数学分析9.6可积性理论补叙
- 格式:doc
- 大小:310.50 KB
- 文档页数:9
《数学分析》考试大纲一、课程名称:数学分析二、适用专业: 数学与应用数学三、考试方法:闭卷考试四、考试时间:100分钟五、试卷结构:总分:100分,选择题15分,填空题15分,计算题40分,证明题30分。
六、参考书目:1、华东师范大学数学系编著,《数学分析》(上、下册),高等教育出版社,2010年第4版。
2、中国科学技术大学常庚哲史济怀编著,《数学分析教程》(上、下册),高等教育出版社,2003年第1版。
七、考试的基本要求:数学分析是数学与应用数学专业专升本入学考试中专业课考试内容,考生应理解和掌握《数学分析》中函数、极限、连续、微分学、积分学和级数的基本概念、基本理论、基本方法。
应具有抽象思维能力、逻辑推理能力、运算能力和空间想象能力,能运用所学知识正确拙推理证明,准确、简捷地计算。
能综合运用数学分析中的基本理论、基本方法分析和解决实际问题。
八、考试范围第一章实数集与函数(一)考核内容实数及其性质,绝对值与不等式。
区间与邻域,有界集与确界原理。
函数概念,函数的表示法。
函数的四则运算,复合函数,反函数,初等函数。
具有某些特性的函数:有界函数、单调函数、奇函数与偶函数、周期函数。
(二)考核知识点1、实数:实数的概念,实数的性质,绝对值与不等式;2、数集、确界原理:区间与邻域,有界集与无界集,上确界与下确界,确界原理;3、函数概念:函数的定义,函数的表示法(解析法、列表法、和图象法),分段函数;4、具有某些特征的函数:有界函数,单调函数,奇函数与偶函数,周期函数。
(三)考核要求1、了解实数域及性质;2、掌握几种不等式及应用;3、熟练掌握数域,上确界,下确界,确界原理;4、牢固掌握函数复合、基本初等函数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。
第二章数列极限(一)考核内容数列。
数列极限的定义,无穷小数列。
收敛数列性质:唯一性、有界性、保号性、不等式性质、迫敛性、四则运算法则。
子列及子列定理。
《数学分析》考试大纲科目名称:数学分析科目代码: 617《数学分析》是数学专业研究生必考的科目,总分值为150分,考试时间为3个小时。
本科目考试的基本知识以华东师范大学数学系编写的《数学分析》(第三版)为基础,除去带*号的内容(包括:第六章§7方程的近似解;第七章§1三实数完备性基本定理的等价性,§3上极限与下极限;第九章§6可积性理论补叙;第十章§6定积分的近似计算)不考,其余内容都是考试所要求掌握的。
参考书目:[1] 华东师范大学数学系,数学分析(第三版),高等教育出版社,2008年4月;[2] 陈守信,数学分析选讲,机械工业出版社,2009年9月.参考题型:河南工业大学2014年硕士研究生入学考试试题(见附页)。
附页河南工业大学2014年硕士研究生入学考试试题考试科目: 数学分析 共 2 页(第 1 页)一、(24分,每小题8分) 计算下列极限: 1. 1211lim 1)n n n n-→+∞+-( ;2. 0x →;3. lim sin sin sin ).n →+∞+++22212n (n n n二、( 48分,每小题12分) 计算下列各类积分:1. 12sin I dx x ππ-=+⎰;2. 2sin y x I dy dx x ππππ-=⎰⎰ ;3. 第二型曲线积分22C xdy ydx x y -+⎰,其中C 为任意简单闭曲线,逆时针为正向; 4. 利用奥高公式计算()()()s I x y z dydz y z x dzdx z x y dxdy =-++-++-+⎰⎰,其中S 是八面体1x y z y z x z x y -++-++-+=的外侧.三、(36分,每小题12分) 完成下列各题1.(12分) 按步骤做出函数23(1)y x x =-的图像.2. 求幂级数111(1)(1)2n n n x n∞=-+++∑的收敛域. 3. 设(,)z z x y =是由方程组,,u v u v x e y e z uv +-===,确定的函数,求当0,0u v == 时的2,dz d z .共 2 页(第 2 页)四、(42分) 完成下列证明题1. (10分) 若函数()f x 在[,)a +∞上连续,lim ()x f x →+∞存在,则()f x 在[,)a +∞上一致连续.2. (10分) 设二元函数f 在圆周222:C x y a +=上连续,证明:存在C 的一条直径的两个端点A 与B ,使得 ()()f A f B =.3. (10分)证明方程0ln x x e π=-⎰在0+∞(,)内有且仅有两个实根. 4. (12分) 证明函数2222222,0(,)0,0x y x y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩在原点(0,0)处连续,且存在偏导数,但在(0,0)处不可微.。
