《数学分析》考研大纲
- 格式:doc
- 大小:26.50 KB
- 文档页数:3
《数学分析》(604)考研大纲(一)实数与函数考试内容绝对值与不等式,确界原理,函数及性质。
考试要求理解和掌握邻域,有界集,上、下确界,函数,复合函数,反函数,有界函数,单调函数,奇、偶函数,周期函数等概念。
(二)极限与连续考试内容数列极限定义,收敛数列的性质,单调有界原理,柯西准则,函数极限定义(趋于无穷大时的极限,趋于某一定数时的极限),函数极限性质,归结原理,柯西准则,两个重要极限,无穷小量,无穷大量概念,无穷小量阶的比较,连续性概念,连续函数的局部性质,闭区间上连续函数的性质,反函数连续函数,一致连续性,指数函数的连续性,初等函数连续性,实数完备性定理:区间套定理,柯西准则,聚点定理,有限覆盖定理等。
考试要求理解和掌握:数列极限的定义及计算,数列极限性质的原理及推导,单调有界原理,柯西准则及应用,函数极限的定义及计算,函数极限存在的归结原理,两个重要极限的计算,无穷小量,无穷大量概念,无穷小量阶的比较及应用,一致连续性及应用,连续性的定义及其证明,间断点及其分类,连续函数的局部性质,闭区间上连续函数的性质,区间套定理,柯西准则,聚点定理,有限覆盖定理原理及证明,闭区间上的连续函数性质的原理及证明及应用。
(三)导数与微分考试内容导数概念,导函数,导数的四则运算,反函数的导数,复合函数的导数,求导法则与公式,微分概念,微分的运算法则,高阶导数与高阶微分,参数方程的一阶及二阶导数。
考试要求理解和掌握:导数概念,导数的四则运算,反函数的导数,复合函数的导数,求导法则与公式,微分概念,微分的运算法则,高阶导数与高阶微分,参数方程的一阶及二阶导数。
(四)微积分基本定理,不定式极限,导数研究函数考试内容中值定理,洛必达法则,不定式极限,泰勒公式,皮亚诺余项泰勒公式,函数的单调性与极值,函数的凸性,拐点,函数的图象讨论渐进线,作图。
考试要求理解和掌握:费马定理,中值定理的原理及应用。
熟练计算不定式极限,熟练掌握泰勒公式,皮亚诺余项泰勒公式原理及应用,函数的单调性与极值,函数的凸性,拐点。
贵州大学硕士研究生招生考试大纲
科目代码及名称:623 /数学分析
一、考试基本要求
本科目考试着重考核学生掌握《数学分析》基本概念、基本理论、基本技能及其应用的情况。
要求考生熟练掌握数学分析的基本概念、基本理论,基本技能,并能综合运用数学分析基本思想方法分析与解决一些数学分析问题。
2、适用范围
适用于数学类各专业。
三、考试形式
闭卷,180分钟。
四、考试内容和考试要求
考试内容:实数系基本定理;极限概念、性质与计算(包括数列极限,函数极限、累次极限);无穷大量与无穷小量的阶;函数的连续性与一致连续性;连续函数的性质;一元函数的导数与微分、多元函数的偏导数和全微分(包括隐函数),导数的应用(包括偏导数在几何上的应用,多元函数的极植与条件极值);微分中值定理、积分中值定理、Taylor公式及其应用;不定积分、定积分的概念、性质及计算;定积分存在的条件;定积分在几何计算中的应用;重积分的概念、性质及计算;数项级数敛散性判别法(包括条件收敛和绝对收敛);函数列、函数项级数的一致收敛性及其判别法;一致收敛函数列与函数项级数的性质;幂级数与函数的幂级数展开;初步掌握反常积分、含参变量积分、曲线积分和曲面积分的概念、性质与计算。
考试要求:要求考生熟练掌握数学分析的基本概念、基本理论;要求考生
第 1 页共 2 页。
湖南师范大学硕士研究生入学考试自命题考试大纲考试科目代码:723 考试科目名称:数学分析一、试卷结构1) 试卷成绩及考试时间本试卷满分为150分,考试时间为180分钟。
