曲线上的点曲线的方程设方程f(x,y)=0的解集非空,如果命题“坐标满足方程f(x,y)=0的点都在曲线C上”是不正确的,则下列命题正确的是()A.坐标满足方程f(x,y)=0的点都不在曲线C上B.曲线C上的点的坐标都不满足方程f(x,y)=0C.坐标满足方程f(x,y)=0的点有些在曲线C上,有些不在曲线C上D.一定有不在曲线C上的点,其坐标满足f(x,y)=0【解析】本题考查命题形式的等价转换,所给命题不正确,即“坐标满足方程f(x,y)=0的点不都在曲线C上”是正确的.“不都在”包括“都不在”和“有的在,有的不在”两种情况,故选项A、C错,选项B显然错.【答案】 D教材整理2求曲线方程的步骤阅读教材P36“例3”以上部分,完成下列问题.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程是____________.【解析】设P(x,y),∵△MPN为直角三角形,∴MP2+NP2=MN2,∴(x+2)2+y2+(x-2)2+y2=16,即x2+y2=4.∵M,N,P不共线,∴x≠±2,∴轨迹方程为x2+y2=4(x≠±2).【答案】x2+y2=4(x≠±2)[小组合作型]对曲线的方程和方程的曲线的定义的理解(1)过点A(2,0)平行于y轴的直线与方程|x|=2之间的关系;(2)到两坐标轴的距离的积等于5的点与方程xy=5之间的关系;(3)第二、四象限角平分线上的点与方程x+y=0之间的关系.【导学号:37792038】【精彩点拨】曲线上点的坐标都是方程的解吗?以方程的解为坐标的点是否都在曲线上?【自主解答】(1)过点A(2,0)平行于y轴的直线上的点的坐标都是方程|x|=2的解,但以方程|x|=2的解为坐标的点不一定都在过点A(2,0)且平行于y轴的直线上.因此|x|=2不是过点A(2,0)平行于y轴的直线的方程.(2)到两坐标轴的距离的积等于5的点的坐标不一定满足方程xy=5,但以方程xy=5的解为坐标的点与两坐标轴的距离之积一定等于5.因此到两坐标轴的距离的积等于5的点的轨迹方程不是xy=5.(3)第二、四象限角平分线上的点的坐标都满足x+y=0,反之,以方程x+y =0的解为坐标的点都在第二、四象限角平分线上.因此第二、四象限角平分线上的点的轨迹方程是x+y=0.1.分析此类问题要严格按照曲线的方程与方程的曲线的定义.2.定义中有两个条件,这两个条件必须同时满足,缺一不可.条件(1)保证了曲线上所有的点都适合条件f (x ,y )=0;条件(2)保证了适合条件的所有点都在曲线上,前者是说这样的轨迹具有纯粹性,后者是说轨迹具有完备性.两个条件同时成立说明曲线上符合条件的点既不多也不少,才能保证曲线与方程间的相互转化.[再练一题]1.已知方程x 2+(y -1)2=10.(1)判断点P (1,-2),Q (2,3)是否在此方程表示的曲线上;(2)若点M ⎝ ⎛⎭⎪⎫m 2,-m 在此方程表示的曲线上,求实数m 的值. 【解】 (1)因为12+(-2-1)2=10,(2)2+(3-1)2=6≠10,所以点P (1,-2)在方程x 2+(y -1)2=10表示的曲线上,点Q (2,3)不在方程x 2+(y -1)2=10表示的曲线上.(2)因为点M ⎝ ⎛⎭⎪⎫m 2,-m 在方程x 2+(y -1)2=10表示的曲线上, 所以x =m 2,y =-m 适合方程x 2+(y -1)2=10,即⎝ ⎛⎭⎪⎫m 22+(-m -1)2=10. 解得m =2或m =-185.故实数m 的值为2或-185.由方程研究曲线(1)(x +y -1)x -1=0;(2)2x 2+y 2-4x +2y +3=0;(3)(x -2)2+y 2-4=0.【精彩点拨】 (1)方程(x +y -1)x -1=0中“x +y -1”与“x -1”两式相乘为0可作怎样的等价变形?(2)在研究形如Ax 2+By 2+Cx +Dy +E =0的方程时常采用什么方法?(3)由两个非负数的和为零,我们会想到什么?【自主解答】 (1)由方程(x +y -1)x -1=0可得 ⎩⎪⎨⎪⎧ x -1≥0,x +y -1=0或x -1=0, 即x +y -1=0(x ≥1)或x =1.故方程表示一条射线x +y -1=0(x ≥1)和一条直线x =1.(2)对方程左边配方得2(x -1)2+(y +1)2=0.∵2(x -1)2≥0,(y +1)2≥0,∴⎩⎪⎨⎪⎧ 2(x -1)2=0,(y +1)2=0,解得⎩⎪⎨⎪⎧x =1,y =-1. 从而方程表示的图形是一个点(1,-1).(3)由(x -2)2+y 2-4=0,得⎩⎪⎨⎪⎧ x -2=0,y 2-4=0,∴⎩⎪⎨⎪⎧ x =2,y =2或⎩⎪⎨⎪⎧x =2,y =-2.因此,原方程表示两个点(2,2)和(2,-2).1.判断方程表示什么曲线,就要把方程进行同解变形,常用的方法有:配方法、因式分解或化为我们熟悉的曲线方程的形式,然后根据方程、等式的性质作出准确判定.2.方程变形前后应保持等价,否则,变形后的方程表示的曲线不是原方程代表的曲线,另外,当方程中含有绝对值时,常借助分类讨论的思想.[再练一题]2.方程xy2-x2y=2x所表示的曲线()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于x-y=0对称【解析】同时以-x代替x,以-y代替y,方程不变,所以方程xy2-x2y=2x所表示的曲线关于原点对称.【答案】 C[探究共研型]求曲线的方程探究1【提示】建立坐标系的基本原则:(1)让尽量多的点落在坐标轴上;(2)尽可能地利用图形的对称性,使对称轴为坐标轴.建立适当的坐标系是求曲线方程的首要一步,应充分利用图形的几何性质,如中心对称图形,可利用对称中心为原点建系;轴对称图形以对称轴为坐标轴建系;条件中有直角,可将两直角边作为坐标轴建系等.探究2求曲线方程时,有些点的条件比较明显,也有些点的条件要通过变形或转化才能看清,有些点的运动依赖于另外的动点,请你归纳一下求曲线方程的常用方法?【提示】一般有三种方法:一直接法;二定义法;三相关点法,又称为代入法.在解题中,我们可以根据实际题目选择最合适的方法.求解曲线方程过程中,要特别注意题目内在的限制条件.在Rt△ABC中,斜边长是定长2a(a>0),求直角顶点C的轨迹方程.【导学号:37792039】【精彩点拨】(1)如何建立坐标系?(2)根据题意列出怎样的等量关系?(3)化简出的方程是否为所求轨迹方程?【自主解答】取AB边所在的直线为x轴,AB的中点O为坐标原点,过O与AB垂直的直线为y轴,建立如图所示的直角坐标系,则A(-a,0),B(a,0),设动点C为(x,y).由于|AC|2+|BC|2=|AB|2,所以((x+a)2+y2)2+((x-a)2+y2)2=4a2,整理得x2+y2=a2.由于当x=±a时,点C与A或B重合,故x≠±a.所以所求的点C的轨迹方程为x2+y2=a2(x≠±a).1.求曲线方程的一般步骤(1)建系设点;(2)写几何点集;(3)翻译列式;(4)化简方程;(5)查漏排杂:即证明以化简后方程的解为坐标的点都是曲线上的点.2.一般情况下,化简前后方程的解集是相同的,步骤(5)可以省略不写,如有特殊情况,可适当予以说明,另外,根据情况,也可以省略步骤(2),直接列出曲线方程.3.没有确定的坐标系时,要求方程首先必须建立适当的坐标系,由于建立的坐标系不同,同一曲线在坐标系的位置不同,其对应的方程也不同,因此要建立适当的坐标系.[再练一题]3.已知一曲线在x轴上方,它上面的每一点到点A(0,2)的距离减去它到x轴的距离的差都是2,求这条曲线的方程.【解】设曲线上任一点的坐标为M(x,y),作MB⊥x轴,B为垂足,则点M属于集合P={M||MA|-|MB|=2}.由距离公式,点M适合的条件可表示为x2+(y-2)2-y=2.化简得x2=8y.∵曲线在x轴上方,∴y>0.∴(0,0)是这个方程的解,但不属于已知曲线.∴所求曲线的方程为x2=8y(y≠0).1.已知直线l:x+y-3=0及曲线C:(x-3)2+(y-2)2=2,则点M(2,1)()A.在直线l上,但不在曲线C上B.在直线l上,也在曲线C上C.不在直线l上,也不在曲线C上D.不在直线l上,但在曲线C上【解析】将M(2,1)代入直线l和曲线C的方程,由于2+1-3=0,(2-3)2+(1-2)2=2,所以点M既在直线l上,又在曲线C上.【答案】 B2.在直角坐标系中,方程|x|·y=1的曲线是()【解析】 当x >0时,方程为xy =1,∴y >0,故在第一象限有一支图象;当x <0时,方程为-xy =1,∴y >0,故在第二象限有一支图象.【答案】 C3.已知两点M (-2,0),N (2,0),点P 满足PM →·PN →=4,则点P 的轨迹方程为________.【解析】 设点P 的坐标为P (x ,y ),由PM →·PN →=(-2-x ,-y )·(2-x ,-y )=x 2-4+y 2=4,得x 2+y 2=8,则点P 的轨迹方程为x 2+y 2=8.【答案】 x 2+y 2=84.设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦,求所作弦的中点的轨迹方程.【导学号:37792040】【解】 法一:如图所示,设OQ 为过O 的一条弦,P (x ,y )为其中点,连接CP ,则CP ⊥OQ .OC 的中点为M ⎝ ⎛⎭⎪⎫12,0,连接MP ,则|MP |=12|OC |=12,得方程⎝ ⎛⎭⎪⎫x -122+y 2=14. 由圆的范围,知0<x ≤1.即所求弦中点的轨迹方程为⎝ ⎛⎭⎪⎫x -122+y 2=14,0<x ≤1.法二:如图所示,由垂径定理,知∠OPC =90°,所以动点P 在以M ⎝ ⎛⎭⎪⎫12,0为圆心,OC 为直径的圆上. 由圆的方程,得⎝ ⎛⎭⎪⎫x -122+y 2=14, 由圆的范围,知0<x ≤1.即所求弦中点的轨迹方程为⎝ ⎛⎭⎪⎫x -122+y 2=14,0<x ≤1.。
高二数学选修2-1测试试题及答案本试题满分150分,用时100分钟)一、选择题:1.命题“若a>b,则a-8>b-8”的逆否命题是()A.若a<b,则a-8<b-8B.若a-8≤b-8,则a≤bC.若a≤b,则a-8≤b-8D.若a-8b2.如果方程x^2+ky^2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0.+∞)B.(0.2)C.(0.1)D.(1.+∞)3.已知x-3x+2≥0,2x-2≥1,则“非P”是“非Q”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件4.双曲线16/(x^2)-9/(y^2)=1的左、右焦点分别为F1,F2,在左支上过点F1的弦AB的长为5,那么△ABF2的周长是()A、24B、25C、26D、285.若焦点在轴上的椭圆x^2/3+y^2/2=1的离心率为e,则m=A.3B.38/2C.23/2D.33/26.在同一坐标系中,方程x^2/2+y^2/2=1与ax+by^2=(a>b>)的曲线大致是()ab7.椭圆25x^2+16y^2=400的面积为()A.9B.12C.10D.88.正方体ABCD-A1B1C1D1的棱长为1,E是A1B1的中点,则E到平面ABC1D1的距离是()A.√2/2B.√6/2C.√3/2D.√29.若向量a与b的夹角为60°,b=4,(a+2b)(a-3b)=-72,则a=A.2B.4C.6D.1210.方程x^2/k-y^2/k=1表示双曲线,则k的取值范围是()A.-1<k<1B.k>0XXX≥1D.k>1或k<-111.方程x^2/a^2+y^2/b^2=1(a>b>0,k>且k≠1),与方程y^2/a^2+x^2/b^2=1的图形是()两个坐标轴上的椭圆12.若x^2+y^2+z^2=1,则x^2y^2+y^2z^2+z^2x^2的最大值为()1/3二、填空题:13.当k>1时,曲线x^2/k-y^2/k=1是()。
课时跟踪训练(九) 椭圆的几何性质1.(新课标全国卷Ⅱ改编)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为________.2.(广东高考改编)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是________________________________________________________________________.3.曲线x 225+y 29=1与曲线x 225-k +y 29-k =1(k <9)的________相等.(填“长轴长”或“短轴长”或“离心率”或“焦距”)4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率是63,过椭圆上一点M 作直线MA ,MB 分别交椭圆于A ,B 两点,且斜率分别为k 1,k 2,若点A ,B 关于原点对称,则k 1·k 2的值为________.5.设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率是________.6.已知焦点在x 轴上的椭圆的离心率e =35,经过点A (5 32,-2),求椭圆的标准方程.7.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.8.若椭圆的中心在原点,焦点在x 轴上,点P 是椭圆上的一点,P 在x 轴上的射影恰为椭圆的左焦点,P 与中心O 的连线平行于右顶点与上顶点的连线,且左焦点与左顶点的距离等于10-5,试求椭圆的离心率及其方程.答 案1.解析:法一:由题意可设|PF 2|=m ,结合条件可知|PF 1|=2m ,|F 1F 2|=3m ,故离心率e =c a =2c 2a =|F 1F 2||PF 1|+|PF 2|=3m 2m +m =33.法二:由PF 2⊥F 1F 2可知P 点的横坐标为c ,将x =c 代入椭圆方程可解得y =±b 2a ,所以|PF 2|=b 2a .又由∠PF 1F 2=30°可得|F 1F 2|=3|PF 2|,故2c =3·b 2a ,变形可得3(a 2-c 2)=2ac ,等式两边同除以a 2,得3(1-e 2)=2e ,解得e =33或e =-3(舍去). 答案:332.解析:依题意,设椭圆方程为x 2a 2+y2b2=1(a >b >0),所以⎩⎪⎨⎪⎧c =1,c a =12,c 2=a 2-b 2,解得a 2=4,b 2=3.答案:x 24+y 23=13.解析:c 2=25-k -(9-k )=16,c =4.故两条曲线有相同的焦距. 答案:焦距4.解析:设点M (x ,y ),A (x 1,y 1),B (-x 1,-y 1),则y 2=b 2-b 2x 2a 2,y 21=b 2-b 2x 21a 2.所以k 1·k 2=y -y 1x -x 1·y +y 1x +x 1=y 2-y 21x 2-x 21=-b 2a 2=c 2a 2-1=e 2-1=-13,即k 1·k 2的值为-13.答案:-135.解析:设直线x =3a2与x 轴交于点M ,则∠PF 2M =60°.由题意知,F 1F 2=PF 2=2c ,F 2M =3a 2-c .在Rt △PF 2M 中,F 2M =12PF 2,即3a 2-c =c .∴e =c a =34.答案:346.解:设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),则754a 2+4b 2=1.① 由已知e =35,∴c a =35,∴c =35a .∴b 2=a 2-c 2=a 2-(35a )2,即b 2=1625a 2.②把②代入①,得754a 2+4×2516a 2=1,解得a 2=25,∴b 2=16,∴所求方程为x 225+y 216=1. 7.解:椭圆方程可化为x 2m +y 2mm +3=1,由m >0,易知m >mm +3,∴a 2=m ,b 2=mm +3.∴c =a 2-b 2=m (m +2)m +3. 由e =32,得 m +2m +3=32,解得m =1, ∴椭圆的标准方程为x 2+y 214=1. ∴a =1,b =12,c =32.∴椭圆的长轴长为2,短轴长为1, 两焦点坐标分别为F 1⎝⎛⎭⎫-32,0,F 2⎝⎛⎭⎫32,0,顶点坐标分别为A 1(-1,0),A 2(1,0),B 1⎝⎛⎭⎫0,-12,B 2⎝⎛⎭⎫0,12. 8.解:令x =-c ,代入x 2a 2+y 2b 2=1(a >b >0),得y 2=b 2(1-c 2a 2)=b 4a 2,∴y =±b 2a. 设P (-c ,b 2a ),椭圆的右顶点A (a,0),上顶点B (0,b ).∵OP ∥AB ,∴k OP =k AB ,∴-b 2ac =-ba,∴b =c .而a 2=b 2+c 2=2c 2,∴a =2c ,∴e =c a =22.又∵a -c =10-5,解得a =10,c =5,∴b =5,x2 10+y25=1.∴所求椭圆的标准方程为。