数学分析课程简介课程编码:21090031-21090033课程名称:数学分析英文名称:Mathematical Analysis课程类别:学科基础课程课程简介:数学分析俗称:“微积分”,创建于17世纪,直到19 世纪末及20世纪初才发展为一门理论体系完备,内容丰富,应用十分广泛的数学学科。
数学分析课是各类大学数学与应用数学专业、信息与计算科学专业最主要的专业基础课。
是进一步学习复变函数论、微分方程、微分几何、概率论、实变分析与泛函分析等后继课程的阶梯,是数学类硕士研究生的必考基础课之一。
本课程基本的内容有:极限理论、一元函数微积分学、级数理论、多元函数微积分学等方面的系统知识,用现代数学工具——极限的思想与方法研究函数的分析特性——连续性、可微性、可积性。
极限方法是贯穿于全课程的主线。
课程的目的是通过三个学期学习和系统的数学训练,使学生逐步提高数学修养,特别是分析的修养,积累从事进一步学习所需要的数学知识,掌握数学的基本思想和方法,培养与锻炼学生的数学思维素质,提高学生分析与解决问题的能力。
教材名称:数学分析教材主编:华东师范大学主编(第四版)出版日期:2010 年6 月第四版出版社:高等教育出版社数学分析1》课程教学大纲(2010 级执行)课程代号:21090031总学时:80学时(讲授58学时,习题22学时)适用专业:数学与应用数学、信息与计算科学先修课程:本课程不需要先修课程,以高中数学为基础一、本课程地位、性质和任务本课程是本科数学与应用数学专业、信息与计算科学专业的一门必修的学科基础课程。
通过本课程的教学,使学生掌握数学分析的基本概念、基本理论、思想方法,培养学生解决实际问题的能力和创新精神,为学习后继课程打下基础。
二、课程教学的基本要求重点:极限理论;一元函数微分学及贯穿整个课程内容的无穷小分析的方法。
基本要求:掌握极限、函数连续性、可微等基本概念;掌握数列极限、函数极限;闭区间连续函数性质;熟练掌握函数导数、微分的计算及应用;掌握微分中值定理及其应用。
数学分析(⼆)预习——2、定积分(2):可积性问题2、定积分(2):可积性问题 上⼀篇中我们介绍了定积分的黎曼和定义,然后介绍了⽜顿-莱布尼茨公式,这是求定积分的最简单⽅法。
不过我们还没有解决“可积性问题”,即什么样的函数是可积的。
这是⼀个⽐较理论的问题,⽽且有些繁琐,甚⾄可能超出我们⽬前的知识范围,因此只是介绍,但当然,它是我们研究定积分的必须解决的基本问题。
只有明⽩了什么函数可积,才能放⼼地使⽤定积分。
这要求我们去寻找函数在闭区间上可积的充要判则。
为了找到这些充要条件,还需要⼀些准备。
⾸先我们有这样⼀个必要条件:闭区间上可积的必要条件:若f∈R[a,b],则f在[a,b]上有界。
定理的证明可以不应⽤反证法,但反证法⽐较容易理解:假设f在[a,b]上⽆界,则对任意分割:Δ:a=x0<x1<...<x n=b,⾄少存在1≤i0≤n,使得f在[x i−1,x i0]上⽆界。
对于Δ的任意黎曼和,我们取定除[x i0−1,x i0]外的其余区间上的介点,记S1=∑ni=1,i≠i0f(ξi)Δx i。
对于任意的M>0,由于f在[x i0−1,x i0]上⽆界,则可以取到ξi0,使得|f(ξi0)|>M+|S1|Δx i0,从⽽知道这个黎曼和S>M。
这就证明了f不可积,因⽽与条件⽭盾,从⽽证明了可积的必要条件。
有了这个必要条件,我们下⾯便不讨论⽆界的函数。
为了得到可积的充分必要条件,有⼏种不同的理论,下⾯我们介绍⽬前可以充分地证明的达布理论。
准备:若⼲规定 上⼀篇介绍了分割、黎曼和等定义,达布理论引⽤了更多的定义。
因此在介绍达布理论之前,我们再来规定⼀下各种记号:1、闭区间[a,b]上的分割Δ是这样⼀些点:Δ:a=x0<x1<...<x n=b,其中集合{x i:i=0,1,...,n}称为分点集。
记Δx i:=x i−x i−1,i=1,2,...,n。
《数学分析》范文《数学分析》是一门研究实数集上的函数极限、连续性、可微性及积分等基本概念和基本理论的数学学科。
它是现代数学中的一门重要课程,也是理工科专业学生的重要基础课程之一、本文旨在介绍《数学分析》的主要内容和学习重点。