2)答题方式:闭卷、笔试3)试卷内容结构数学分析4)题型结构a: 填空题,10小题,每小题7分,共70分b: 讨论题,3小题,每小题10分,共30分c: 解答题(包括证明题),5小题,每小题10 分,共50分二、考试内容与考试要求1、极限论考试内容①各种极限的计算;②单调有界收敛原理、致密性定理、确界原理、Cauchy收敛原理等实数基本理论的灵活应用;③连续函数特别是闭区间上连续函数性质的运用;④极限定义的熟练掌握等.考试要求(1)能熟练计算各种极限,包括单变量和多变量情形.(2)能熟练利用六个实数基本定理尤其是单调有界收敛原理、致密性定理、确界原理、Cauchy收敛原理进行各种理论证明.(3)能熟练掌握单变量连续函数特别是闭区间上连续函数的各种性质,并能利用这些性质进行计算和证明;掌握多变量连续函数的性质尤其是有界闭域上连续函数的性质,能利用这些性质进行计算和证明.(4)熟练掌握各种极限的定义,并能用逻辑术语进行理论证明.2、单变量微分学考试内容①微分中值定理(包括Roll定理、Lagrange中值定理、Cauchy中值定理等)的灵活运用(包括单调性讨论、极值的求取、凸凹性问题、等式和不等式的证明等);②Talor公式的灵活运用(包括用Lagrange余项形式证不等式、用Peano余项形式估计阶以及求极限等);③各种形式导数的计算;④导数的定义和运用等.考试要求(1)熟练掌握微分中值定理,包括Roll定理、Lagrange中值定理、Cauchy 中值定理的条件和结论,能熟练利用这些定理进行理论证明或计算,包括函数单调性讨论、极值的求取、凸凹性问题的讨论、等式和不等式的证明等.(2)熟练掌握Talor公式的条件和结论,并能做到灵活运用,尤其是利用Lagrange余项形式证不等式、Peano余项形式估计阶以及求极限等.(3)熟练掌握复合函数导数的计算和高阶导数的计算.(4)熟练掌握导数的定义和性质,能用逻辑语言进行理论证明,熟练掌握利用导数定义进行证明或计算.3、单变量积分学考试内容①各种不定积分和定积分的熟练计算,尤其是计算中的处理技巧;②广义积分的计算和敛散性判别;③定积分的定义和性质的灵活运用等.考试要求(1)熟练计算各种不定积分、定积分,熟练掌握凑微分法、换元法、分部积分法以及常用的计算技巧,熟练掌握奇偶函数、周期函数的积分特点.(2)熟练掌握广义积分的计算,熟练掌握区间无限型、函数无界型以及混合型广义积分的敛散性判别,并能进行理论证明.(3)熟练掌握定积分的定义,能利用定积分的定义进行极限的计算,熟练掌握定积分的性质,并能利用这些性质进行理论证明,掌握常用可积函数类.4、级数论考试内容①各种数项级数尤其是正项级数的敛散性判别;②数项级数的性质③函数列和函数项级数的一致收敛性判别,给定函数Fourier级数的展开和特殊点的收敛性;④函数列和函数项级数一致收敛性质的灵活运用;⑤幂级数的收敛性和展开等知识的熟练掌握.考试要求(1)熟练掌握级数的敛散性判别,尤其是正项级数和交错级数敛散性判别.(2)掌握数项级数的一些常用性质,尤其是绝对收敛级数与条件收敛结束的常规性质.(3)熟练掌握函数列和函数项级数一致收敛性的判别,尤其是用定义、优级数判别法、Abel判别法、Dirichlet判别法判别函数项级数的一致收敛性,熟练掌握给定函数的Fourier展开,能给出Fourier级数在特殊点的收敛性.(4)熟练掌握函数列和函数项级数一致收敛性的性质运用,包括连续性、可积性和可微性,能利用这些性质进行理论证明.(5)熟练掌握幂级数收敛区间的求法,熟练掌握常规函数的幂级数展开,并掌握一些特殊幂级数和函数的求法.5、多变量微分学和参变量积分考试内容①可微的定义;②求复合函数以及隐函数的偏导数;③多元函数极值理论;④参变量积分的一致收敛性判别;⑤参变量积分的计算;⑥参变量积分一致收敛性质的运用等.考试要求(1)掌握多元函数可微的定义,能熟练利用定义证明某些常规函数的可微性,掌握多元函数可微、连续、可求偏导之间的关系.(2)熟练掌握多元函数复合函数求偏导数尤其是高阶偏导数,掌握方程或方程组确定的隐函数偏导的计算.