§3 双曲线3.1 双曲线及其标准方程1.掌握双曲线的定义及其应用.(重点) 2.掌握双曲线的标准方程及其推导过程.(难点) 3.会求双曲线的标准方程.(易混点)教材整理1 双曲线的定义阅读教材P 78“动手实践”以下的部分,完成下列问题.我们把平面内到两定点F 1、F 2的距离之差的绝对值等于常数(大于零且小于|F 1F 2|)的点的集合叫作双曲线.定点F 1、F 2叫作双曲线的焦点,两个焦点之间的距离叫作双曲线的焦距.1.双曲线x225-y29=1的两个焦点分别是F 1,F 2,双曲线上一点P 到F 1的距离是12,则P 到F 2的距离是( )A .17B .7C .7或17D .2或22【解析】 由双曲线定义知||PF 1|-|PF 2||=10,即|12-|PF 2||=10.解得|PF 2|=2或|PF 2|=22. 【答案】 D2.设F 1,F 2是双曲线x216-y220=1的焦点,点P 在双曲线上,若点P 到焦点F 1的距离等于9,求点P 到焦点F 2的距离.【解】 因为a =4,所以2a =8,由双曲线的定义得||PF 1|-|PF 2||=8,所以|9-|PF 2||=8,所以|PF 2|=1或17.因为c 2=a 2+b 2=36,所以|F 1F 2|=12,当|PF 2|=1时,|PF 1|+|PF 2|=10<|F 1F 2|,不符合“两点之间线段最短”,应舍去,所以|PF 2|=17.教材整理2 双曲线的标准方程阅读教材P 79“例1”以上的部分,完成下列问题.1.双曲线x24-y216=1的焦点坐标为________.【解析】 c 2=a 2+b 2=20,∴c =25, ∵焦点在x 轴上,∴焦点坐标为(25,0),(-25,0). 【答案】 (25,0),(-25,0)2.若a =3,b =4,则双曲线的标准方程是________________.【解析】 当焦点在x 轴上时,双曲线的标准方程为x29-y216=1;当焦点在y 轴上时,双曲线的标准方程为y29-x216=1.【答案】x29-y216=1或y29-x216=1预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:________________________________________________ 解惑:________________________________________________ 疑问2:________________________________________________ 解惑:________________________________________________ 疑问3:________________________________________________ 解惑:________________________________________________①已知定点F 1(-1,0),F 2(1,0),则满足|PF 1|-|PF 2|=2的点P 的轨迹为双曲线; ②已知定点F 1(-2,0),F 2(2,0),则满足||PF 1|-|PF 2||=4的点P 的轨迹为两条射线; ③到定点F 1(-3,0),F 2(3,0)距离之差的绝对值等于7的点P 的轨迹为双曲线;④若点P 到定点F 1(-4,0),F 2(4,0)的距离的差的绝对值等于点M (1,2)到点N (-3,-1)的距离,则点P 的轨迹为双曲线.【自主解答】 ①2<2,故点P 的轨迹是双曲线的一支;②因为2a =|F 1F 2|=4,所以点P 的轨迹是分别以F 1,F 2为端点的两条射线;③到定点F 1(-3,0),F 2(3,0)距离之差的绝对值等于7,而7>6,故点P 的轨迹不存在;④点M (1,2)到点N (-3,-1)的距离为-3-+-1-=5<8,故点P 的轨迹是以F 1(-4,0),F 2(4,0)为焦点的双曲线.【答案】 ②④如图331,若F 1,F 2是双曲线x29-y216=1的两个焦点.图331(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离; (2)若P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2的面积. 【精彩点拨】 (1)利用双曲线的定义求解.(2)欲求△F 1PF 2的面积,可考虑用12|PF 1||PF 2|sin ∠F 1PF 2求解,只要求出∠F 1PF 2的正弦值即可.而△F 1PF 2的三边中,|PF 1|-|PF 2|=±6,|F 1F 2|=10,故可考虑用余弦定理求解.【自主解答】 双曲线的标准方程为x29-y216=1,故a =3,b =4,c =a2+b2=5.(1)由双曲线的定义得||MF 1|-|MF 2||=2a =6,又双曲线上一点M 到它的一个焦点的距离等于16,假设点M 到另一个焦点的距离等于x ,则|16-x |=6,解得x =10或x =22.故点M 到另一个焦点的距离为10或22.(2)将||PF 2|-|PF 1||=2a =6,两边平方得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36,∴|PF 1|2+|PF 2|2=36+2|PF 1|·|PF 2|=36+2×32=100.由△F 1PF 2中,由余弦定理得cos ∠F 1PF 2=|PF1|2+|PF2|2-|F1F2|22|PF1|·|PF2|=100-1002|PF1|·|PF2|=0,∴∠F 1PF 2=90°,∴S △F 1PF 2=12|PF 1|·|PF 2|=12×32=16.1.求双曲线上一点到某一焦点的距离时,若已知该点的横、纵坐标,则根据两点间距离公式可求结果;若已知该点到另一焦点的距离,则根据||PF 1|-|PF 2||=2a 求解,注意对所求结果进行必要的验证(负数应该舍去,且所求距离应该不小于c -a ).2.在解决双曲线中与焦点三角形有关的问题时,首先要注意定义中的条件||PF 1|-|PF 2||=2a 的应用;其次是要利用余弦定理、勾股定理或三角形面积公式等知识进行运算,在运算中要注意整体思想和一些变形技巧的应用.1.已知双曲线x29-y216=1的左、右焦点分别是F 1、F 2,若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.【导学号:32550081】【解】 由x29-y216=1,得a =3,b =4,c =5.由定义和余弦定理得|PF 1|-|PF 2|=±6, |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°, 所以102=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 所以|PF 1|·|PF 2|=64,∴S △F 1PF 2=12|PF 1|·|PF 2|·sin∠F 1PF 2=12×64×32=16 3.(1)求以椭圆x216+y29=1的短轴的两个端点为焦点,且过点A (4,-5)的双曲线的标准方程;(2)已知双曲线通过M (1,1),N (-2,5)两点,求双曲线的标准方程.【精彩点拨】 用待定系数法,根据双曲线焦点的位置设方程,根据条件确定参数.当已知双曲线的两个焦点和双曲线上某一点,也可利用双曲线的定义求解.【自主解答】 (1)法一:(待定系数法) 由题意知双曲线的两焦点F 1(0,-3),F 2(0,3). 设双曲线的标准方程为y2a2-x2b2=1(a >0,b >0),将点A (4,-5)代入双曲线方程得 25a2-16b2=1,又a 2+b 2=9, 解得a 2=5,b 2=4.∴双曲线的标准方程为y25-x24=1.法二:(定义法)由题意知双曲线的两个焦点分别为F 1(0,-3),F 2(0,3)且A (4,-5)在双曲线上, 则2a =||AF 1|-|AF 2||=|20-80|=25, ∴a =5,∴b 2=c 2-a 2=9-5=4. 即双曲线的标准方程为y25-x24=1.(2)法一:若焦点在x 轴上,设双曲线的标准方程为x2a2-y2b2=1(a >0,b >0).因为M (1,1),N (-2,5)在双曲线上, 所以⎩⎪⎨⎪⎧1a2-1b2=1,-a2-52b2=1,解得⎩⎪⎨⎪⎧a2=78,b2=7.若焦点在y 轴上,设双曲线的标准方程为y2a2-x2b2=1(a >0,b >0).同理有⎩⎪⎨⎪⎧1a2-1b2=1,52a2--b2=1,解得⎩⎪⎨⎪⎧a2=-7,b2=-78(不合题意,舍去).所以所求双曲线的标准方程为x278-y27=1.法二:设所求双曲线的方程为mx 2+ny 2=1(mn <0). 将点M (1,1),N (-2,5)代入上述方程,得⎩⎪⎨⎪⎧m +n =1,4m +25n =1,解得⎩⎪⎨⎪⎧m =87,n =-17.所以所求双曲线的标准方程为x278-y27=1.求双曲线标准方程的常用方法:(1)定义法:若由题设条件能够判断出动点的轨迹满足双曲线的定义,则可根据双曲线的定义确定方程. (2)用待定系数法,具体步骤如下:2.求适合下列条件的双曲线的标准方程:(1)焦点在x 轴上,经过点(4,-2)和(26,22); (2)a =25,经过点A (2,-5),焦点在y 轴上.【解】 (1)因为焦点在x 轴上,所以设双曲线的标准方程为x2a2-y2b2=1(a >0,b >0),因为点(4,-2)和(26,22)在双曲线上,所以⎩⎪⎨⎪⎧16a2-4b2=124a2-8b2=1,解得⎩⎪⎨⎪⎧a2=8b2=4.故所求双曲线的标准方程是x28-y24=1.(2)因为焦点在y 轴上,所以双曲线的标准方程可设为y2a2-x2b2=1(a >0,b >0).由a =25,且点A (2,-5)在双曲线上,可得⎩⎪⎨⎪⎧a =2525a2-4b2=1,解得b 2=16.因此,所求双曲线的标准方程为y220-x216=1.已知动圆M 12内切,求动圆圆心M 的轨迹方程.【导学号:32550082】【精彩点拨】 利用两圆内、外切的充要条件找出M 点满足的几何条件,结合双曲线定义求解.【自主解答】 如图,设动圆M 的半径为r ,则由已知|MC 1|=r +2,|MC 2|=r -2,∴|MC 1|-|MC 2|=2 2. 又C 1(-4,0),C 2(4,0), ∴|C 1C 2|=8, ∵22<|C 1C 2|.根据双曲线定义知,点M 的轨迹是以C 1(-4,0)、C 2(4,0)为焦点的双曲线的右支. ∵a =2,c =4,∴b 2=c 2-a 2=14, ∴点M 的轨迹方程是x22-y214=1(x ≥2).1.本题易忽略|MC 1|-|MC 2|=22没有“绝对值”,故忘加“x ≥2”这一条件.2.求曲线的轨迹方程时,应尽量利用几何条件探求轨迹的曲线类型,从而再用待定系数法求出轨迹的方程,这样可以减少运算量,提高解题速度与质量.在运用双曲线定义时,应特别注意定义中的条件“差的绝对值”,弄清所求轨迹是整条双曲线,还是双曲线的一支,若是一支,是哪一支,需用变量的范围确定.3.在△ABC 中,B (4,0),C (-4,0),动点A 满足sin B -sin C =12sin A .求点A 的轨迹.【解】 在△ABC 中,sin B -sin C =12sin A ,∴|AC |-|AB |=12|BC |.又∵B (4,0),C (-4,0),∴|BC |=8.∴|AC |-|AB |=4<|BC |.∴点A 的轨迹是以B ,C 为焦点的双曲线的右支(除去与B ,C 共线的一点).其方程为x24-y212=1(x >2).探究1 【提示】 双曲线的定义中若没有“的绝对值”,则点的轨迹就是双曲线的一支,而双曲线是由两个分支组成的,故定义中的“的绝对值”不能去掉.当P 满足0<|PF 1|-|PF 2|<|F 1F 2|时,点P 的轨迹是双曲线的一支;当0<|PF 2|-|PF 1|<|F 1F 2|时,点P 的轨迹是双曲线的另一支;当|PF 1|-|PF 2|=±|F 1F 2|时,点P 的轨迹是两条射线,||PF 1|-|PF 2||不可能大于|F 1F 2|.探究2 设点M 是双曲线上的任意一点,F 1,F 2分别是双曲线的左、右焦点,如何确定|MF 1|-|MF 2|的符号?【提示】 若点M 在双曲线的右支上,则|MF 1|>|MF 2|,故|MF 1|-|MF 2|=2a ;若点M 在双曲线的左支上,则|MF 1|<|MF 2|,故|MF 1|-|MF 2|=-2a ,综上得|MF 1|-|MF 2|=±2a ,这是与椭圆不同的地方.探究1 双曲线的标准方程a2-b2=1(a >0,b >0)和a2-b2=1(a >0,b >0)有何异同点?【提示】 相同点:它们的形状、大小都相同,都有a >0,b >0和c 2=a 2+b 2. 不同点:它们的位置不同,焦点坐标不同.探究2 椭圆、双曲线的定义及标准方程之间有什么区别? 【提示】设双曲线与椭圆27+36=1有相同的焦点,且与椭圆相交,一个交点A 的纵坐标为4,则此双曲线的标准方程为________.【导学号:32550083】【精彩点拨】 常规解法易想到,但需解方程组,解方程时易错,而巧妙解法利用曲线系方程求解,将方程设为x227-λ+y236-λ=1(27<λ<36)求解.可以减少计算量.【自主解答】 由题意设双曲线方程为:x227-λ+y236-λ=1(27<λ<36),将A (±15,4)代入得λ=32,λ=0(舍),所以所求双曲线方程为y24-x25=1.【答案】 y24-x25=14.