《数学分析》主要涉及的内容包括集合与映射、数列极限、函数极限与连续性、导数与微分、积分与可积性等。
首先,集合与映射是《数学分析》的基础内容。
它涉及集合的基本概念、集合间的运算以及映射的定义和性质等。
数列极限是《数学分析》中的重要内容之一、它是研究数列的趋势和性质的数学概念,包括数列的极限定义、数列的收敛性和发散性等。
函数极限与连续性是《数学分析》中的核心概念。
函数极限是研究函数的趋势和性质的数学概念,包括函数极限的定义、函数的收敛性和发散性等。
连续性是函数的重要性质之一,它涉及函数在定义域上的无间断性和光滑性。
导数与微分是《数学分析》中的重要内容之一、它是研究函数变化率和斜率的数学概念,包括导数的定义、导数的性质、函数的可导性和导数的应用等。
积分与可积性是《数学分析》中的另一个重要内容。
它是研究函数面积和曲线下的总量的数学概念,包括定积分的定义、定积分的性质、函数的可积性和积分的应用等。
学习《数学分析》的重点在于掌握基本概念和基本理论的定义、性质和应用。
首先,要熟练掌握集合的基本概念和运算,理解映射的定义和性质。
其次,要理解数列的极限的定义和性质,能够判断数列的收敛性和发散性。
再次,要理解函数极限的概念和性质,能够分析函数的收敛性和发散性。
然后,要掌握导数的定义、导数的性质和函数的可导性,能够求解函数的导数和利用导数解决问题。
最后,要理解定积分的概念和性质,能够计算函数的定积分和应用积分解决问题。
学习《数学分析》还需要进行大量的习题练习和实际问题的应用。
通过习题练习可以强化对基本概念和基本理论的理解,培养分析和解决问题的能力。
通过实际问题的应用可以将所学的知识与实际问题相结合,提高数学建模和解决实际问题的能力。
第九章 定积分 3 可积条件一、可积的必要条件定理:若函数f 在[a,b]上可积,则f 在[a,b]上必定有界. 证:若f 在[a,b]上无界,则对于[a,b]的任一分割T , 必存在属于T 的某个小区间△k ,f 在△k 上无界. 在i ≠k 的各个小区间△i 上任取ξi ,并记G=|i ki i x △)ξ(f ∑≠|.对任意大的正数M ,存在ξk ∈△k ,使得|f(ξk )|>kx △GM +,于是有 |i ki i x △)ξ(f ∑≠|≥|f(ξk )△x k |-|i ki i x △)ξ(f ∑≠|>kx △GM +·△x k -G=M. 因此,对于无论多小的║T ║,按上述方法选取的点集{ξi },总能使 积分和的绝对值大于任何预先给出的正数,与f 在[a,b]上可积矛盾. ∴原命题得证.注:任何可积函数有界,但有界函数不一定可积。
例1:证明狄利克雷函数D(x)=⎩⎨⎧.x 0,x 1为无理数为有理数,,在[0,1]上有界但不可积.证:∵|D(x)|≤1, x ∈[0,1],∴D(x)在[0,1]上有界.又对于[0,1]的任一分割T ,由有理数和无理数在实数中的稠密可知, 在属于T 的任一小区间△i 上,当取ξi 全为有理数时,i n1i i x △)ξ(D ∑==1;当取ξi 全为无理数时,i n1i i x △)ξ(D ∑==0. 即不论║T ║多么小,只要点集{ξi }取法不同(全取有理数或全取无理数),积分和有不同极限, ∴D(x)在[0,1]上不可积.二、可积的充要条件设f 在[a,b]上有界,T 是[a,b]上的任一分割,则在每个△i 存在上、下确界:M i =ix sup ∆∈f(x),m i =ix inf ∆∈f(x),i=1,2,…,n.记S(T)=∑=∆n 1i i i x M , s(T)=∑=∆n1i i i x m ,分别称为f 关于分割T 的上和与下和(或称为达布上和与达布下和,统称为达布和),则 任给ξi ∈△i , i=1,2,…,n ,有s(T)≤i n1i i x △)ξ(f ∑=≤S(T).注:达布和与点集{ξi }无关,只与分割T 有关.定理:(可积准则)函数f 在[a,b]上可积的充要条件是: 任给ε>0,总存在相应的一个分割T ,使得S(T)-s(T)<ε.注:设ωi =M i -m i ,称为f 在△i 上的振幅,可记为ωi f ,则有 S(T)-s(T)=i n1i i x △ω∑=,可记作∑Ti i x △ω.定理’:函数f 在[a,b]上可积的充要条件是: 任给ε>0,总存在相应的某一分割T ,使∑Ti i x △ω<ε.可积的充要条件的几何意义:若f 在[a,b]上可积,则如图,只要分割充分地细,包围曲线y=f(x)的一系列小矩形面积之和可以达到任意小;反之亦然.三、可积函数类定理:若f 为[a,b]上的连续函数,则f 在[a,b]上可积.