(3)熟练掌握多元函数极值的计算,并能计算有界闭域上连续函数的最值..(4)熟练掌握含参变量广义积分一致收敛性的判别.(5)熟练掌握含参变量常义积分和广义积分的计算.(6)熟练掌握含参变量常义积分和广义积分的连续性、可积性和可导性,并能利用这些性质进行计算和证明..6、多元积分学考试内容①二重积分、三重积分的计算;②格林公式、高斯公式的灵活运用;③两类曲线积分、两类曲面积分的计算;④各种积分之间的相互关系等考试要求(1)熟练掌握二重积分、三重积分的计算,熟练掌握降维、换元法,尤其是极坐标、球坐标变换.(2)熟练掌握Gree公式、Gauss公式的条件和结论.(3)熟练掌握第一类和第二类曲线积分和曲面积分的计算.(4)掌握平面曲线积分与路径无关的条件,会求二元函数全微分的原函数,熟练掌握利用Gree公式求第二类曲线积分、利用Gauss公式求第二类曲面积分、利用Stokes公式求空间第二类曲线积分..三、参考书目[1]复旦大学数学系编. 数学分析. 高等教育出版社, 1979[2]华东师范大学数学系编. 数学分析高等教育出版社, 2001[3] 张学军、王仙桃等编. 数学分析选讲. 湖南师范大学出版社,2012。
2024数学三考研大纲第一部分:数学分析1.实数与实数的基本性质1.1实数的完备性1.2实数序列的性质1.3实数级数的收敛性与发散性2.极限与连续2.1极限的定义与性质2.2函数的极限与连续2.3一元函数的微分学3.不定积分与定积分3.1不定积分的概念与性质3.2定积分的概念与性质3.3定积分的计算方法4.函数列与函数项级数4.1函数列的收敛性4.2函数项级数的收敛性4.3函数项级数的一致收敛性5.幂级数与傅里叶级数5.1幂级数的收敛半径与收敛域5.2幂级数的常用运算5.3傅里叶级数的性质与应用第二部分:代数与几何1.线性代数1.1实数向量空间与内积空间1.2矩阵与行列式1.3向量空间的基与维数2.线性方程组与矩阵的应用2.1线性方程组的基本概念与解法2.2矩阵的特征值与特征向量2.3矩阵的对角化与相似变换3.多元函数的微分学3.1多元函数的偏导数与全微分3.2多元函数的极值与条件极值3.3隐函数与参数方程的微分4.曲线积分与曲面积分4.1曲线积分的定义与性质4.2曲面积分的定义与性质4.3绿公式与高斯公式5.空间解析几何5.1空间中的直线与平面5.2空间曲线与曲面的方程5.3空间中的向量与坐标系第三部分:概率与统计1.随机事件与概率1.1随机事件的概念与性质1.2概率的基本概念与公理1.3概率的运算与应用2.随机变量与概率分布2.1随机变量的概念与分类2.2离散型随机变量的概率分布2.3连续型随机变量的概率密度函数3.随机变量的特征与分布3.1随机变量的数学期望与方差3.2常见离散型与连续型分布3.3多维随机变量的联合分布与边缘分布4.大数定律与中心极限定理4.1大数定律的概念与证明4.2中心极限定理的概念与应用4.3样本统计量的极限分布5.统计推断与假设检验5.1参数估计与区间估计5.2假设检验的基本原理5.3常用假设检验的方法与步骤第四部分:数学建模与应用1.数学建模的基本概念1.1数学建模的过程与方法1.2数学建模的评价标准与特点1.3数学建模在实际问题中的应用2.线性规划模型2.1线性规划问题的数学描述2.2单纯形法与对偶问题2.3整数线性规划问题与解法3.非线性规划模型3.1非线性规划的基本概念与性质3.2非线性规划的解法与应用3.3动态规划与整数规划问题4.数学建模实例分析4.1数学建模实例的选择与分析4.2实际问题的数学建模过程4.3数学建模结果的解释与应用5.模拟与优化算法5.1随机模拟与蒙特卡洛方法5.2优化算法的基本概念与分类5.3优化算法在数学建模中的应用结语数学三考研大纲是考生备战考研数学的重要参考资料,内容涵盖了数学分析、代数与几何、概率与统计、数学建模与应用等多个领域,全面系统地呈现了数学学科的基本知识与方法。