已知某双曲线与x216-y24=1共焦点,且过点(32,2),则此双曲线的标准方程为________.【导学号:32550084】【解析】 设双曲线的方程为x216-k -y24+k=1(-4<k <16). 将点(32,2)代入得k =4, 所以双曲线的标准方程为x212-y28=1.【答案】x212-y28=11.判断(正确的打“√”,错误的打“×”)(1)平面内到两定点的距离的差等于非零常数(小于两定点间距离)的点的轨迹是双曲线.( ) (2)在双曲线标准方程x2a2-y2b2=1中,a >0,b >0且a ≠b .( )(3)双曲线标准方程中,a ,b 的大小关系是a >b .( ) 【解析】 (1)注意双曲线定义中是“差的绝对值”. (2)x2a2-y2b2=1中,a <0,b <0也可以. (3)双曲线标准方程中,a ,b 的大小关系不确定. 【答案】 (1)× (2)× (3)×2.双曲线x29-y27=1的焦距为( )A. 2 B .2 2 C. 4D .8【解析】 c 2=a 2+b 2=9+7=16, ∴c =4,∵焦距为2c =8, 【答案】 D3.已知点F 1,F 2是双曲线x2a2-y2b2=1(a >0,b >0)的左、右焦点,点P 是双曲线上的一点,且PF1→·PF2→=0,则△PF 1F 2的面积为( )A .abB .12abC .b 2D .a 2【解析】 由题意知|||PF1|-|PF2|=2a .① |PF 1|2+|PF 2|2=4c 2.② ②-①2,得|PF 1||PF 2|=2b 2, ∴S △PF 1F 2=12|PF 1||PF 2|=b 2.【答案】 C4.双曲线的焦点在x 轴上,且a +c =9,b =3,则双曲线的标准方程为________. 【解析】 由⎩⎪⎨⎪⎧a +c =9b =3c2=a2+b2,得⎩⎪⎨⎪⎧a =4c =5,∵焦点在x 轴上,∴双曲线标准方程为x216-y29=1.【答案】x216-b29=1 5.求适合下列条件的双曲线的标准方程:(1)已知焦点F 1(0,-6),F 2(0,6),双曲线上的一点P 到F 1,F 2的距离差的绝对值等于8; (2)c =6,经过点A (-5,2),焦点在x 轴上. 【解】 (1)∵双曲线的焦点在y 轴上, ∴设它的标准方程为y2a2-x2b2=1(a >0,b >0).∵2a =8,2c =12,∴a =4,c =6,∴b 2=62-42=20. ∴所求双曲线的标准方程为y216-x220=1.(2)设双曲线的标准方程为x2a2-y2b2=1. ∵c =6,∴b 2=c 2-a 2=6-a 2.由题意知25a2-4b2=1,∴25a2-46-a2=1,解得a 2=5或a 2=30(舍去).∴b 2=1. ∴双曲线的标准方程为x25-y 2=1.我还有这些不足:(1)________________________________________________(2)________________________________________________我的课下提升方案:(1)________________________________________________(2)________________________________________________。
第二章 2.4 2.4.1一、选择题1.在平面直角坐标系内,到点(1,1)和直线x +2y =3的距离相等的点的轨迹是( )A .直线B .抛物线C .圆D .双曲线[答案] A[解析] ∵点(1,1)在直线x +2y =3上,故所求点的轨迹是过点(1,1)且与直线x +2y =3垂直的直线.2.过点A (3,0)且与y 轴相切的圆的圆心的轨迹为( )A .圆B .椭圆C .直线D .抛物线[答案] D[解析] 如图,设点P 为满足条件的一点,不难得出结论:点P 到点A 的距离等于点P 到y 轴的距离,故点P 在以点A 为焦点,y 轴为准线的抛物线上,故点P 的轨迹为抛物线,因此选D.3.抛物线x 2=4y 上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )A .2B .3C .4D .5[答案] D[解析] 解法一:∵y =4,∴x 2=4·y =16,∴x =±4, ∴A (±4,4),焦点坐标为(0,1), ∴所求距离为42+(4-1)2=25=5.解法二:抛物线的准线为y =-1,∴A 到准线的距离为5,又∵A 到准线的距离与A 到焦点的距离相等.∴距离为5.4.抛物线y 2=mx 的焦点为F ,点P (2,22)在此抛物线上,M 为线段PF 的中点,则点M 到该抛物线准线的距离为( )A .1B .32 C .2D .52[答案] D[解析] ∵点P (2,22)在抛物线上,∴(22)2=2m ,∴m =4,P 到抛物线准线的距离为2-(-1)=3,F 到准线距离为2, ∴M 到抛物线准线的距离为d =3+22=52.5.已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,则p 的值为( )A.12 B .1 C .2 D .4[答案] C[解析] 抛物线的准线为x =-p2,将圆方程化简得到(x -3)2+y 2=16,准线与圆相切,则-p2=-1,∴p =2,故选C.6.设抛物线y 2=8x 上一点P 到y 轴的距离是6,则点P 到该抛物线焦点的距离为( )A .12B .8C .6D .4[答案] B[解析] ∵点P 到y 轴的距离为6,∴点P 到抛物线y 2=8x 的准线x =-2的距离d =6+2=8, 根据抛物线的定义知点P 到抛物线焦点的距离为8. 二、填空题7.抛物线y =ax 2的准线方程是y =2,则a 的值为________.[答案] -18[解析] 抛物线方程化为标准形式为x 2=1a y ,由题意得a <0,∴2p =-1a ,∴p =-12a ,∴准线方程为y =p 2=-14a =2,∴a =-18.8.沿直线y =-2发出的光线经抛物线y 2=ax 反射后,与x 轴相交于点A (2,0),则抛物线的准线方程为________(提示:抛物线的光学性质:从焦点发出的光线经抛物线反射后与轴平行).[答案] x =-2[解析] 由直线y =-2平行于抛物线的轴知A (2,0)为焦点,故准线方程为x =-2. 三、解答题9.若抛物线y 2=2px (p >0)上一点M 到准线及对称轴的距离分别为10和6,求M 点的横坐标及抛物线方程.[解析] ∵点M 到对称轴的距离为6, ∴设点M 的坐标为(x,6). 又∵点M 到准线的距离为10,∴⎩⎪⎨⎪⎧62=2px ,x +p 2=10.解得⎩⎪⎨⎪⎧ x =9,p =2,或⎩⎪⎨⎪⎧x =1,p =18.故当点M 的横坐标为9时,抛物线方程为y 2=4x . 当点M 的横坐标为1时,抛物线方程为y 2=36x .10.求顶点在坐标原点,对称轴为坐标轴,过点(-2,3)的抛物线的标准方程.[解析] ∵点(-2,3)在第二象限,∴设抛物线方程为y 2=-2px (p >0)或x 2=2p ′y (p ′>0), 又点(-2,3)在抛物线上,∴p =94,p ′=23,∴抛物线方程为y 2=-92x 或x 2=43y .一、选择题1.若动点M (x ,y )到点F (4,0)的距离比它到直线x +5=0的距离小1,则点M 的轨迹方程是( ) A .x +4=0 B .x -4=0 C .y 2=8xD .y 2=16x[答案] D[解析] 依题意可知M 点到点F 的距离等于M 点到直线x =-4的距离,因此其轨迹是抛物线,且p =8,顶点在原点,焦点在x 轴正半轴上,∴其方程为y 2=16x ,故答案是D.2.O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2B .22C .2 3D .4[答案] C[解析] 抛物线C 的准线方程为x =-2,焦点F (2,0),由|PF |=42及抛物线的定义知,P 点的横坐标x P =32,从而y P =±26,∴S △POF =12|OF |·|y P |=12×2×26=2 3.3.已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1)、P 2(x 2,y 2)、P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,则有( )A .|P 1F |+|P 2F |=|FP 3|B .|P 1F |2+|P 2F |2=|P 3F |2C .2|P 2F |=|P 1F |+|P 3F |D .|P 2F |2=|P 1F |·|P 3F |[答案] C[解析] ∵点P 1、P 2、P 3在抛物线上,且2x 2=x 1+x 3,两边同时加上p , 得2(x 2+p 2)=x 1+p 2+x 3+p2,即2|P 2F |=|P 1F |+|P 3F |,故选C.4.已知抛物线方程为y 2=4x ,直线l 的方程为x -y +4=0,在抛物线上有一动点P 到y 轴的距离为d 1,P 到直线l 的距离为d 2,则d 1+d 2的最小值为( )A.522 B .522+1 C.522-2D .522-1[答案] D[解析] 设抛物线焦点为F ,过P 作P A 与准线垂直,垂足为A ,作PB 与l 垂直,垂足为B ,则d 1+d 2=|P A |+|PB |-1=|PF |+|PB |-1,显然当P 、F 、B 三点共线(即P 点在由F 向l 作垂线的垂线段上)时,d 1+d 2取到最小值,最小值为522-1.二、填空题5.已知点A (0,2),抛物线y 2=2px (p >0)的焦点为F ,准线为l ,线段F A 交抛物于点B ,过B 点作l 的垂线,垂足为M ,若AM ⊥MF ,则p =________.[答案]2[解析] 由抛物线的定义可得BM =BF ,F (P2,0),又AM ⊥MF ,故点B 为线段F A 中点,即B (p 4,1),所以1=2p ×p4⇒p = 2.6.在平面直角坐标系xOy 中,点B 与点A (-1,0)关于原点O 对称.点P (x 0,y 0)在抛物线y 2=4x 上,且直线AP 与BP 的斜率之积等于2,则x 0=________.[答案] 1+ 2[解析] ∵点B 与点A (-1,0)关于原点O 对称,∴B (1,0),根据题意,得y 20x 20-1=2,又y 20=4x 0,∴2x 0=x 20-1,即x 20-2x 0-1=0,解得x 0=2±82=1±2,舍去负值,得x 0=1+ 2. 三、解答题7.求适合下列条件的抛物线的标准方程:(1)过抛物线y 2=2mx 的焦点F 作x 轴的垂线交抛物线于A 、B 两点,且|AB |=6; (2)抛物线顶点在原点,对称轴是x 轴,点P (-5,25)到焦点的距离是6.[解析] (1)设抛物线的准线为l ,交x 轴于K 点,l 的方程为x =-m2,如图,作AA ′⊥l于A ′,BB ′⊥l 于B ′,则|AF |=|AA ′|=|FK |=|m |,同理|BF |=|m |.又|AB |=6,则2|m |=6. ∴m =±3,故所求抛物线方程为y 2=±6x .(2)设焦点F (a,0),|PF |=(a +5)2+20=6,即a 2+10a +9=0,解得a =-1或a =-9.当焦点为F (-1,0)时,p =2,抛物线开口方向向左,其方程为y 2=-4x ;当焦点为F (-9,0)时,p =18,抛物线开口方向向左,其方程为y 2=-36x .8.一辆卡车高3 m ,宽1.6 m ,欲通过断面为抛物线型的隧道,已知拱口宽恰好是拱高的4倍,若拱口宽为a m ,求使卡车通过的a 的最小整数值.[解析] 以隧道顶点为原点,拱高所在直线为y 轴建立直角坐标系,则B 点的坐标为(a2,-a 4),如图所示,设隧道所在抛物线方程为x 2=my ,则(a 2)2=m ·(-a 4),∴m =-a ,即抛物线方程为x 2=-ay . 将(0.8,y )代入抛物线方程,得 0.82=-ay , 即y =-0.82a.欲使卡车通过隧道,应有y -(-a 4)>3,即a 4-0.82a >3,由于a >0,得上述不等式的解为a >12.21,∴a 应取13.。
绝密★启用前人教版选修2-1 课时3.2立体几何中的向量方法一、选择题1.【题文】已知三条直线l 1,l 2,l 3的一个方向向量分别为a =(4,-1,0),b =(1,4,5),c =(-3,12,-9),则 ( )A .l 1⊥l 2,但l 1与l 3不垂直B .l 1⊥l 3,但l 1与l 2不垂直C .l 2⊥l 3,但l 2与l 1不垂直D .l 1,l 2,l 3两两互相垂直2.【题文】已知直线l 1的方向向量为a =(2,4,x ),直线l 2的方向向量为b =(2,y,2),若|a |=6,且a ⊥b ,则x +y 的值是( ) A .-3或1 B .3或-1 C .-3 D .13.【题文】已知(2,2,5)u =-,(6,4,4)v =-,u ,分别是平面α,β的法向量,则平面α,β的位置关系式( )A .平行B .垂直C .所成的二面角为锐角D .所成的二面角为钝角4.【题文】在空间直角坐标系中,点B 是()1,2,3A 在yOz 坐标平面内的射影,O 为坐标原点,则OB 等于( )A .14B .13C .23D .115.【题文】长方体1111ABCD A BC D -中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为 ( ) A. 1010B.3010 C. 21510D.310106.【题文】在棱长为的正方体1111ABCD A B C D -中,平面1AB C 与平面11A C D 间的 距离为( )A .63B .33 C .332 D .237.【题文】如图,在四面体OABC 中,G 是底面△ABC 的重心,则OG 等于()GCABOA.OC OB OA ++B.111222OA OB OC ++C.111236OA OB OC ++ D.111333OA OB OC ++8.【题文】在直三棱柱111C B A ABC -中,底面是等腰直角三角形, 90=∠ACB ,侧棱21=AA ,D ,E 分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是ABD ∆的重心G .则B A 1与平面AB D 所成角的余弦值 ()A .32 B .37C .23D .73二、填空题9.【题文】如图,在直三棱柱111ABC A B C -中,∠ACB =90°,AA 1=2,AC =BC =1,则异面直线A 1B 与AC 所成角的余弦值是________.10.【题文】已知正四棱锥P ABCD -的侧棱与底面所成角为60°,M 为PA 的中点,连接DM ,则DM 与平面PAC 所成角的大小是________.11.【题文】如图所示,正方体1111ABCD A BC D -的棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =23a ,则MN 与平面BB 1C 1C 的位置关系是______.三、解答题12.【题文】如图,AB 是圆的直径,PA 垂直于圆所在的平面,C 是圆上异于A 、B 的点.