证:f 在[a,b]上连续,从而一致连续. ∴任给ε>0,存在δ>0, 对[a,b]中任意两点x ’,x ”,只要|x ’-x ”|<δ,就有|f(x ’)-f(x ”)|<ab ε-. 对[a,b]作分割T 使║T ║<δ,则在T 所属的任一区间△i 上, 就能使f 的振幅满足ωi =ix ,x sup ∆∈'''|f(x ’)-f(x ”)|≤ab ε-,从而有 ∑Ti i x △ω≤ab ε-∑Tix△=ε,原命题得证.定理:若f 为[a,b]上只有有限个间断点的有界函数,则f 在[a,b]上可积.证:设端点b 是f 在[a,b]上的间断点,任给ε>0,取δ’>0,满足 δ’<m)2(M ε-<b-a ,其中M 与m 分别为f 在[a,b]上的上确界与下确界.当m=M 时, f 为常量函数,可积.当m<M 时,记f 在小区间△’=[b-δ’,b]上的振幅为ω’,则 ω’δ’<(M-m)·m)2(M ε-=2ε. 又f 在[a,b-δ’]上连续,所以可积.∴对[a,b-δ’]存在某个分割T ’={△1,△2,…,△n-1},使得∑'T i i x △ω<2ε.令△n =△’,则T={△1,△2,…,△n-1,△n }是对[a,b]的一个分割, 对于T ,有∑Ti i x △ω=∑'T i i x △ω+ω’δ’<2ε+2ε=ε. ∴f 在[a,b]上可积.同理可证f 在[a,b]上存在其它间断点时,原命题仍成立.定理:若f 是[a,b]上的单调函数,则f 在[a,b]上可积.证:设f 为增函数,且f(a)<f(b). 对[a,b]的任一分割T ,由f 的增性, f 在T 所属的每个小区间△i 上的振幅为ωi =f(x i )-f(x i-1),于是有∑Tii x△ω≤∑T1-i i T )]f(x -)[f(x =[f(b)-f(a)]║T ║. 可见,任给ε>0,只要║T ║<b)(f )b f(ε-,就有∑Ti i x △ω<ε. ∴f 在[a,b]上可积.注:单调函数有无限多个间断点仍可积.例2:试用两种方法证明函数f(x)= ⎪⎩⎪⎨⎧⋯=≤+=1,2,n n 1x <1n 1n1,0x 0,,,在区间[0,1]上可积.证法一:在[0,1]上任取两点x 1<x 2.若1n 1+<x 1<x 2≤n 1,n=1,2…,则f(x 1)=f(x 2); 若2n 1+<x 1≤1n 1+<x 2≤n 1或1n 1+<x 1≤n 1<x 2≤1n 1-, n=1,2…,则 2n 1+=f(x 1)<f(x 2)=n 1或n 1=f(x 1)<f(x 2)=1n 1-. 同理可证,当x 1<x 2时,f(x 1)≤f(x 2),∴f 在[0,1]上的单调增. ∴f 在[0,1]上可积.证法二:任给ε>0,∵n 1lim n ∞→=0,∴当n 充分大时,有n 1<2ε. 即f 在[2ε,1]上只有有限个间断点. ∴f 在[2ε,1]上可积,且 存在对[2ε,1]的某一分割T ’,使得∑'T i i x △ω<2ε.∴对[0,1]的一个分割T ,由f 在[0,2ε]的振幅ω0<0,可得∑Ti i x △ω=ω0+2ε∑'T i i x △ω<2ε+2ε=ε. ∴f 在[0,1]上可积.例3:证明黎曼函数f(x)= ⎪⎩⎪⎨⎧=>=.)1,0(0,1x 0 p.q ,q p, ,qp x q 1内的无理数以及互素,, 在区间[0,1]上可积,且⎰10f(x )dx=0.证:任给ε>0,在[0,1]内使得q1>2ε的有理点qp 只有有限个, 设它们为r 1,r 2…,r k . 现对[0,1]作分割T={△1,△2,…,△n }, 使║T ║<2kε, 将T 中所有小区间分为{△i ’|i=1,2,…,m}和{△i ”|i=1,2,…,n-m}两类, 其中{△i ’}为含有点{r i |i=1,2,…,k}的所有小区间,其个数m ≤2k. 而{△i ”}为T 中所有其父不含{r i }的小区间.∵f 在△i ’上的振幅ωi ’≤21,∴i m1i i x △ω''∑=≤21∑='m1i i x △≤21·2k ║T ║<2ε, 又f 在△i ”上的振幅ωi ”≤2ε,∴i m-n 1i i x △ω''''∑=≤2ε∑=''m -n 1i i x △<2ε. ∴i n1i i x △ω∑==i m1i i x △ω''∑=+i m -n 1i i x △ω''''∑=<2ε+2ε=ε,∴f 在区间[0,1]上可积.当取ξi 全为无理数时,使f(ξi )=0,∴⎰10f(x )dx=i n1i i 0T x △)f(ξlim ∑=→=0.