华南理工大学2021年硕士研究生入学《数学分析(623)》考试大纲
判别法。
连续性、可积性与可微性,Gamma函数。
19.曲线积分
第一型和第二型曲线积分概念与计算,两类曲线积分的联系。
20.重积分
二重积分定义与存在性,二重积分性质,二重积分计算(化为累次积分)。
格林(Green)公式,曲线积分与路径无关条件。
二重积分的换元法(极坐标与一般变换)。
三重积分定义与计算,三重积分的换元法(柱坐标、球坐标与一般变换)。
重积分应用(体积,曲面面积,重心、转动惯量、引力等)。
无界区域上的收敛性概念。
无界函数反常二重积分。
在一般条件下重积分变量变换公式。
21.曲面积分
曲面的侧。
第一型和第二型曲面积分概念与计算,高斯公式。
斯托克斯公式。
场论初步(梯度场、散度场、旋度场)。
备注
选读书目
【1】《数学分析》(上、下册),复旦大学数学系编,高等教育出版社;
【2】《数学分析》(上、下册),华东师范大学数学系编,高等教育出版社;
【3】《数学分析》(上、下册),刘正荣、杨启贵、刘深泉、洪毅编,科学出版社。
707数学分析第1章函数1.1 集合与实数系1.2 函数概念1.3 函数的特性1.4 反函数和复合函数1.5 初等函数第2章极限与连续2.1 数列极限2.2 函数极限2.3 无穷小和无穷大2.4 连续函数第3章导数与微分3.1 导数的概念3.2 基本初等函数的导数公式3.3 导数的运算法则3.4 高阶导数3.5 微分3.6 导数与微分的简单应用第4章微分中值定理与导数的应用4.1 微分中值定理4.2 不定式的定值法4.3 泰勒公式4.4 导数在函数研究中的应用第5章不定积分5.1 原函数与不定积分5.2 换元积分法5.3 分部积分法5.4 有理函数和积分法5.5 三角函数有理式的积分法第6章定积分6.1 定积分的概念6.2 定积分的性质6.3 微积分基本定理6.4 定积分的计算6.5 定积分的应用6.6 广义积分6.7 广义积分的判别法第7章空间解析几何与向量代数7.1 空间直角坐标系7.2 向量代数7.3 空间平面7.4 空间直线7.5 空间曲面7.6 空间曲线第8章多元函数微分学8.1 多元函数的极限与连续8.2 偏导数与全微分8.3 多元复合函数的微分法8.4 隐函数的微分法8.5 多元函数的泰勒公式8.6 方向导数和梯度8.7 偏导数的应用第9章重积分9.1 二重积分9.2 三重积分第10章级数10.1 常数项级数的概念与性质10.2 正项级数10.3 任意项级数10.4 函数项级数的一致收敛10.5 幂级数10.6 泰勒级数10.7 傅里叶级数。
《数学分析》考试大纲本《数学分析》考试大纲适用于宁波大学数学相关专业硕士研究生入学考试。
一、本考试科目简介:《数学分析》是数学专业最重要的基础课之一,是数学专业的学生继续学习后继课程的基础,它的理论方法和内容既涉及到几百年来分析数学的严谨性和逻辑性,又与现代数学的各个领域有着密切的联系。
是从事数学理论及其应用工作的必备知识。
本大纲制定的的依据是①根据教育部颁发《数学分析》教学大纲的基本要求。
②根据我国一些国优教材所讲到基本内容和知识点。
要求考生比较系统地理解数学分析的基本概念基本理论,掌握研究分析领域的基本方法,基本上掌握数学分析的论证方法,具备较熟练的演算技能和初步的应用能力及逻辑推理能力。
二、考试内容及具体要求:第1章实数集与函数(1)了解实数域及性质(2)掌握几种主要不等式及应用。
(3)熟练掌握领域,上确界,下确界,确界原理。
(4)牢固掌握函数复合、基本初等涵数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。
第2章数列极限(1)熟练掌握数列极限的定义。
(2)掌握收敛数列的若干性质(惟一性、保序性等)。
(3)掌握数列收敛的条件(单调有界原理、迫敛法则、柯西准则等)。
第3章函数极限(1)熟练掌握使用“ε-δ”语言,叙述各类型函数极限。