(1)求证:平面PAC ⊥平面PBC ;(2)若AB =2,AC =1,PA =1,求二面角C PB A --的余弦值.13.【题文】如图,直三棱柱111ABC A B C -中,△ABC 是等边三角形,D 是BC 的中点.(1)求证:A 1B ∥平面ADC 1;(2)若AB =BB 1=2,求A 1D 与平面AC 1D 所成角的正弦值.14.【题文】直四棱柱1111ABCD A BC D -中,底面A B C D为菱形,且160,,BAD A A AB E ∠==为1BB 延长线上的一点,1D E ⊥面1D AC .设2AB =. (1)求二面角1E AC D --的大小;(2)在1D E 上是否存在一点P ,使1//A P 面EAC ?若存在,求1:D P PE 的值;若不存在,说明理由.人教版选修2-1 课时3.2立体几何中的向量方法参考答案与解析一、选择题 1. 【答案】A【解析】∵a ·b =(4,-1,0)·(1,4,5)=4-4+0=0,a ·c =(4,-1,0)·( -3,12,-9)=-12-12+0=-24≠0.b ·c =(1,4,5)·(-3,12,-9)=-3+48-45=0,∴a ⊥b ,a 与c 不垂直,b ⊥c . ∴l 1⊥l 2,l 2⊥l 3,但l 1不垂直于l 3. 考点:直线的方向向量. 【题型】选择题 【难度】较易 2. 【答案】A【解析】|a |=2222+4+6x =,∴x =±4,又∵a ⊥b ,∴a ·b =2×2+4y +2x =0, ∴y =-1-12x ,∴当x =4时,y =-3,当x =-4时,y =1,∴x +y =1或-3. 考点:直线的方向向量. 【题型】选择题 【难度】较易 3. 【答案】B【解析】由(2,2,5)u =-,(6,4,4)v =-,可得262(4)540u v ⋅=-⨯+⨯-+⨯=,所以u v ⊥,又u ,分别是平面α,β的法向量,所以αβ⊥,故选B. 考点:空间向量在解决空间垂直中的应用. 【题型】选择题【难度】较易 4. 【答案】B【解析】因为点B 是()1,2,3A 在yOz 坐标平面内的射影,所以(0,2,3)B ,22202313∴=++=OB .故选B . 考点:空间中两点间的距离. 【题型】选择题 【难度】较易 5. 【答案】B【解析】建立坐标系如图所示,则A (1, 0, 0),E (0, 2, 1),B (1, 2, 0),C 1(0, 2, 2),则1BC =(-1, 0, 2),AE =(-1,2, 1).cos 〈1BC ,AE 〉=11AE BC AE BC ⋅⋅=3010. 所以异面直线BC 1与AE所成角的余弦值为3010.故选B.考点:异面直线所成角的向量求法. 【题型】选择题 【难度】较易 6.【答案】B【解析】建立如图所示的直角坐标系,设平面11A C D 的法向量(,,1)n x y =,则1100n DA n DC ⎧⋅=⎪⎨⋅=⎪⎩,即()()()(),,11,0,10,,,10,1,10x y x y ⋅-=⎧⎪⎨⋅-=⎪⎩()1,1,1,1,1,x n y =⎧⇒∴=⎨=⎩又(1,0,0)AD =-,∴平面1AB C 与平面11A C D 间的距离()()2221,0,01,1,133111AD n d n⋅-⋅===++,故选B.考点:面与面间的距离的向量求法. 【题型】选择题 【难度】一般 7. 【答案】D【解析】由题意知,()()11=+=+=33OG OA AG OA AC AB OA OC OA OB OA ++-+- =111333OA OB OC ++,故选D. 考点:空间向量的运算. 【题型】选择题 【难度】一般 8. 【答案】B【解析】以C 为坐标原点,CA 所在直线为轴,CB 所在直线为y 轴,1CC 所在直线为轴,建立直角坐标系,设a CB CA ==,则(),0,0A a ,()0,,0B a ,)(2,0,1a A ,)(1,0,0D ,则)(1,2,2a a E ,)(31,3,3a a G ,则)(32,6,6a a GE =,)(1,,0a BD -=, ∵点E 在平面ABD 上的射影是ABD ∆的重心G , ∴⊥GE 平面ABD ,∴0=⋅BD GE ,解得2=a .∴)(32,31,31=GE ,)(2,2,21-=BA , ∵⊥GE 平面ABD ,∴GE 为平面ABD 的一个法向量.32323634||||,cos 111=⋅=⋅⋅>=<BA GE BA GE BA GE , ∴B A 1与平面ABD 所成的角的余弦值为37,故选B.考点:线面角的空间向量求法. 【题型】选择题 【难度】较难二、填空题 9. 【答案】66【解析】以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则A 1(1, 0, 2),B (0, 1, 0),A (1, 0, 0),C (0, 0, 0),则1A B =(-1, 1,-2),AC =(-1, 0, 0),cos 〈1A B ,AC 〉=11A B AC A B AC⋅⋅=1114++=66. 考点:异面直线夹角的向量求法. 【题型】填空题 【难度】较易 10. 【答案】45°【解析】设底面正方形的边长为a ,由已知可得正四棱锥的高为62a ,建立如图所示的空间直角坐标系,则平面PAC 的一个法向量为n =(1,0,0),D 2,0,02a ⎛⎫- ⎪ ⎪⎝⎭,P 60,0,2a ⎛⎫ ⎪ ⎪⎝⎭,M 260,,44a a ⎛⎫- ⎪ ⎪⎝⎭,则DM =226,,244a a a ⎛⎫- ⎪ ⎪⎝⎭,所以cos 〈DM ,n 〉=n DM n DM⋅⋅=22,所以DM 与平面PAC 所成的角为45°.考点:线面角的空间向量求法. 【题型】填空题 【难度】一般 11. 【答案】平行【解析】分别以C 1B 1、C 1D 1、C 1C 所在直线为x ,y ,z 轴,建立空间直角坐标系, 如图所示.∵A 1M =AN =23a ,∴M 2(,,)33a a a ,N 22(,,)33a a a ,∴MN =2(,0,)33a a .又C 1(0,0,0),D 1(0,a,0),∴11C D =(0,a,0),∴MN ·11C D =0,∴MN ⊥11C D .∵11C D 是平面BB 1C 1C 的一个法向量,且MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C .考点:向量法求线面关系. 【题型】填空题 【难度】一般三、解答题 12.【答案】(1)见解析(2)64【解析】(1)证明:由AB 是圆的直径,得AC ⊥BC ,由PA ⊥平面ABC ,BC ⊂平面ABC ,得PA ⊥BC .又PA ∩AC =A ,PA ⊂平面PAC ,AC ⊂平面PAC , 所以BC ⊥平面PAC .又BC ⊂平面PBC ,所以平面PBC ⊥平面PAC . (2)过C 作CM ∥AP ,则CM ⊥平面ABC .如图,以点C 为坐标原点,分别以直线CB ,CA ,CM 为x 轴、y 轴、z 轴建立空间直角坐标系.在Rt △ABC 中,因为AB =2,AC =1,所以BC =3.又因为PA =1,所以A (0,1,0),B (3,0,0),P (0,1,1),故CB =(3,0,0),CP =(0,1,1),设平面BCP 的法向量为1n =(x 1,y 1,z 1),则110,0,n CB n CP ⎧⋅=⎪⎨⋅=⎪⎩所以111300x y z ⎧⎪⎨⎪⎩=,+=,令y 1=1,则1n =(0,1,-1).AP =(0,0,1),AB =(3,-1,0),设平面ABP 的法向量为2n =(x 2,y 2,z 2),则220,0,n AP n AB ⎧⋅=⎪⎨⋅=⎪⎩所以222300x y z ⎧⎪⎨⎪⎩-=,=,令x 2=1,则2n =(1,3,0).于是cos 〈1n ,2n 〉=322=64.由题意可知二面角C PB A --的余弦值为64. 考点:空间二面角的向量求法. 【题型】解答题 【难度】一般 13.【答案】(1)见解析(2)23535【解析】(1)证明:因为三棱柱111ABC A B C -是直三棱柱,所以四边形A 1ACC 1是矩形.连接A 1C 交AC 1于O ,连接OD ,则O 是A 1C 的中点,又D 是BC 的中点,所以在△A 1BC 中,OD ∥A 1B ,因为A 1B ⊄平面ADC 1,OD ⊂平面ADC 1,所以A 1B ∥平面ADC 1. (2)因为△ABC 是等边三角形,D 是BC 的中点,所以AD ⊥BC .以D 为原点,建立如图所示空间坐标系D xyz -.由已知AB =BB 1=2,得D (0,0,0),A (3,0, 0),A 1(3,0, 2),C 1(0,-1, 2),则DA =(3,0, 0),1DC =(0,-1,2),设平面AC 1D 的法向量为=(x ,y ,z ),则10,0,n DA n DC ⎧⋅=⎪⎨⋅=⎪⎩即30,20,x y z ⎧=⎪⎨-+=⎪⎩取z =1,则x =0,y =2,∴=(0,2,1), 又1DA =(3,0,2),∴cos 〈1DA ,〉=257⋅=23535,设A 1D 与平面ADC 1所成角为θ,则sin θ=|cos 〈1DA ,〉|=23535, 故A 1D 与平面ADC 1所成角的正弦值为23535.考点:线面角的向量求法. 【题型】解答题 【难度】一般 14.【答案】(1)45︒(2)存在点P 使1//A P 面,EAC 此时1:3:2D P PE = 【解析】(1)设AC 与BD 交于O ,设1B E h =,如图所示建立空间直角坐标系O xyz -,则1(3,0,0),(0,1,0),(3,0,0),(0,1,0),(0,1,2),A B C D D --- (0,1,2),E h +则11(0,2,),(23,0,0),(3,1,2),D E h CA D A ===-1D E ⊥平面1D AC ,111,D E AC D E D A ∴⊥⊥,220,1,h h ∴-=∴=即(0,1,3)E .1(0,2,1),(3,1,3)D E AE ∴==-,设平面EAC 的法向量为(,,)m x y z =, 则,,m CA m AE ⎧⊥⎪⎨⊥⎪⎩即230,330,x x y z ⎧=⎪⎨-++=⎪⎩令1z =-,则0,3x y ==,()0,3,1m ∴=-. 又平面1D AC 的一个法向量为()10,2,1D E =,1112cos ,==2m D E m D E m D E⋅∴⋅, ∴二面角1E AC D --大小为45.(2)设111(),D P PE D E D P λλ==-得112(0,,),111D P D E λλλλλλ==+++ 111121(3,1,0)(0,,)(3,,)1111A P A D D P λλλλλλλλ-∴=+==--+=-++++,1//A P 面113,,303(1)0,,112EAC A P m λλλλλ-∴⊥∴-⨯+⨯+-⨯=∴=++ ∴存在点P 使1//A P 面,EAC 此时1:3:2D P PE =考点:空间向量法求二面角. 【题型】解答题 【难度】一般。
2.4.1抛物线及其标准方程A组1.抛物线y=-x2的焦点坐标为()A. B.C. D.解析:把y=-x2化为标准方程x2=-y,可知抛物线开口向下,且2p=1,故焦点坐标为.答案:D2.一个动圆的圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则动圆必过定点()A.(0,2)B.(0,-2)C.(2,0)D.(4,0)解析:∵抛物线为y2=8x,∴准线方程为x=-2.由题意得,圆心到定点的距离与圆心到直线x+2=0的距离相等,∴根据抛物线定义得圆必过抛物线y2=8x的焦点(2,0).答案:C3.已知抛物线y2=2px(p>0)的准线与圆x2+y2-6x-7=0相切,则p的值为()A. B.1 C.2 D.4解析:由抛物线的标准方程,得准线方程为x=-.由x2+y2-6x-7=0,得(x-3)2+y2=16.∵准线与圆相切,∴3+=4,即p=2.答案:C4.点P为抛物线y2=2px上任一点,F为焦点,则以P为圆心,以|PF|为半径的圆与准线l()A.相交B.相切C.相离D.位置由F确定解析:由抛物线的定义可知点P到焦点F的距离等于到准线的距离,即圆心到准线的距离等于半径,故圆与准线相切.答案:B5.若抛物线y2=8x上一点P到其焦点F的距离为9,则点P的坐标为()A.(7,±)B.(14,±)C.(7,±2)D.(-7,±2)解析:设P(x0,y0),∵点P到其焦点的距离等于点P到其准线x=-2的距离,∴由|PF|=9,得x0+=9,即x0=9-2=7.∴y0=±2.故选C.答案:C6.抛物线y=ax2的准线方程是y=2,则a的值为.解析:将y=ax2化为x2=y.因为准线方程为y=2,所以抛物线开口向下,<0,且=2,所以a=-.答案:-7.若抛物线y2=-4x上一点A到焦点的距离等于5,则它到坐标原点的距离等于.解析:抛物线准线方程为x=1,点A到焦点的距离等于5,所以点A到准线距离也等于5,故点A 的横坐标为-4,从而纵坐标为±4,即A(-4,±4),所以点A到原点距离为4.答案:48.已知F为抛物线y2=ax(a>0)的焦点,点P在抛物线上,且其到y轴的距离与到点F的距离之比为1∶2,则||=.解析:由抛物线的定义,知点P到y轴的距离与其到准线的距离之比为1∶2,设点P(x,y).因为抛物线的准线为x=-,则x+=2x,x=,所以P.又F,所以||=.答案:9.已知抛物线的焦点在x轴上,抛物线上的点M(-3,m)到焦点的距离是5.(1)求抛物线方程和m的值;(2)求抛物线的焦点和准线方程.解:(1)∵点(-3,m)在y轴左侧,抛物线焦点在x轴上,∴抛物线开口向左.设方程为y2=-2px(p>0).∵点M到焦点的距离为5,∴3+=5,∴p=4.∴抛物线的方程为y2=-8x.把点M(-3,m)代入抛物线方程,得m2=24,∴m=±2.(2)抛物线的焦点为(-2,0),准线方程为x=2.10.已知抛物线的顶点在原点,它的准线过双曲线=1的一个焦点,且这条准线与双曲线的两个焦点的连线互相垂直,又抛物线与双曲线交于点,求抛物线和双曲线的方程.解:设抛物线的方程为y2=2px(p>0),根据点在抛物线上可得=2p·,解得p=2.故所求抛物线方程为y2=4x,抛物线的准线方程为x=-1.∵抛物线的准线过双曲线的一个焦点,∴c=1,即a2+b2=1.故双曲线方程为=1.∵点在双曲线上,∴=1,解得a2=或a2=9(舍去).同时b2=,故所求双曲线的方程为=1.B组1.已知动点M的坐标满足方程5=|3x+4y-12|,则动点M的轨迹是()A.椭圆B.双曲线C.抛物线D.以上都不对解析:方程5=|3x+4y-12|可化为,∴动点M到原点的距离与到直线3x+4y-12=0的距离相等.∴点M的轨迹是以原点为焦点,直线3x+4y-12=0为准线的抛物线.答案:C2.设O为坐标原点,F为抛物线y2=4x的焦点,A为抛物线上一点.若=-4,则点A的坐标为()A.(2,±2)B.(1,±2)C.(1,2)D.(2,2)解析:设点A,则.由=-4,得=-4,解得=4.此时点A的坐标为(1,2)或(1,-2).答案:B3.设抛物线y2=2px(p>0)的焦点为F,点A(0,2).若线段F A的中点B在抛物线上,则点B到该抛物线准线的距离为.解析:如图,由已知,得点B的纵坐标为1,横坐标为,即B.将其代入y2=2px,得1=2p×,解得p=,故点B到准线的距离为p=.答案:4.已知平面上动点P到定点F(1,0)的距离比点P到y轴的距离大1,求动点P的轨迹方程.解:方法一:设点P的坐标为(x,y),则有=|x|+1.两边平方并化简,得y2=2x+2|x|.故y2=即点P的轨迹方程为y2=4x(x≥0)或y=0(x<0).方法二:由题意,动点P到定点F(1,0)的距离比到y轴的距离大1,由于点F(1,0)到y轴的距离为1,故当x<0时,直线y=0上的点符合条件;当x≥0时,原命题等价于点P到点F(1,0)与到直线x=-1的距离相等,故点P的轨迹是以F为焦点,x=-1为准线的抛物线,方程为y2=4x.故所求动点P的轨迹方程为y2=4x(x≥0)或y=0(x<0).5.一辆卡车高3 m,宽1.6 m,欲通过断面为抛物线形的隧道,如图.已知拱口AB的宽恰好是拱高CD的4倍,求能使卡车通过的拱宽a(m)的最小整数值.解:以拱顶为原点,拱高所在直线为y轴,建立直角坐标系,如图,设抛物线方程为x2=-2py(p>0),则点B的坐标为.因为点B在抛物线上,所以=-2p·,p=,所以抛物线方程为x2=-ay.将点E(0.8,y)代入抛物线方程,得y=-.所以点E到拱底AB的距离为-|y|=>3.解得a>12.21.因为a取整数,所以a的最小值为13.6.定长为3的线段AB的端点A,B在抛物线y2=x上移动,求AB中点到y轴距离的最小值,并求出此时AB中点的坐标.解:如图,F是抛物线y2=x的焦点,A,B两点到准线的垂线分别是AC,BD,过AB的中点M作准线的垂线MN,C,D,N为垂足,则|MN|=(|AC|+|BD|),由抛物线定义知|AC|=|AF|,|BD|=|BF|.∴|MN|=(|AF|+|BF|)≥|AB|=.设点M的横坐标为x,|MN|=x+,则x≥.当弦AB过点F时等号成立,此时,点M到y轴的最短距离为.设A(x1,y1),B(x2,y2),则x1+x2=2x.当x=时,y1·y2=-p2=-,∴(y1+y2)2=+2y1·y2=2x-=2.∴y1+y2=±,得y=±,即M.。