习题1、证明:若T ’是T 增加若干个分点后所得的分割,则∑'''T iix △ω≤∑Tiix△ω.证:依题意s(T ’)≤s(T), S(T ’)≥S(T). ∴s(T ’)-S(T ’)≤s(T)-S(T),得证.2、证明:若f 在[a,b]上可积,[α,β]⊂[a,b],则f 在[α,β]上也可积. 证:∵f 在[a,b]上可积,∴任给ε>0,总存在相应的一个分割T , 使得S(T)-s(T)<ε. 又[α,β]⊂[a,b],∴在[α,β]上存在相应的一个分割T ’, T ’是T 减少若干个分点所点后所得的分割,即有 s(T ’)≥s(T), S(T ’)≤S(T). ∴S(T ’)-s(T ’)≤S(T)-s(T)<ε,得证.3、设f,g 均为定义在[a,b]上的有界函数. 证明:若仅在[a,b]中有限个点处f(x)≠g(x),则当f 在[a,b]上可积时,g 在[a,b]上也可积,且⎰baf(x )dx=⎰bag(x )dx.证:记F=g-f ,则F 在[a,b]上只有有限个点不为零,∴F 是[a,b]上可积. 对[a,b]上任何分割T ,取每个△i 上的介点ξi ,使F(ξi )=0,就有iix △)f(ξ∑=0,∴⎰baF =in1i iT x △)F(ξlim∑=→=0.又对任意T ,和每个△i 上的任意一点ξi ’,有iix △)ξg(∑'=iiix △)]ξf(-)ξ[g(∑''+iix △)ξf(∑'=iix △)ξF(∑'+iix △)ξf(∑'.由F,f 在[a,b]上可积,令║T ║→0,等式右边两式极限都存在, ∴等式左边的极限也存在,即g 在[a,b]上可积,且⎰ba g =⎰ba F +⎰ba f =⎰ba f .4、设f 在[a,b]上有界,{a n }⊂[a,b],∞→n lim a n =c. 证明:若f 在[a,b]上只有a n (n=1,2,…)为其间断点,则f 在[a,b]上可积. 证:设c ∈(a,b),f 在[a,b]上的振幅为ω,任给ε>0(4ωε<min{c-a,b-c}), 由∞→n lim a n =c 知存在N ,使得n>N 时,a n ∈U(c,4ωε),从而 在[a,c-4ωε]∪[c+4ωε,b]上至多只有有限个间断点,即 存在[a,c-4ωε],[c+4ωε,b]上的分割T ’, T ”使得∑'''T i i x △ω<4ε, ∑''''''T i i x △ω<4ε. 记T 为T ’, T ”的所有分点并添上点c-4ωε, c+4ωε作为[a,b]上的分割,则 ∑Ti i x △ω≤∑'''T i i x △ω+ω(c+4ωε-c+4ωε)+∑''''''T i i x △ω<4ε+2ε+4ε=ε. 得证。
定积分习题第九章定积分练习题§1定积分概念习题1.按定积分定义证明:?-=ba ab k kdx ).(2.通过对积分区间作等分分割,并取适当的点集{}i ξ,把定积分看作是对应的积分和的极限,来计算下列定积分:(1)?∑=+=1012233)1(41:;ni n n i dx x 提⽰(2)?10;dx e x (3)?ba x dx e ; (4)2(0).(:bi adxa b xξ<<=?提⽰取§2 ⽜顿⼀菜布尼茨公式1.计算下列定积分:(1)?+10)32(dx x ;(2)?+-102211dx x x ;(3)?2ln e e x x dx ;(4)?--102dx e e xx ;(5)?302tan πxdx (6)?+94;)1(dx xx(7)?+40;1x dx(8)?eedx x x12)(ln 1 2.利⽤定积分求极限:(1));21(1334lim n nn +++∞→(2);)(1)2(1)1(1222lim++++++∞→n n n n n n (3));21)2(111(222lim nn n n n +++++∞→(4))1sin 2sin (sin 1lim nn n n n n -+++∞→ππ3.证明:若f 在[a,b]上可积,F 在[a,b]上连续,且除有限个点外有F '(x )=f (x),则有()()().ba f x dx Fb F a =-?§3 可积条件1.证明:若T ˊ是T 增加若⼲个分点后所得的分割,则∑∑?≤?'.''T Ti i i i χωχω2.证明:若f 在[a,b]上可积,[][][]上也可积在则ββ,,,,a f b a a ?.3.设f ﹑g 均为定义在[a,b]上的有界函数。