(2)掌握函数极限的若干性质。
(3)掌握函数极限存在的条件(归结原则,柯西准则,左、右极限、单调有界)。
(4)熟练应用两个特殊极限求函数的极限。
(5)牢固掌握无穷小(大)的定义、性质、阶的比较。
第4章函数连续性(1)熟练掌握在X0点连续的定义及其等价定义。
(2)掌握间断点定以及分类。
(3)了解在区间上连续的定义,能使用左右极限的方法求极限。
(4)掌握在一点连续性质及在区间上连续性质。
(5)了解初等函数的连续性。
第5章导数与微分(1)熟练掌握导数的定义,几何、物理意义。
(2)牢固记住求导法则、求导公式。
(3)会求各类的导数(复合、参量、隐函数、幂指函数、高阶导数(莱布尼兹公式))。
数学分析考研大纲数学分析是数学的重要分支之一,它研究函数的性质、极限、连续性、导数与积分等方面的问题。
作为研究生数学考试中的重点科目之一,数学分析考研大纲是考生备考的重要依据。
下面我将对数学分析考研大纲进行详细阐述。
数学分析考研大纲主要分为两个部分:基础知识和重点难点。
基础知识包括实数的完备性、数列与函数的极限概念与性质、连续性及其性质、导数与微分、不定积分、数值级数等;重点难点包括一致收敛性、Fourier级数、一致连续性。
接下来,我将对这些内容进行更加详细的介绍。
1.基础知识:1.1实数的完备性:介绍实数的基本概念,如有理数与无理数的区别,实数的良序性、稠密性和完备性等。
1.2 数列与函数的极限概念与性质:介绍数列、函数极限的定义和性质,包括极限存在的判定方法、Squeeze定理等。
1.3连续性及其性质:介绍函数连续性及其性质,包括连续函数的四则运算、复合函数的连续性等。
1.4导数与微分:介绍函数的导数与微分的概念和性质,包括导数存在的判定方法、求导法则、高阶导数等。
1.5不定积分:介绍不定积分的概念和性质,包括基本积分公式、换元积分法、分部积分法等。
1.6数值级数:介绍数值级数的概念和性质,包括级数的敛散性判定方法、正项级数的审敛法等。
2.重点难点:2.1 一致收敛性:介绍一致收敛性的概念和性质,包括Cauchy准则、一致收敛级数的性质和判定方法等。
2.2 Fourier级数:介绍Fourier级数的概念和性质,并介绍调和级数、傅里叶级数与函数的关系等。
2.3一致连续性:介绍一致连续性的概念和性质,包括一致连续函数的性质、利普希茨条件等。
总之,数学分析是数学考研的重要科目之一,掌握好数学分析考研大纲的基础知识和重点难点,备考方法要坚持理论学习与实践相结合,加强练习和真题的训练,才能够顺利通过数学分析考试,取得满意的成绩。
希望以上内容对考生备考数学分析有所帮助。
《数学分析》考研大纲
一、数列极限
数列、数列极限的定义,收敛数列——唯一性、有界性、保号性、不等式性、迫敛性、四则运算,单调有界数列极限存在定理。
柯西准则,重要极限。
二、函数极限
函数极限。
定义,定义,单侧极限,函数极限的性质——唯一性、局部有界性、局部保号性、不等式性、迫敛性、四则运算、归结原则(Heine 定理)。
函数极限的柯西准则。
无穷小量及其阶的比较,无穷大量及其阶的比较,渐近线。
三、函数的连续性
函数在一点的连续性、单侧连续性、间断点及其分类。
在区间上连续的函数,连续函数的局部性质——有界性、保号性。
连续函数的四则运算。
复合函数的连续性。
闭区间上连续函数的性质——有界性、取得最大值最小值性、介值性、一致连续性、反函数的连续性,初等函数连续性。
四、导数和微分
导数定义,单侧导数、导函数、导数的几何意义、费马( Fermat)定理。
和、积、商的导数、反函数的导数、复合函数的导数、初等函数的导数、参变量函数的导数、高阶导数、微分概念、微分的几何意义、微分的运算法则。
五、微分中值定理
Roll、Lagrange、Cauchy中值定理,不定式极限,洛比达(L’Hospital)法则,泰勒(Taylor)定理。