(选修2-1)模块测试试题命题人:铁一中 周粉粉(本试题满分150分,用时100分钟)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.命题“若a b >,则88a b ->-”的逆否命题是 ( )A.若a b <,则88a b -<-B.若88a b ->-,则a b >C.若a ≤b ,则88a b -≤-D.若88a b -≤-,则a ≤b2.如果方程x 2+k y 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(0, +∞)B .(0, 2)C .(0, 1)D . (1, +∞)3.P:12≥-x ,Q:0232≥+-x x ,则“非P ”是“非Q ”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件4.双曲线221169x y -=的左、右焦点分别为F 1,F 2,在左支上过点F 1的弦AB 的长为5,那么△ABF 2的周长是( )A 、24B 、25C 、26D 、 285.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m=( ) A.3 B.23 C.38 D.32 6.在同一坐标系中,方程)0(0122222>>=+=+b a by ax by a x 与的曲线大致是( )7.椭圆221259x y +=的两个焦点分别为F 1、F 2,P 为椭圆上的一点,已知PF 1⊥PF 2,则∆PF 1F 2的面积为( )A.9B.12C.10D.8 8.正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 到平面11ABC D 的距离是( ) A.32B.22C.12D.339.若向量a 与b 的夹角为60°,4=b ,(2)(3)72a b a b +-=-,则a =( ) A.2 B.4C.6D.1210.方程22111x y k k表示双曲线,则k 的取值范围是( )A .11<<-kB .0>kC .0≥kD .1>k 或1-<k11.方程12222=+kb y ka x (a >b >0,k >0且k ≠1),与方程12222=+by a x (a >b >0)表示的椭圆( ) (A )有等长的短轴、长轴 (B )有共同的焦点(C )有公共的准线 (D )有相同的离心率 12.如图1,梯形ABCD 中,AB CD ∥,且AB ⊥平面α,224AB BC CD ===,点P 为α内一动点,且APB DPC ∠=∠,则P 点的轨迹为( ) A.直线 B.圆 C.椭圆 D.双曲线二、填空题:(本大题共5小题,每小题6分,共30分.将正确答案填在答题卷上对应题号的横线上.)13.设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么丙是甲的 (①.充分而不必要条件,②.必要而不充分条件 ,③.充要条件) 14.在棱长为a 的正方体1111ABCD A B C D -中,向量1BA 与向量AC 所成的角为 . 15.已知向量)0,3,2(-=a ,)3,0,(k b =,若b a ,成1200的角,则k= .16.抛物线的的方程为22x y =,则抛物线的焦点坐标为____________17.以下三个关于圆锥曲线的命题中:①设A 、B 为两个定点,K 为非零常数,若|PA |-|PB |=K ,则动点P 的轨迹是双曲线。
第二章 2.2 2.2.2 第1课时一、选择题1.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是( )A .(3,+∞)B .(-∞,-2)C .(3,+∞)∪(-∞,-2)D .(3,+∞)∪(-6,-2)[答案] D[解析] 由于椭圆的焦点在x 轴上,所以⎩⎪⎨⎪⎧ a 2>a +6a +6>0,即⎩⎪⎨⎪⎧(a +2)(a -3)>0a >-6,解得a >3或-6<a <-2,故选D.2.椭圆的一个顶点与两焦点组成等边三角形,则它的离心率e 为( )A.12 B .13 C.14 D.22[答案] A[解析] 由题意,得a =2c ,∴e =c a =12.3.椭圆C 1:x 225+y 29=1和椭圆C 2:x 29-k +y 225-k=1 (0<k <9)有( )A .等长的长轴B .相等的焦距C .相等的离心率D .等长的短轴[答案] B[解析] 依题意知椭圆C 2的焦点在y 轴上,对于椭圆C 1:焦距=225-9=8,对于椭圆C 2:焦距=2(25-k )-(9-k )=8,故选B.4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C于A 、B 两点,若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1 B .x 23+y 2=1 C.x 212+y 28=1 D .x 212+y 24=1 [答案] A[解析] 根据条件可知c a =33,且4a =43,∴a =3,c =1,b =2,椭圆的方程为x 23+y 22=1.5.已知椭圆的两个焦点和短轴的两个端点恰好为一个正方形的四个顶点,则该椭圆的离心率为( )A.13 B .12 C.33 D .22[答案] D[解析] 依题意椭圆的焦距和短轴长相等,故b =c ,a 2-c 2=c 2,∴e =22. 6.已知A ={1,2,4,5},a 、b ∈A ,则方程x 2a 2+y 2b2=1表示焦点在y 轴上的椭圆的概率为( )A.34 B .38 C.316 D .12[答案] B[解析] ∵a 、b ∈A ,∴不同的方程x 2a 2+y 2b 2=1共有16个.由题意a 2<b 2,∴a =1时,b =2、4、5;a =2时,b =4、5; a =4时,b =5,共6个,∴所求概率P =616=38.二、填空题7.已知椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为________.[答案] y 216+x 2=1[解析] 由已知,2a =8,2c =215,∴a =4,c =15,∴b 2=a 2-c 2=16-15=1, ∴椭圆的标准方程为y 216+x 2=1.8.已知椭圆的短半轴长为1,离心率0<e ≤32.则长轴长的取值范围为________. [答案] (2,4][解析] ∵b =1,∴c 2=a 2-1,又c 2a 2=a 2-1a 2=1-1a 2≤34,∴1a 2≥14,∴a 2≤4, 又∵a 2-1>0,∴a 2>1, ∴1<a ≤2,故长轴长2<2a ≤4. 三、解答题9.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.[解析] 椭圆方程可化为x 2m +y 2mm +3=1,∵m -m m +3=m (m +2)m +3>0,∴m >mm +3.即a 2=m ,b 2=m m +3,c =a 2-b 2=m (m +2)m +3.由e =32得,m +2m +3=32,∴m =1. ∴椭圆的标准方程为x 2+y 214=1,∴a =1,b =12,c =32.∴椭圆的长轴长为2,短轴长为1;两焦点坐标分别为F 1(-32,0)、F 2(32,0);四个顶点分别为A 1(-1,0)、A 2(1,0)、B 1(0,-12)、B 2(0,12).10.已知椭圆上横坐标等于焦点横坐标的点,它到x 轴的距离等于短半轴长的23,求椭圆的离心率.[解析] 解法一:设焦点坐标为F 1(-c ,0)、F 2(c,0),M 是椭圆上一点,依题意设M 点坐标为(c ,23b ).在Rt △MF 1F 2中,|F 1F 2|2+|MF 2|2=|MF 1|2, 即4c 2+49b 2=|MF 1|2,而|MF 1|+|MF 2|=4c 2+49b 2+23b =2a ,整理,得3c 2=3a 2-2ab . 又c 2=a 2-b 2,3b =2a .∴b 2a 2=49. ∴e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=59,∴e =53. 解法二:设M (c ,23b ),代入椭圆方程,得c 2a 2+4b 29b 2=1,∴c 2a 2=59,∴c a =53,即e =53.一、选择题1.过椭圆x 24+y 23=1的焦点的最长弦和最短弦的长分别为( )A .8、6B .4、3C .2、3D .4、2 3[答案] B[解析] 椭圆过焦点的弦中最长的是长轴,最短的为垂直于长轴的弦(通径)是2b 2a .∴最长的弦为2a =4,最短的弦为2b 2a =2×32=3,故选B.2.设F 1、F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上的点,且|PF 1|︰|PF 2|=2︰1,则△F 1PF 2的面积等于( )A .5B .4C .3D .1[答案] B[解析] 由椭圆方程,得a =3,b =2,c =5,∴|PF 1|+|PF 2|=2a =6,又|PF 1|︰|PF 2|=2︰1,∴|PF 1|=4,|PF 2|=2,由22+42=(25)2可知,△F 1PF 2是直角三角形,故△F 1PF 2的面积为12|PF 1|·|PF 2|=12×4×2=4,故选B.3.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦点分别是F 1、F 2.若|AF 1|、|F 1F 2|、|F 1B |成等比数列,则此椭圆的离心率为( )A.14 B .55 C.12 D .5-2 [答案] B[解析] ∵A 、B 分别为左右顶点,F 1、F 2分别为左右焦点,∴|AF 1|=a -c ,|F 1F 2|=2c ,|BF 1|=a +c ,又由|AF 1|、|F 1F 2|、|F 1B |成等比数列得(a -c )(a +c )=4c 2,即a 2=5c 2,所以离心率e =55. 4.焦点在y 轴上的椭圆mx 2+y 2=1的离心率为32,则m 的值为( ) A .1 B .2 C .3 D .4[答案] D[解析] 椭圆的方程mx 2+y 2=1化为标准方程为x 21m +y 2=1,由题意得,a 2=1,b 2=1m ,∴c 2=a 2-b 2=1-1m ,∴离心率e =ca =1-1m =32,∴m =4. 二、填空题5.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为________.[答案] x 236+y 29=1[解析] 设椭圆G 的标准方程为x 2a 2+y 2b 2=1 (a >b >0),半焦距为c ,则⎩⎪⎨⎪⎧2a =12c a =32,∴⎩⎨⎧a =6c =33. ∴b 2=a 2-c 2=36-27=9, ∴椭圆G 的方程为x 236+y 29=1.6.椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆相交于点A 、B .当△F AB 的周长最大时,△F AB 的面积是________.[答案] 3[解析] 如图,当直线x =m ,过右焦点(1,0)时,△F AB 的周长最大, 由⎩⎪⎨⎪⎧x =1x 24+y 23=1,解得y =±32,∴|AB |=3∴S =12×3×2=3.三、解答题7.已知点P (x 0,y 0)是椭圆x 28+y 24=1上一点,A 点的坐标为(6,0),求线段P A 中点M 的轨迹方程.[解析] 设M (x ,y ),则⎩⎨⎧x 0+62=x y 0+02=y,∴⎩⎪⎨⎪⎧x 0=2x -6y 0=2y ,∵点P 在椭圆x 28+y 24=1上,∴x 208+y 204=1.把⎩⎪⎨⎪⎧x 0=2x -6y 0=2y ,代入x 208+y 204=1,得(2x -6)28+(2y )24=1,即(x -3)22+y 2=1为所求.8.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1和F 2,离心率e =22,连接椭圆的四个顶点所得四边形的面积为4 2.(1)求椭圆C 的标准方程;(2)设A 、B 是直线l :x =22上的不同两点,若AF 1→·BF 2→=0,求|AB |的最小值.[解析] (1)由题意得:⎩⎨⎧e =c a =22a 2=b 2+c2S =12×(2a )×(2b )=42,解得:⎩⎨⎧a =2b =2c =2.所以椭圆的标准方程为:x 24+y 22=1.(2)由(1)知,F 1、F 2的坐标分别为F 1(-2,0)、F 2(2,0),设直线l :x =22上的不同两点A 、B 的坐标分别为A (22,y 1)、B (22,y 2),则AF 1→=(-32,-y 1)、BF 2→=(-2,-y 2),由AF 1→·BF 2→=0得y 1y 2+6=0,即y 2=-6y 1,不妨设y 1>0,则|AB |=|y 1-y 2|=y 1+6y 1≥26,当y 1=6、y 2=-6时取等号,所以|AB |的最小值是2 6.。