证明:若仅在[a,b]中有限个点处()(),χχg f ≠则当f 在[a,b]上可积时,g 在[a,b]上也可积,且()().χχχχd g a bd f a b ??=3.设f 在[a,b]上有界,{}[],,b a a n ?.lim c an =∞→证明:在[a,b]上只有() ,2,1=n a n 为其间断点,则f 在[a,b]上可积。
陈纪修教授《数学分析》九讲学习笔记与心得云南分中心⋅昆明学院⋅周兴伟此次听陈教授的课,收益颇多。
陈教授的这些讲座,不仅是在教我们如何处理《数学分析》中一些教学重点和教学难点,更是几堂非常出色的示范课。
我们不妨来温习一下。
第一讲、微积分思想产生与发展的历史法国著名的数学家H.庞加莱说过:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状。
” 那么,如果你要学好并用好《数学分析》,那么,掌故微积分思想产生与发展的历史是非常必要的。
陈教授就是以这一专题开讲的。
在学校中,我不仅讲授《数学分析》,也讲授《数学史》,所以我非常赞同陈教授在教学中渗透数学史的想法,这应该也是提高学生数学素养的有效途径。
在这一讲中,陈教授脉络清晰,分析精当,这是我自叹不如的。
讲《数学史》也有些年头,但仅满足于史料的堆砌,没有对一些精彩例子加以剖析。
如陈教授对祖暅是如何用“祖暅原理”求出球的体积的分析,这不仅对提高学生的学习兴趣是有益的(以疑激趣、以奇激趣),而且有利于提高学生的民族自豪感(陈教授也提到了这一点)。
在这一讲中,陈教授对weierstrass的“ε−N”、“ε−δ”语言的评述是“它实现了静态语言对动态极限过程的刻画”。
这句话是非常精当的,如果意识不到这一点,你就很难理解这一点。
在此我还想明确一点:《数学分析》的研究对象是函数,主要是研究其分析性质,即连续性、可微性及可积性,而使用的工具就是极限。
如果仔细盘点一下,在《数学分析》中,无论是数、函数、数列、函数列,数项级数,函数项级数等相关问题,无不用到这一语言,你应该能理解陈教授的“对于数学类学生来说,没有“ε−N”、“ε−δ”语言,在《数学分析》中几乎是寸步难行的”这一观点。
第二讲、实数系的基本定理在这一讲中,陈教授从《实变函数》中对集合基数的讨论展开,对实数系的连续性作了有趣的讨论。
首先是从绅士开party的礼帽问题,带我们走进了“无穷的世界”。
我在开《数学赏析》时有一个专题就是“无穷的世界”,我给学生讲礼帽问题、也讲希尔伯特无穷旅馆问题,但遗憾的是,当我剖析“若无穷旅馆住满了人,再来两个时,可将住1号房间的移往3号房间,住2号房间的移往4号房间,从而空出两个房间”时,学生对我“能移”表示怀疑。
数学分析讲义目录第一册第1章集合与映射1.1 集合1.2 集合运算及几个逻辑符号1.3 映射1.4 映射的乘积(或复合)1.5 可数集1.6 习题1.7 补充教材一:关于自然数集合N1.8 补充教材二:基数的比较1.9 补充习题进一步阅读的参考文献第2章实数与复数2.1 实数的四则运算2.2 实数的大小次序2.3 实数域的完备性2.4 复数2.5 习题2.6 补充教材一:整数环z与有理数域Q的构筑2.7 补充教材二:实数域R的构筑进一步阅读的参考文献第3章极限3.1 序列的极限3.2 序列极限的存在条件3.3 级数3.4 正项级数收敛性的判别法3.5 幂级数3.6 函数的极限3.7 习题进一步阅读的参考文献第4章连续函数类和其他函数类4.1 连续函数的定义及其局部性质4.2 (有界)闭区间上连续函数的整体性质4.3 单调连续函数及其反函数4.4 函数列的一致收敛性4.5 习题4.6 补充教材:半连续函数及阶梯函数进一步阅读的参考文献第5章一元微分学5.1 导数和微分5.2 导数与微分的运算规则5.3 可微函数的整体性质及其应用5.4 高阶导数,高阶微分及Taylor公式5.5 Taylor级数5.6 凸函数5.7 几个常用的不等式5.8 习题5.9 补充教材一:关于可微函数的整体性质5.10 补充教材二:一维线性振动的数学表述5.10.1 谐振子5.10.2 阻尼振动5.10.3 强迫振动进一步阅读的参考文献第6章一元函数的Riemann积分6.1 Riemann积分的定义6.2 Riemann积分的简单性质6.3 微积分学基本定理6.4 积分的计算6.5 有理函数的积分6.6 可以化为有理函数积分的积分6.6.1 R(x,根号(αx+β)/(γx+δ))的积分6.6.2 R(x,根号ax2+bx+c)的积分6.6.3 R(sinx,cosx)的积分6.7 反常积分6.8 积分在几何学,力学与物理学中的应用6.8.1 定向区间的可加函数6.8.2 