(泰勒公式及其皮亚诺余项、拉格朗日余项、积分型余项)。
极值、最大值与最小值。
曲线的凸凹性。
拐点,函数图的讨论。
六、实数的完备性
区间套定理,数列的柯西(Cauchy)收敛准则,聚点原理,有界数列存在收敛子列,有限覆盖定理。
七、不定积分
原函数与不定积分,换元积分法、分部积分法,有理函数积分法,三角函数有理式的积分法,几种无理根式的积分。
八、定积分
牛顿——莱布尼茨公式,可积的必要条件,可积的充要条件,可积函数类。
绝对可积性,积分中值定理,微积分学基本定理。
换元积分法,分部积分法。
九、定积分的应用
简单平面图形面积。
有平行截面面积求体积,曲线的弧长与微分。
微元法、旋转体体积与侧面积,物理应用(引力、功等)。
十、反常积分
无穷限反常积分概念、柯西准则,绝对收敛、无穷限反常积分收敛性判别法:比较判别法,狄利克雷(Dirichlet)判别法,阿贝尔(Abel)判别法。
无界函数反常积分概念,无界函数反常积分收敛性判别法。
十一、数项级数
级数收敛与和,柯西准则,收敛级数的基本性质,正项级数比较原则。
比式判别法与根式判别法、积分判别法。
一般项级数的绝对收敛与条件收敛,交错级数,莱布尼茨判别法,狄利克雷(Dirichlet)判别法,阿贝尔(Abel)判别法。
绝对收敛级数的重排定理。
十二、函数列与函数项级数
函数列与函数项级数的收敛与一致收敛概念,一致收敛的柯西准则。
函数项级数的维尔斯特拉斯(Weierstrass)优级数判别法,狄利克雷(Dirichlet)判别法,阿贝尔(Abel)判别法,函数列极限函数与函数项级数和的连续性、逐项积分与逐项求导。
十三、幂级数
幂级数的收敛半径与收敛区间,一致收敛性、连续性、逐项积分与逐项求导,幂级数的四则运算。
泰勒级数、泰勒展开的条件,初等函数的泰勒展开。
十四、傅里叶(Fourier)级数
三角级数、三角函数系的正交性、傅里叶(Fourier)级数,贝塞尔(Bessel)不等式,黎曼——勒贝格定理,按段光滑且以2π为周期的函数展开,傅里叶级数的收敛定理,以2π为周期的函数的傅里叶级数,奇函数与偶函数的傅里叶级数。
十五、多元函数的极限和连续
平面点集概念(邻域、内点、界点、开集、闭集、开域、闭域),平面点集的基本定理——区域套定理、聚点原理、有限覆盖定理。
二元函数概念。
二重极限、累次极限,二元函数的连续性、复合函数的连续性定理、有界闭域上连续函数的性质。
十六、多元函数的微分学
偏导数及其几何意义,全微分概念,全微分的几何意义,全微分存在的充分条件,全微分在近似计算中的应用,复合函数的偏导数与全微分,一阶微分形式不变性,方向导数与梯度,混合偏导数与其顺序无关性,高阶导数,高阶微分,二元函数的泰勒定理,二元函数的极值。
十七、隐函数定理
隐函数概念、隐函数定理、隐函数求导。
隐函数组概念、隐函数组定理、隐函数组求导、反函数组与坐标变换,函数行列式。
几何应用,条件极值与拉格朗日乘数法。
十八、含参量积分
含参量积分概念、连续性、可积性与可微性,积分顺序的交换。
含参量反常积分的收敛与一致收敛,一致收敛的柯西准则。
维尔斯特拉斯(Weierstrass)判别法。
连续性、可积性与可微性,Gamma函数。
十九、曲线积分
第一型和第二型曲线积分概念与计算,两类曲线积分的联系。
二十、重积分
二重积分定义与存在性,二重积分性质,二重积分计算(化为累次积分)。
格林(Green)公式,曲线积分与路径无关条件。
二重积分的换元法(极坐标与一般变换)。
三重积分定义与计算,三重积分的换元法(柱坐标、球坐标与一般变换)。
重积分应用(体积,曲面面积,重心、转动惯量、引力等)。
无界区域上的收敛性概念。
无界函数反常二重积分。
在一般条件下重积分变量变换公式。
二十一、曲面积分
曲面的侧。
第一型和第二型曲面积分概念与计算,高斯公式。
斯托克斯公式。
场论初步(梯度场、散度场、旋度场)。