1.2.1“且”与“或”一、选择题1.命题“△ABC是等腰直角三角形”的形式是( )A.p∨q B.p∧qC.¬p D.以上都不对[答案] B[解析]△ABC是等腰直角三角形是由△ABC是等腰三角形与△ABC是直角三角形用“且”联结而成,是p∧q命题.2.对命题p:A∩∅=∅,命题q:A∪∅=A,下列判断正确的是( )A.p且q为假B.p或q为假C.p且q为真,p或q为假D.p且q为真,p或q为真[答案] D[解析]由题意知,p真,q也真.故p且q为真,p或q为真.3.命题“方程x2-4=0的解是x=±2”中,使用的逻辑联结词的情况是( )A.没有使用联结词B.使用了逻辑联结词“或”C.使用了逻辑联结词“且”D.使用了逻辑联结词“非”[答案] B[解析]x=±2是指x=2或x=-2.4.下列命题中既是p∧q形式的命题,又是真命题的是( )A.10或15是5的倍数B.方程2x2-4x-6=0的两根是3和-1C.方程x2+1=0没有实数根D.有两个角为45°的三角形是等腰直角三角形[答案] D[解析]由联结词意义知选D.5.若命题p:0是偶数,命题q:2是3的约数,则下列结论中正确的是( )A.“p∨q”为假B.“p∨q”为真C.“p∧q”为真D.以上都不对[答案] B[解析]∵p为真,q为假,∴“p∨q”为真,故选B.6.如果命题p∨q为真命题,p∧q为假命题,那么( )A.命题p,q都是真命题B.命题p,q都是假命题C.命题p,q只有一个是真命题D.命题,p,q至少有一个是真命题[答案] C[解析]“p∨q”为真,则至少p、q有一真,p∧q为假,则至少p、q有一假,∴p、q一真一假,故选C.二、填空题7.已知命题p:1∈{x|x2<a},命题q:2∈{x|x2<a},若“p或q”为真命题,则实数a 的取值X围是________.[答案](1,+∞)[解析]若p真,则12<a,即a>1;若q真,则可得a>4.“p或q”为真,则a>1或a>4,得a>1,所以实数a的取值X围是(1,+∞).8.已知条件p(x):x2+2x-m>0,如果p(1)是假命题,p(2)是真命题,则实数m的取值X围是________.[答案]3≤m<8[解析]由p(1)是假命题,知12+2×1-m=3-m≤0,得m≥3;由p(2)是真命题,知22+2×2-m=8-m>0,得m<8.所以m的取值X围是3≤m<8.三、解答题9.分别指出由下列各组命题构成的“p或q”、“p且q”形式,并判断真假.(1)p:2n-1(n∈Z)是奇数;q:2n-1(n∈Z)是偶数.(2)p:a2+b2<0(a∈R,b∈R);q:a2+b2≥0.(3)p:集合中元素是确定的;q:集合中元素是无序的.(4)p:π是无理数;q:12不是实数.(5)p:9是质数;q:8是12的约数.(6)p:∅={0};q:∅⊆∅.[解析](1)“p或q”:2n-1(n∈Z)是奇数或是偶数,真命题;“p且q”:2n-1(n ∈N)既是奇数又是偶数,假命题.(2)“p或q”:a2+b2<0或a2+b2≥0(a,b∈R),真命题;“p且q”:a2+b2<0且a2+b2≥0(a,b∈R),假命题.(3)“p或q”:集合中的元素是确定的或是无序的,真命题;“p且q”:集合中的元素是确定的且是无序的,真命题.(4)“p或q”:π是无理数或者12不是实数,真命题;“p且q”:π是无理数并且12不是实数,假命题.(5)“p或q”:9是质数或者8是12的约数,假命题;“p且q”:9是质数且8是12的约数,假命题.(6)“p或q”:∅={0}或∅⊆∅,真命题;“p且q”;∅={0}且∅⊆∅,假命题.一、选择题1.命题“矩形的对角线相等且互相平分”是( )A.简单命题B.“p∨q”形式的复合命题C.“p∧q”形式的复合命题D.“¬p”形式的复合命题[答案] C[解析]由定义可知选C.2.若p是真命题,q是假命题,则( )A.p∧q是真命题B.p∨q是假命题C.¬ p是真命题D.¬q是真命题[答案] D[解析]本题主要考查逻辑连接词.利用命题真值表进行判断.根据命题真值表知,q是假命题,¬q是真命题.3.命题p:如果∀a,b∈R,|a|+|b|>1,那么|a+b|>1;命题q:函数y=|x-1|-2的定义域是(-∞,-1]∪[3,+∞),那么( )A.“p或q”为假命题B.“p且q”为真命题C.命题p为真命题,命题q为假命题D.命题p为假命题,命题q为真命题[答案] D[解析]因为∀a,b∈R,都有|a|+|b|≥|a+b|,所以|a|+|b|>1不能推出|a+b|>1,故p为假命题;显然函数y=|x-1|-2的定义域,满足不等式|x-1|-2≥0,解得x≤-1或x≥3,所以q是真命题,故选D.4.已知命题p :不等式|x -1|>m 的解集是R ,命题q :f (x )=2-mx在区间(0,+∞)上是减函数.如果命题“p 或q ”为真,命题“p 且q ”为假,则实数m 的取值X 围是( )A .(-∞,0)B .(0,2)C .[0,2)D .(-∞,2)[答案] C[解析] 由命题p 可得m <0,由命题q 可得m <2,又由命题“p 或q ”为真,命题“p 且q ”为假,得命题p 与q 一真一假,如果命题p 真q 假,则可得⎩⎪⎨⎪⎧m <0,m ≥2,此不等式组无解;如果命题p 假q 真,则可得⎩⎪⎨⎪⎧m ≥0,m <2,得0≤m <2.故应选C.二、填空题5.分别用“p ∨q ”、“p ∧q ”填空: (1)命题“集合A B ”是________的形式;(2)命题“x -12+4≥2”是________的形式;(3)命题“60是10与12的公倍数”是______的形式. [答案] (1)p ∧q (2)p ∨q (3)p ∧q6.若命题p :a ∈{a ,b },q :{a }⊆{a ,b },则:①p ∨q 为真;②p ∨q 为假;③p ∧q 为真;④p ∧q 为假.以上对复合命题的判断正确的是________(填上所有你认为正确的序号).[答案]①③[解析] 因为命题p :a ∈{a ,b }是真命题,命题q :{a }⊆{a ,b }是真命题,所以p ∨q 为真命题,p ∧q 为真命题.三、解答题7.已知命题p :关于x 的不等式|x -1|>m -1的解集为R ,命题q :函数f (x )=(5-2m )x是R 上的增函数,若p ∨q 为真命题,p ∧q 为假命题,某某数m 的取值X 围.[解析] 不等式|x -1|>m -1的解集为R ,须m -1<0,即p 是真命题时,m <1; 函数f (x )=(5-2m )x是R 上的增函数,须5-2m >1,即q 是真命题时,m <2. ∵p 或q 为真命题,p 且q 为假命题, ∴p 、q 中一个为真命题,另一个为假命题. (1)当p 真,q 假时,m <1且m ≥2,此时无解; (2)当p 假,q 真时,m ≥1且m <2,此时1≤m <2, 因此1≤m <2.8.已知命题p :函数f (x )=x 2+ax -2在[-1,1]内有且仅有一个零点.命题q :x 2+3(a +1)x +2≤0在区间[12,32]内恒成立.若命题“p ∧q ”是假命题,“p∨q ”是真命题,某某数a 的取值X 围.[解析] 先考查命题p :若a =0,则容易验证不合题意; 故⎩⎪⎨⎪⎧a ≠0,f-1·f 1≤0,解得:a ≤-1或a ≥1.再考查命题q :因为x ∈[12,32],所以3(a +1)≤-(x +2x )在[12,32]上恒成立.易知(x +2x )max =92,故只需3(a +1)≤-92即可.解得a ≤-52.因为命题“p ∧q ”是假命题,“p ∨q ”是真命题,所以命题p 和命题q 中一真一假. 当p 真q 假时,-52<a ≤-1或a ≥1;当p 假q 真时,a ∈∅.综上,a 的取值X 围为{a |-52<a ≤-1或a ≥1}.。
第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量及其加减运算3.1.2 空间向量的数乘运算1.在空间四边形OABC中,+-等于( C )(A) (B) (C) (D)解析:原式=-=.故选C.2.下列命题中正确的个数是( A )①若a与b共线,b与c共线,则a与c共线;②向量a,b,c共面,即它们所在的直线共面;③若a∥b,则存在唯一的实数λ,使a=λb.(A)0 (B)1 (C)2 (D)3解析:①当b=0时,a与c不一定共线,故①错误;②a,b,c共面时,它们所在的直线平行于同一平面,不一定在同一平面内,故②错误;③当b 为零向量,a不为零向量时,λ不存在,故③错误.故选A.3.如图,在长方体ABCD-A1B1C1D1中,M为AC与BD的交点.若=a,=b,=c,则下列向量中与相等的向量是( B )(A)-a+b+c (B)a+b+c(C)a-b+c (D)-a-b+c解析:因为在长方体ABCD-A1B1C1D1中,M为AC与BD的交点,=a,=b,=c,所以=+=+(+)=(+)+=a+b+c.故选B.4.已知空间向量a,b,且=a+2b,=-5a+6b,=7a-2b,则一定共线的三点是( A )(A)A,B,D (B)A,B,C(C)B,C,D (D)A,C,D解析:因为=+=2a+4b=2,所以A,B,D三点共线.故选A.5.若空间中任意四点O,A,B,P满足=m+n,其中m+n=1,则( A )(A)P∈AB (B)P∉AB(C)点P可能在直线AB上(D)以上都不对解析:因为m+n=1,所以m=1-n,所以=(1-n)+n,即-=n(-),即=n,所以与共线.又有公共起点A,所以P,A,B三点在同一直线上,即P∈AB.故选A.6.若a与b不共线,且m=a+b,n=a-b,p=a,则( D )(A)m,n,p共线(B)m与p共线(C)n与p共线(D)m,n,p共面解析:由于(a+b)+(a-b)=2a,即m+n=2p,即p=m+n,又m与n不共线,所以m,n,p共面.7.已知i,j,k是不共面向量,a=2i-j+3k,b=-i+4j-2k,c=7i+5j+λk,若a,b,c三个向量共面,则实数λ等于( D )(A)(B)9 (C)(D)解析:因为a,b,c三向量共面,所以存在实数m,n,使得c=ma+nb,即7i+5j+λk=m(2i-j+3k)+n(-i+4j-2k).所以所以λ=.8.给出下列命题:①若A,B,C,D是空间任意四点,则有+++=0;②|a|-|b|=|a+b|是a,b共线的充要条件;③若,共线,则AB∥CD;④对空间任意一点O与不共线的三点A,B,C,若=x+y+z(其中x,y,z∈R),则P,A,B,C四点共面.其中错误命题的个数是( C )(A)1 (B)2 (C)3 (D)4解析:显然①正确;若a,b共线,则|a+b|=|a|+|b|或|a+b|=||a|-|b||,故②错误;若,共线,则直线AB,CD可能重合,故③错误;只有当x+y+z=1时,P,A,B,C四点才共面,故④错误.故选C.9.下列命题:①空间向量就是空间中的一条有向线段;②不相等的两个空间向量的模必不相等;③两个空间向量相等,则它们的起点相同,终点也相同;④向量与向量的长度相等.其中真命题是(填序号).解析:①假命题,有向线段只是空间向量的一种表示形式,但不能把二者完全等同起来.②假命题,不相等的两个空间向量的模也可以相等,只要它们的方向不相同即可.③假命题,当两个向量的起点相同,终点也相同时,这两个向量必相等,但两个向量相等却不一定有相同的起点和终点.④真命题,与仅是方向相反,它们的长度是相等的.答案:④10.在正方体ABCD-A1B1C1D1中,给出以下向量表达式:①(-)-;②(+)-;③(-)-2;④(+)+.其中能够化简为向量的是.(把你认为正确的序号填上)解析:如图所示.①(-)-=-=;②(+)-=-=;③(-)-2=-2≠;④(+)+=.综上可得,只有①②能够化简为向量.答案:①②11.如图,三棱锥P-ABC中,M是AC的中点,Q是BM的中点,若实数x,y,z 满足=x+y+z,则x-y+z= .解析:因为=+=+=+(-)=+[(+)-]=++,所以x=,y=,z=.所以x-y+z=0.答案:012.有下列命题:①若∥,则A,B,C,D四点共线;②若∥,则A,B,C三点共线;③若e1,e2为不共线的非零向量,a=4e1-e2,b=-e1+e2,则a∥b;④若向量e1,e2,e3是三个不共面的向量,且满足等式k1e1+k2e2+k3e3=0,则k1=k2=k3=0.其中是真命题的序号是(把所有真命题的序号都填上).解析:根据共线向量的定义,若∥,则AB∥CD或A,B,C,D四点共线,故①错;∥且AB,AC有公共点A,所以②正确;由于a=4e1-e2= -4·(-e1+e2)=-4b,所以a∥b,故③正确;易知④也正确.答案:②③④13.如图所示,已知几何体ABCD-A1B1C1D1是平行六面体.(1)化简++,并在图中标出其结果;(2)设M是底面ABCD的中心,N是侧面BCC1B1对角线BC1上的分点(靠近C1点),设=α+β+γ,求α,β,γ的值.解:(1)取DD1的中点G,过点G作DC的平行线GH,使GH=DC,连接AH(如图),则++=.(2)因为M是底面ABCD的中心,N是侧面BCC1B1对角线BC1上的分点(靠近C1点),所以=+=+=(-)+(+)=++,所以α=,β=,γ=.14.如图,H为四棱锥P-ABCD的棱PC的三等分点,且PH=HC,点G在AH 上,AG=mAH.四边形ABCD为平行四边形,若G,B,P,D四点共面,求实数m的值.解:如图,连接BD,BG.因为=-且=,所以=-.因为=+,所以=+-=-++.因为=,所以==(-++)=-++.又因为=-,所以=-++.因为=m,所以=m=-++.因为=-+=-+,所以=(1-)+(-1)+.又因为B,G,P,D四点共面,所以1-=0, 即m=.15.求证:四面体中连接对棱中点的三条直线交于一点且互相平分.已知:如图所示,在四面体ABCD中,E,F,G,H,P,Q分别是所在棱的中点.求证:EF,GH,PQ相交于一点O,且O为它们的中点.证明:如图,连接EG,GP,QH,HF,EH,GF.因为E,G分别为AB,AC的中点,所以EG BC.同理,HF BC,所以EG HF.从而四边形EGFH为平行四边形,故其对角线EF,GH相交于一点O,且O 为它们的中点.只要能证明向量=-,就可以说明P,O,Q三点共线且O为PQ的中点.事实上,=+,=+.因为O为GH的中点,所以+=0.易知GP CD,QH CD,所以=,=.所以+=+++=0.所以=-.故PQ经过O点,且O为PQ的中点.所以EF,GH,PQ相交于一点O,且O为它们的中点.16.已知正方体ABCD-A1B1C1D1的中心为O,则在下列各结论中正确的结论共有( C )①+与+是一对相反向量;②-与-是一对相反向量;③+++与+++是一对相反向量;④-与-是一对相反向量.(A)1个(B)2个(C)3个(D)4个解析:利用图形及向量的运算可知②中是相等向量,①③④中是相反向量.故选C.17.若P,A,B,C为空间四点,且有=α+β,则α+β=1是A,B,C 三点共线的( C )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件解析:若α+β=1,则-=β(-),即=β,显然A,B,C三点共线;若A,B,C三点共线,则存在实数λ,使=λ,故-=λ(-),整理得=(1+λ)-λ,令α=1+λ,β=-λ,则α+β=1.故选C.18.已知A,B,C三点共线,则对空间任一点O,存在三个不为零的实数λ,m,n,使λ+m+n=0,那么λ+m+n的值为.解析:因为A,B,C三点共线,所以存在唯一实数k,使=k,即-=k(-),所以(k-1)+-k=0,又λ+m+n=0,令λ=k-1,m=1,n=-k,则λ+m+n=0.答案:019.已知空间四边形ABCD中,=b,=c,=d,若=2,且=xb+yc+zd(x,y,z∈R),则y= .解析:如图所示,=+=-+=-+(-)=-++=-b+c+d.因为=xb+yc+zd(x,y,z∈R),所以y=.答案:20.如图所示,已知四边形ABCD是平行四边形,点P是ABCD所在平面外的一点,连接PA,PB,PC,PD.设点E,F,G,H分别为△PAB,△PBC, △PCD,△PDA的重心.(1)试用向量方法证明E,F,G,H四点共面;(2)试判断平面EFGH与平面ABCD的位置关系,并用向量方法证明你的判断.(1)证明:如图,分别连接PE,PF,PG,PH并延长,交对边于点M,N,Q,R,连接MN,NQ,QR,RM,因为E,F,G,H分别是所在三角形的重心,所以M,N,Q,R是所在边的中点,且=,=,=,=.由题意易知四边形MNQR是平行四边形,所以=+=(-)+(-)=(-)+(-)=(+).又=-=-=,所以=+,由共面向量定理知,E,F,G,H四点共面.(2)解:平行.证明如下:由(1)得=,所以∥,所以EG∥平面ABCD.又=-=-=,所以∥.所以EF∥平面ABCD.又因为EG∩EF=E,所以平面EFGH与平面ABCD平行.。