曲线的弧长6.8.3 功6.9 习题6.10 补充教材一:关于Newton—Leibniz公式成立的条件6.11 补充教材二:Stieltje8积分6.12 补充教材三:单摆的平面运动和椭圆函数6.12.1 一维的非线性振动的例:单摆的平面运动6.12.2 描述单摆平面运动的椭圆函数6.13 补充教材四:上、下积分的定义进一步阅读的参考文献参考文献名词索引第二册第7章点集拓扑初步7.1 拓扑空间7.2 连续映射7.3 度量空间7.4 拓扑子空间,拓扑空间的积和拓扑空间的商7.5 完备度量空间7.6 紧空间7.7 Stone-Weierstrass逼近定理7.8 连通空间7.9 习题7.10 补充教材:Urysohn引理进一步阅读的参考文献第8章多元微分学8.1 微分和导数8.2 中值定理8.3 方向导数和偏导数8.4 高阶偏导数与T aylor公式8.5 反函数定理与隐函数定理8.6 单位分解8.7 一次微分形式与线积分8.7.1 一次微分形式与它的回拉8.7.2 一次微分形式的线积分8.8 习题8.9 补充教材一:线性赋范空间上的微分学及变分法初步8.9.1 线性赋范空间上的重线性映射8.9.2 连续重线性映射空间8.9.3 映射的微分8.9.4 有限增量定理8.9.5 映射的偏导数8.9.6 高阶导数8.9.7 Taylor公式8.9.8 变分法初步8.9.9 无限维空间的隐函数定理8.10 补充教材二:经典力学中的Hamilton原理8.10.1 Lagrange方程组和最小作用量原理8.10.2 Hamilton方程组和Hamiltom原理进一步阅读的参考文献第9章测度9.1 可加集函数9.2 集函数的可数可加性9.3 外测度9.4 构造测度9.5 度量外测度9.6 Lebesgue不可测集的存在性9.7 习题进一步阅读的参考文献第10章积分10.1 可测函数10.2 积分的定义及其初等性质10.3 积分号与极限号的交换10.4 Lebesgue积分与Riemann积分的比较10.5 Futfini-ronelli定理10.6 Jacobi矩阵与换元公式10.7 Lebesgue函数空间10.7.1 LP空间的定义10.7.2 LP空间的完备性10.7.3 Hanner不等式10.7.4 LP的对偶空间10.7.5 Radon-Nikodym定理10.7.6 Hilbert空间10.7.7 关于微积分学基本定理10.8 二次微分形式的面积分10.8.1 一次微分形式的外微分10.8.2 二次微分形式和平面的定向10.8.3 二次微分形式的回拉和积分10.8.4 三维空间的二次微分形式10.8.5 平面上的Green公式10.9 习题进一步阅读的参考文献参考文献名词索引第三册第11章调和分析初步和相关课题11.1 Fourier级数11.2 Fourier变换的L1-理论11.3 Hermite函数11.4 Fourier变换的L2-理论11.5 习题11.6 补充教材一:局部紧度量空间上的积分理论11.6.1 C0(M)上的正线性泛函11.6.2 可积列空间L111.6.3 局部紧度量空间上的外测度11.6.4 列空间L1中的元素的实现11.6.5 l-可积集11.6.6 积分与正线性泛函的关系11.6.7 Radon泛函与Jordan分解定理11.6.8 Riesz-Kakutani表示定理11.6.9 概率分布的特征函数11.7 补充教材二:广义函数的初步介绍11.7.1 广义函数的定义和例11.7.2 广义函数的运算11.7.3 广义函数的局部性质11.7.4 广义函数的Fourier变换11.7.5 广义函数在偏微分方程理论上的应用11.8 补充习题进一步阅读的参考文献第12章复分析初步12.1 两个微分算子和两个复值的一次微分形式12.2 全纯函数12.3 留数与Cauchy积分公式12.4 Taylor公式和奇点的性质12.5 多值映射和用回路积分计算定积分12.6 复平面上的Taylor级数和Laurent级数12.7 全纯函数与二元调和函数12.8 复平面上的Г函数12.9 习题进一步阅读的参考文献第13章欧氏空间中的微分流形13.1 欧氏空间中微分流形的定义13.2 构筑流形的两个方法13.3 切空间13.4 定向13.5 约束条件下的极值问题13.6 习题进一步阅读的参考文献第14章重线性代数14.1 向量与张量14.2 交替张量14.3 外积14.4 坐标变换14.5 习题进一步阅读的参考文献第15章微分形式15.1 Rn上的张量场与微分形式15.2 外微分算子15.3 外微分算子与经典场论中的三个微分算子15.4 回拉15.5 Poincare引理15.6 流形上的张量场15.7 Rn的开集上微分形式的积分15.8 习题进一步阅读的参考文献第16章欧氏空间中的流形上的积分16.1 流形的可定向与微分形式16.2 流形上微分形式的积分16.3 流形上函数的积分16.4 Gauss散度定理及它的应用16.5 调和函数16.6 习题16.7 补充教材一:Maxwell电磁理论初步介绍16.8 补充教材二:Hodge星算子16.9 补充教材三:Maxwell电磁理论的微分形式表示进一步阅读的参考文献结束语进一步阅读的参考文献参考文献关于以上所列参考文献的说明名词索引。