2.2.2 椭圆的几何性质(一)学习目标 1.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形.2.根据几何条件求出曲线方程,并利用曲线的方程研究它的性质、图形.知识点一 椭圆的范围、对称性和顶点坐标思考 观察椭圆x 2a 2+y 2b 2=1(a >b >0)的形状(如图),你能从图中看出它的范围吗?它具有怎样的对称性?椭圆上哪些点比较特殊?答案 (1)范围:-a ≤x ≤a ,-b ≤y ≤b ; (2)对称性:椭圆关于x 轴、y 轴、原点都对称;(3)特殊点:顶点A 1(-a,0),A 2(a,0),B 1(0,-b ),B 2(0,b ). 梳理 椭圆的几何性质知识点二 椭圆的离心率 思考 如何刻画椭圆的扁圆程度?答案 用离心率刻画扁圆程度,e 越接近于0,椭圆越接近于圆,反之,越扁. 梳理 (1)焦距与长轴长的比ca 称为椭圆的离心率.记为:e =ca.(2)对于x 2a 2+y 2b 2=1,b 越小,对应的椭圆越扁,反之,e 越接近于0,c 就越接近于0,从而b越接近于a ,这时椭圆越接近于圆,于是,当且仅当a =b 时,c =0,两焦点重合,图形变成圆,方程变为x 2+y 2=a 2.(如图)1.椭圆x 2a 2+y 2b 2=1(a >b >0)的长轴长是a .(×)2.椭圆的离心率e 越大,椭圆就越圆.(×)3.若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x 225+y 216=1.(×)4.设F 为椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点,M 为其上任一点,则MF 的最大值为a +c .(c为椭圆的半焦距)(√)类型一 由椭圆方程研究其几何性质例1 求椭圆9x 2+16y 2=144的长轴长、短轴长、离心率、焦点和顶点坐标. 解 已知方程化成标准方程为x 216+y 29=1,于是a =4,b =3,c =16-9=7,∴椭圆的长轴长和短轴长分别是2a =8和2b =6, 离心率e =c a =74,又知焦点在x 轴上,∴两个焦点坐标分别是(-7,0)和(7,0), 四个顶点坐标分别是(-4,0),(4,0),(0,-3)和(0,3). 引申探究本例中若把椭圆方程改为“9x 2+16y 2=1”,求其长轴长、短轴长、离心率、焦点和顶点坐标.解 由已知得椭圆标准方程为x 219+y 2116=1,于是a =13,b =14,c =19-116=712. ∴长轴长2a =23,短轴长2b =12,离心率e =c a =74.焦点坐标为⎝⎛⎭⎫-712,0和⎝⎛⎭⎫712,0, 顶点坐标为⎝⎛⎭⎫±13,0,⎝⎛⎭⎫0,±14. 反思与感悟 解决由椭圆方程研究其几何性质的问题的方法是将所给方程先化为标准形式,然后根据方程判断出椭圆的焦点在哪个坐标轴上,再利用a ,b ,c 之间的关系和定义,求椭圆的基本量.跟踪训练1 求椭圆9x 2+y 2=81的长轴长、短轴长、焦点坐标、顶点坐标和离心率. 解 椭圆的标准方程为x 29+y 281=1,则a =9,b =3,c =a 2-b 2=62,长轴长2a =18,短轴长2b =6,焦点坐标为(0,62),(0,-62),顶点坐标为(0,9),(0,-9),(3,0),(-3,0). 离心率e =c a =223.类型二 椭圆几何性质的简单应用命题角度1 依据椭圆的几何性质求标准方程 例2 求满足下列各条件的椭圆的标准方程.(1)已知椭圆的中心在原点,焦点在y 轴上,其离心率为12,焦距为8;(2)已知椭圆的离心率为e =23,短轴长为8 5.解 (1)由题意知,2c =8,∴c =4, ∴e =c a =4a =12,∴a =8,从而b 2=a 2-c 2=48, ∴椭圆的标准方程是y 264+x 248=1.(2)由e =c a =23得c =23a ,又2b =85,a 2=b 2+c 2,所以a 2=144,b 2=80, 所以椭圆的标准方程为x 2144+y 280=1或x 280+y 2144=1.反思与感悟 依据椭圆的几何性质求标准方程问题应由所给的几何性质充分找出a ,b ,c 所应满足的关系式,进而求出a ,b ,在求解时,需注意椭圆的焦点位置. 跟踪训练2 根据下列条件,求中心在原点,对称轴在坐标轴上的椭圆方程: (1)长轴长是短轴长的2倍,且过点(2,-6);(2)焦点在x 轴上,一个焦点与短轴的两端点连线互相垂直,且焦距为12. 解 (1)当焦点在x 轴上时,设椭圆方程为x 2a 2+y 2b2=1(a >b >0).依题意有⎩⎪⎨⎪⎧2b =a ,4a 2+36b 2=1,解得⎩⎪⎨⎪⎧a =237,b =37,∴椭圆方程为x 2148+y 237=1.同样地可求出当焦点在y 轴上时, 椭圆方程为x 213+y 252=1.故所求椭圆的方程为x 2148+y 237=1或x 213+y 252=1.(2)依题意有⎩⎪⎨⎪⎧b =c ,2c =12,∴b =c =6,∴a 2=b 2+c 2=72,∴所求的椭圆方程为x 272+y 236=1.命题角度2 最值问题例3 椭圆的中心是坐标原点,长轴在x 轴上,离心率e =32,已知点P ⎝⎛⎭⎫0,32到椭圆上的点的最远距离是7,求这个椭圆的方程. 解 设所求椭圆方程为x 2a 2+y 2b 2=1(a >b >0).∵b a=a 2-c 2a 2=1-e 2=12,∴a =2b .∴椭圆方程为x 24b 2+y 2b2=1.设椭圆上点M (x ,y )到点P ⎝⎛⎭⎫0,32的距离为d , 则d 2=x 2+⎝⎛⎭⎫y -322=4b 2⎝⎛⎭⎫1-y 2b 2+y 2-3y +94=-3⎝⎛⎭⎫y +122+4b 2+3, 令f (y )=-3⎝⎛⎭⎫y +122+4b 2+3. 当-b ≤-12,即b ≥12时,d 2max =f ⎝⎛⎭⎫-12=4b 2+3=7, 解得b =1,∴椭圆方程为x 24+y 2=1.当-12<-b ,即0<b <12时,d 2max =f (-b )=7, 解得b =-32±7,与0<b <12矛盾.综上所述,所求椭圆方程为x 24+y 2=1.反思与感悟 求解椭圆的最值问题的基本方法有两种(1)几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.解题的关键是能够准确分析出最值问题所隐含的几何意义,并能借助相应曲线的定义及对称知识求解.(2)代数法:若题目的条件和结论能体现一种明确的函数,则可首先建立起目标函数,再根据函数式的特征选用适当的方法求解目标函数的最值.常用方法有配方法、判别式法、重要不等式法及函数的单调性法等.跟踪训练3 已知点F 1,F 2是椭圆x 2+2y 2=2的左,右焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是________. 答案 2解析 设P (x 0,y 0),则PF 1→=(-1-x 0,-y 0), PF 2→=(1-x 0,-y 0),∴PF 1→+PF 2→=(-2x 0,-2y 0), ∴|PF 1→+PF 2→|=4x 20+4y 2=22-2y 20+y 2=2-y 20+2.∵点P 在椭圆上,∴0≤y 20≤1, ∴当y 20=1时,|PF 1→+PF 2→|取最小值2. 类型三 求椭圆的离心率例4 如图所示,F 1,F 2分别为椭圆的左,右焦点,椭圆上的点M 的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的23,求椭圆的离心率.解 设椭圆的长半轴长、短半轴长、半焦距长分别为a ,b ,c . 则焦点为F 1(-c,0),F 2(c,0),M 点的坐标为⎝⎛⎭⎫c ,23b , 且△MF 1F 2为直角三角形.在Rt △MF 1F 2中,F 1F 22+MF 22=MF 21,即4c 2+49b 2=MF 21.而MF 1+MF 2=4c 2+49b 2+23b =2a ,整理得3c 2=3a 2-2ab .又c 2=a 2-b 2,所以3b =2a .所以b 2a 2=49.所以e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=59,所以e =53.反思与感悟 求椭圆离心率的方法(1)直接求出a 和c ,再求e =ca,也可利用e =1-b 2a2求解. (2)若a 和c 不能直接求出,则看是否可利用条件得到a 和c 的齐次等式关系,然后整理成ca 的形式,并将其视为整体,就变成了关于离心率e 的方程,进而求解.跟踪训练4 已知椭圆C 以坐标轴为对称轴,长轴长是短轴长的5倍,且经过点A (5,0),求椭圆C 的离心率. 解 若焦点在x 轴上,得⎩⎪⎨⎪⎧2a =5×2b ,25a 2+0b 2=1,解得⎩⎪⎨⎪⎧a =5,b =1,∴c =a 2-b 2=52-12=26,∴e =c a =265;若焦点在y 轴上,得⎩⎪⎨⎪⎧2a =5×2b ,0a 2+25b 2=1,得⎩⎪⎨⎪⎧a =25,b =5,∴c =a 2-b 2=252-52=106, ∴e =c a =10625=265.故椭圆C 的离心率为265.1.已知椭圆的方程为2x 2+3y 2=m (m >0),则此椭圆的离心率为________. 答案33解析 由2x 2+3y 2=m (m >0),得x 2m 2+y 2m 3=1,∴c 2=m 2-m 3=m 6,∴e 2=13,又∵0<e <1,∴e =33.2.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为2的椭圆的标准方程是________. 答案 x 2+y 26=1解析 由已知得c =5,b =1,所以a 2=b 2+c 2=6, 又椭圆的焦点在y 轴上, 故椭圆的标准方程为y 26+x 2=1.3.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是________. 答案 35解析 由题意有,2a +2c =2(2b ),即a +c =2b , 又c 2=a 2-b 2,消去b 整理得5c 2=3a 2-2ac , 即5e 2+2e -3=0,又∵0<e <1,∴e =35或e =-1(舍去).4.若焦点在y 轴上的椭圆x 2m +y 22=1的离心率为12,则m 的值为________.答案 32解析 ∵焦点在y 轴上,∴0<m <2, ∴a =2,b =m ,∴c =2-m ,又e =c a =12,∴2-m 2=12,解得m =32. 5.已知点(m ,n )在椭圆8x 2+3y 2=24上,则2m +4的取值范围是________________. 答案 [4-23,4+23]解析 因为点(m ,n )在椭圆8x 2+3y 2=24上,即在椭圆x 23+y 28=1上,所以点(m ,n )满足椭圆的范围|x |≤3,|y |≤22,因此|m |≤3,即-3≤m ≤3,所以2m +4∈[4-23,4+23].1.椭圆的顶点、焦点、中心坐标等几何性质与坐标有关,它们反映了椭圆在平面内的位置. 2.椭圆的长轴长、短轴长、焦距、离心率等几何性质与坐标无关,它们反映了椭圆的形状. 3.讨论与坐标有关的几何性质应先由焦点确定出椭圆的类型,不能确定的应分焦点在x 轴上、y 轴上进行讨论.4.与椭圆x 2a 2+y 2b 2=1有相同焦点的椭圆可设为x 2a 2+m +y 2b 2+m=1.一、填空题1.椭圆4x 2+49y 2=196的长轴长、短轴长、离心率依次是________. 答案 14,4,357解析 先将椭圆方程化为标准形式,得x 249+y 24=1,其中b =2,a =7,c =3 5.2.焦点在x 轴上,长、短半轴长之和为10,焦距为45,则椭圆的标准方程为________. 答案 x 236+y 216=1解析 依题意得c =25,a +b =10, 又a 2=b 2+c 2从而解得a =6,b =4.3.若椭圆的焦距、短轴长、长轴长构成一个等比数列,则椭圆的离心率为________. 答案5-12解析 依题意得,4b 2=4ac ,∴b 2a 2=ca ,即1-e 2=e .∴e 2+e -1=0,∴e =5-12(舍去负值).4.已知椭圆的方程x 2a 2+y 2b 2=1(a >b >0)的焦点分别为F 1,F 2,F 1F 2=2,离心率e =12,则椭圆的标准方程为________________. 答案 x 24+y 23=1解析 因为F 1F 2=2,离心率e =12,所以c =1,a =2,所以b 2=3,椭圆方程为x 24+y 23=1.5.中心在原点,焦点在坐标轴上,离心率为32,且过点(2,0)的椭圆的标准方程是________. 答案 x 24+y 2=1或x 24+y 216=1解析 若焦点在x 轴上,则a =2. 又e =32,∴c = 3.∴b 2=a 2-c 2=1, ∴方程为x 24+y 2=1.若焦点在y 轴上,则b =2.又e =32,∴b 2a 2=1-34=14,∴a 2=4b 2=16,∴方程为x 24+y 216=1.6.椭圆x 212+y 23=1的左焦点为F 1,点P 在椭圆上,若线段PF 1的中点M 在y 轴上,则点P的纵坐标是________. 答案 ±32解析 设椭圆的右焦点为F 2,由题意知PF 2⊥x 轴, 因为a 2=12,b 2=3,所以c 2=a 2-b 2=9,c =3. 所以点P 和点F 2的横坐标都为3. 故将x =3代入椭圆方程,可得y =±32.7.椭圆(m +1)x 2+my 2=1的长轴长是________. 答案2mm解析 椭圆方程可化简为x 211+m +y 21m=1,由题意知m >0,∴11+m <1m,∴a =m m ,∴椭圆的长轴长2a =2m m. 8.已知椭圆C 的上,下顶点分别为B 1,B 2,左,右焦点分别为F 1,F 2,若四边形B 1F 1B 2F 2是正方形,则此椭圆的离心率e =________. 答案 22解析 因为四边形B 1F 1B 2F 2是正方形,所以b =c ,所以a 2=b 2+c 2=2c 2,所以e =c a =22. 9.若椭圆x 2a 2+y 2b2=1的焦点在x 轴上,过点⎝⎛⎭⎫1,12作圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆的方程是____________.答案 x 25+y 24=1 解析 ∵x =1是圆x 2+y 2=1的一条切线.∴椭圆的右焦点为A (1,0),即c =1.设P ⎝⎛⎭⎫1,12,则k OP =12,∵OP ⊥AB ,∴k AB =-2,则直线AB 的方程为y =-2(x -1),它与y 轴的交点为(0,2).∴b =2,a 2=b 2+c 2=5,故椭圆的方程为x 25+y 24=1. 10.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为________.考点 椭圆的离心率问题题点 求a ,b ,c 得离心率 答案 33解析 由题意可设PF 2=m ,结合条件可知PF 1=2m ,F 1F 2=3m ,故离心率e =c a =2c 2a=F 1F 2PF 1+PF 2=3m 2m +m =33. 11.设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,P 为直线x =3a 2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为________.答案 34解析 设直线x =3a 2与x 轴交于点M ,则∠PF 2M =60°, 在Rt △PF 2M 中,PF 2=F 1F 2=2c ,F 2M =3a 2-c , 故cos60°=F 2M PF 2=3a 2-c 2c =12, 解得c a =34,故离心率e =34.二、解答题12.已知椭圆C 1:x 2100+y 264=1,设椭圆C 2与椭圆C 1的长轴长、短轴长分别相等,且椭圆C 2的焦点在y 轴上.(1)求椭圆C 1的长半轴长、短半轴长、焦点坐标及离心率;(2)写出椭圆C 2的方程,并研究其性质.解 (1)由椭圆C 1:x 2100+y 264=1可得其长半轴长为10, 短半轴长为8,焦点坐标(6,0),(-6,0),离心率e =35. (2)椭圆C 2:y 2100+x 264=1,性质:①范围:-8≤x ≤8,-10≤y ≤10;②对称性:关于x 轴、y 轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0),焦点坐标(0,6),(0,-6);④离心率:e =35. 13.分别求适合下列条件的椭圆的标准方程:(1)离心率是23,长轴长是6; (2)在x 轴上的一个焦点与短轴两个端点的连线互相垂直,且焦距为6.解 (1)设椭圆的标准方程为x 2a 2+y 2b 2=1 (a >b >0)或y 2a 2+x 2b 2=1 (a >b >0).由已知得2a =6,e =c a =23,∴a =3,c =2. ∴b 2=a 2-c 2=9-4=5.∴椭圆的标准方程为x 29+y 25=1或x 25+y 29=1. (2)设椭圆的标准方程为x 2a 2+y 2b 2=1 (a >b >0). 如图所示,△A 1F A 2为等腰直角三角形,OF 为斜边A 1A 2上的中线(高),且OF =c ,A 1A 2=2b , ∴c =b =3,∴a 2=b 2+c 2=18,故所求椭圆的标准方程为x 218+y 29=1. 三、探究与拓展14.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1(-c,0),F 2(c,0)(c >0),过点E ⎝⎛⎭⎫a 2c ,0的直线与椭圆相交于点A ,B 两点,且F 1A ∥F 2B ,F 1A =2F 2B ,则椭圆的离心率为________. 答案 33解析 由F 1A ∥F 2B ,F 1A =2F 2B ,得EF 2EF 1=F 2B F 1A =12, 从而a 2c -c a 2c +c =12,整理得a 2=3c 2.故离心率e =c a =33. 15.已知椭圆E 的中心为坐标原点O ,两个焦点分别为A (-1,0),B (1,0),一个顶点为H (2,0).(1)求椭圆E 的标准方程;(2)对于x 轴上的点P (t,0),椭圆E 上存在点M ,使得MP ⊥MH ,求实数t 的取值范围. 解 (1)由题意可得,c =1,a =2,∴b = 3.∴所求椭圆E 的标准方程为x 24+y 23=1. (2)设M (x 0,y 0)(x 0≠±2),则x 204+y 203=1.①MP →=(t -x 0,-y 0),MH →=(2-x 0,-y 0),由MP ⊥MH 可得MP →·MH →=0,即(t -x 0)(2-x 0)+y 20=0.②由①②消去y 0,整理得t (2-x 0)=-14x 20+2x 0-3. ∵x 0≠2,∴t =14x 0-32. ∵-2<x 0<2,∴-2<t <-1.∴实数t 的取值范围为(-2,-1).。
高二数学上:选修2-1答案答案:选修2-1 §1.1.1 命题 §1.1.2 四种命题1.B2.B3.B4.B5.略6.若 $a^2>9$,则 $a>3$。
假。
7.若 $AB \neq B$,则 $AB \neq A$,真;8.3;9.原命题是真命题,则它的逆否命题是真命题。
10.略。
11.原命题真;逆命题:“已知 $\alpha,\beta \in \{x|x\neqk\pi+\pi,k\in Z\}$,若 $\tan\alpha=\tan\beta$,则 $\alpha=\beta$”假;否命题:“已知 $\alpha,\beta \in \{x|x\neq k\pi+\pi,k\in Z\}$,若 $\alpha\neq\beta$,则 $\tan\alpha\neq\tan\beta$”假;逆否命题:“已知 $\alpha,\beta \in \{x|x\neq k\pi+\pi,k\in Z\}$,若$\tan\alpha\neq\tan\beta$,则 $\alpha\neq\beta$”真。
改写:选修2-1 §1.1.1 命题 §1.1.2 四种命题1.B2.B3.B4.B5.略6.若 $a^2>9$,则 $a>3$。
这是错误的。
7.若 $AB \neq B$,则 $AB \neq A$,这是正确的;8.3;9.原命题是真命题,则它的逆否命题也是真命题。
10.略。
11.原命题是真命题;逆命题:“已知 $\alpha,\beta \in\{x|x\neq k\pi+\pi,k\in Z\}$,若 $\tan\alpha=\tan\beta$,则$\alpha=\beta$”是错误的;否命题:“已知 $\alpha,\beta \in\{x|x\neq k\pi+\pi,k\in Z\}$,若 $\alpha\neq\beta$,则$\tan\alpha\neq\tan\beta$”是错误的;逆否命题:“已知$\alpha,\beta \in \{x|x\neq k\pi+\pi,k\in Z\}$,若$\tan\alpha\neq\tan\beta$,则 $\alpha\neq\beta$”是正确的。
选修2-1 §1.1.3 四种命题间的相互关系1.C2.A3.C4.D5.⑴没有关系⑵相同⑶相同6.若 $a^2-2a+10$,则方程 $x^2+x+a=0$ 没有实数根” 是错误的;逆否命题:“若方程 $x^2+x+a$ 没有实数根,则$a>0$” 是正确的。
10.可以用“原命题与逆否命题的等价性”来证明。
11.只需证明其逆否命题:“若 $p,q\in R$ 且 $p+q>2$,则$p^3+q^3>2$”。
改写:选修2-1 §1.1.3 四种命题间的相互关系1.C2.A3.C4.D5.⑴没有关系⑵相同⑶相同6.若 $a^2-2a+10$,则方程 $x^2+x+a=0$ 没有实数根” 是错误的;逆否命题:“若方程 $x^2+x+a$ 没有实数根,则$a>0$” 是正确的。
10.可以用“原命题与逆否命题的等价性”来证明。
11.只需证明其逆否命题:“若 $p,q\in R$ 且 $p+q>2$,则$p^3+q^3>2$”。
选修2-1 §1.2.1 充分条件与必要条件1.B2.A3.B4.D5.⑴$\Rightarrow$⑵$\Rightarrow$⑶$\Rightarrow$⑷$\Rightarro w$6.充分不必要条件7.必要不充分8.②③⑤;①③④⑥9.⑴错误⑵正确⑶错误 10.⑴必要,必要⑵B$\Rightarrow$A,$\therefore \neg A\Rightarrow \neg B$ ⑶方法一:“$\tan\alpha\neq\tan\beta\Rightarrow \alpha\neq\beta$” 的逆否命题为“$\tan\alpha,\tan\beta$ 有意义,$\alpha=\beta\Rightarrow \tan\alpha=\tan\beta$”;方法二:假设 $\alpha=\beta$,则$\tan\alpha,\tan\beta$ 有意义,$\therefore \tan\alpha=\tan\beta$,矛盾。
11.$a\geq 9$。
改写:选修2-1 §1.2.1 充分条件与必要条件1.B2.A3.B4.D5.⑴$\Rightarrow$⑵$\Rightarrow$⑶$\Rightarrow$⑷$\Rightarro w$6.充分不必要条件7.必要不充分8.②③⑤;①③④⑥9.⑴错误⑵正确⑶错误 10.⑴必要,必要⑵B$\Rightarrow$A,$\therefore \neg A\Rightarrow \neg B$ ⑶方法一:“$\tan\alpha\neq\tan\beta\Rightarrow \alpha\neq\beta$” 的逆否命题为“$\tan\alpha,\tan\beta$ 有意义,$\alpha=\beta\Rightarrow \tan\alpha=\tan\beta$”;方法二:假设 $\alpha=\beta$,则$\tan\alpha,\tan\beta$ 有意义,$\therefore \tan\alpha=\tan\beta$,矛盾。
11.$a\geq 9$。
选修2-1 §1.2.2 充要条件1.A2.B3.C4.B5.⑴$\Rightarrow$,$\Leftarrow$,$\Leftrightarrow$,$\Rightarrow$,$\Rightarrow$;⑵充分不必要 6.⑴$\sqrt{}$ ⑵$\times$ ⑶$\times$ 7.⑴既不充分又不必要⑵必要不充分⑶必要不充分⑷充要改写:选修2-1 §1.2.2 充要条件1.A2.B3.C4.B5.⑴$\Rightarrow$,$\Leftarrow$,$\Leftrightarrow$,$\Rightarrow$,$\Rightarrow$;⑵充分不必要 6.⑴$\sqrt{}$ ⑵$\times$ ⑶$\times$ 7.⑴既不充分又不必要⑵必要不充分⑶必要不充分⑷充要8.对于不等式-4≤a≤29,我们知道这是一个充要条件,即只有当a在-4和29之间时,不等式才成立。
但是这个条件是必要不充分的,因为如果a在-4和29之间,不等式就成立,但如果a不在这个范围内,不等式并不一定不成立。
另外,这个条件是充分不必要的,因为如果不等式成立,a必然在-4和29之间,但如果a在这个范围内,不等式并不一定成立。
10.根据提示,我们可以将不等式a³+b³+ab-a²-b²化简为(a+b-1)(a²-ab+b²)。
又因为9513≤x<a²-ab+b²=(a-b)²+b²≠0(因为ab≠0),所以x的取值范围是9513≤x<(a-b)²+b²。
13.对于不等式13-55,我们可以将其分为两个条件:(1)x≤a<a²+2x;(2)-9≤a≤4.提示条件B是集合{a|-9≤a≤4},而条件A则是集合{a|x≤a<a²+2x}。
所以我们需要求出这两个集合的交集,即A∩B。
11.对于命题“所有正方形的对角线互相垂直”,其否命题是“存在一个正方形的对角线不互相垂直”。
而对于命题“所有四边形的对角线互相垂直”,其否命题是“存在一个四边形的对角线不互相垂直”。
所以,命题的否定应该是“存在一个菱形的对角线不互相垂直”。
16.对于条件语句“若x+y>0,则x>0且y>0”,其逆命题是“若x>0且y>0,则x+y>0”。
这个命题是假的,因为当x=-1,y=-2时,x+y=-30.而对于条件语句的逆否命题“若x+y≤0,则x≤0或y≤0”,其是真的。
17.根据p真q假,我们得到4a²-161,化简得-2<a<2.而根据XXX真,我们得到4a²-16<0且5-2a≤1,化简得a≤-2或a≥3.综合这两个条件,得到a≤-2.18.对于不等式a≥3,我们可以将其转化为集合{a|a≥3}。
对于不等式ax-ax+1>0(a≠0),我们可以将其化简为x>x+1,即x>-1.所以,我们需要找到一个集合B,使得集合B中的元素使得不等式x>-1和a≥3同时成立。
因此,集合B为{a|x>1}∩{a|a≥3},即B={a|a>3}。
20.这个集合可以表示为(-∞,-1)∪(-1,6)。
七、选修2-1 §2.2.1 椭圆及其标准方程1.D。
2.B。
3.B。
4.C。
5.D。
6.87/439.椭圆:x^2/16 + y^2/9 = 111.(1) x^2/169 + y^2/144 = 1 (2) x^2/144 + y^2/169 = 1 (3) x^2/169 - y^2/144 = 112.取AB边所在直线为x轴,线段AB的中垂线为y轴,则M(x,y),A(-3,0),B(3,0),因此点M的轨迹方程为x^2/9 + y^2/16 = 1 (x≠±3)13.(1) x = ±4/3 (2) (0,8)或(0,-8)八、选修2-1 §2.2.2 椭圆的简单几何性质1.A。
2.A。
3.B。
4.C。
5.C。
6.4或17/89.(81-y^2)/49 + x^2/16 = 110.(1) x^2/25 + y^2/9 = 1 (2) -5<m<5 (3) 证明略11.(1) x^2/169 - y^2/144 = 1 (2) y^2/169 - x^2/144 = 1 (3) y^2/169 + x^2/169 = 112.12,提示:(一)用两点间距离公式求AF,CF代入,化简求y,较烦;(二)用补充知识的第二定义求之,较简。
13.(1) x^2/25 - y^2/36 = 1九、选修2-1 §2.3.1 双曲线及其标准方程1.D。
2.D。
3.B。
4.D。
5.C。
6.-2/39.双曲线:x^2/16 - y^2/36 = 111.(1) x^2/169 - y^2/16 = 1 (2) x^2/16 - y^2/169 = 1 (3)x^2/16 + y^2/9 = 112.12,提示:(一)用两点间距离公式求AF,CF代入,化简求y,较烦;(二)用补充知识的第二定义求之,较简。