第一章集合1.1集合1.2数集及其确界第二章数列极限2.1数列极限2.2数列极限(续)2.3单调数列的极限2.4子列第三章映射与实函数3.1映射3.2一元实函数3.3函数的几何特性第四章函数极限和连续性4.1函数极限4.2函数极限的性质4.3无穷小量、无穷大量和有界量第五章连续函数和单调函数5.1区间上的连续函数5.2区间上连续函数的基本性质5.3单调函数的性质第六章导数和微分6.1导数概念6.2求导法则6.3高阶导数和其他求导法则6.4微分第七章微分学基本定理及应用7.1微分中值定理7.2Taylor展开式及应用7.3LHospital法则及应用第八章导数的应用8.1判别函数的单调性8.2寻求极值和最值8.3函数的凸性8.4函数作图8.5向量值函数第九章积分9.1不定积分9.2不定积分的换元法和分部积分法9.3定积分9.4可积函数类R[a,b]9.5定积分性质9.6广义积分9.7定积分与广义积分的计算9.8若干初等可积函数类第十章定积分的应用10.1平面图形的面积10.2曲线的弧长10.3旋转体的体积和侧面积10.4物理应用10.5近似求积第十一章极限论及实数理论的补充11.1Cauchy收敛准则及迭代法11.2上极限和下极限11.3实数系基本定理第十二章级数的一般理论12.1级数的敛散性12.2绝对收敛的判别法12.3收敛级数的性质12.4Abel-Dirichlet 判别法12.5无穷乘积第十三章广义积分的敛散性13.1广又积分的绝对收敛性判别法13.2广义积分的Abel-Dirichlet判别法第十四章函数项级数及幂级数14.1一致收敛性14.2一致收敛性的判别14.3一致收敛级数的性质14.4幂级数14.5函数的幂级数展开第十五章Fourier级数15.1Fourier级数15.2Fourier级数的收敛性15.3Fourier级数的性质15.4用分项式逼近连续函数第十六章Euclid空间上的点集拓扑16.1Euclid空间上点集拓扑的基本概念16.2Euclid空间上点集拓扑的基本定理第十七章Euclid空间上映射的极限和连续17.1多元函数的极限和连续17.2Euclid空间上的映射17.3连续映射第十八章偏导数18.1偏导数和全微分18.2链式法则第十九章隐函数存在定理和隐函数求导法19.1隐函数的求导法19.2隐函数存在定理第二十章偏导数的应用20.1偏导数在几何上的应用20.2方向导数和梯度20.3Taylor公式20.4极值20.5Logrange乘子法20.6向量值函数的全导数第二十一章重积分21.1矩形上的二重积分21.2有界集上的二重积分21.3二重积分的变量代换及曲面的面积21.4三重积分、n重积分的例子第二十二章广义重积分22.1无界集上的广义重积分22.2无界函数的重积分第二十三章曲线积分23.1第一类曲线积分23.2第二类曲线积分23.3Green公式23.4Green定理第二十四章曲面积分24.1第一类曲面积分24.2第二类曲面积分24.3Gauss公式24.4Stokes公式24.5场论初步第二十五章含参变量的积分25.1含参变量的常义积分25,2含参变量的广义积分25.3B函数和函数第二十六章Lebesgue积分26.1可测函数26.2若干预备定理26.3Lebesgue积分26.4(L)积分存在的充分必要条件26.5三大极限定理26.6可测集及其测度26.7Fubini定理练习及习题解答复旦大学数学系的数学分析教材从20世纪60年代起出版了几种版本,随着改革开放和对外交流的发展,现代数学观点和方法融入数学分析教材是必然的趋势。
第九章 定积分 6 可积性理论补叙一、上和与下和的性质性质1:对同一分割T ,相对于任何点集{ξi }而言,上和是所有积分和的上确界,下和是所有积分和的下确界.即 S(T)=∑=∆∈n 1i i x )f(ξsup i △x i , s(T)=∑=∆∈n1i i x )f(ξinf i△x i . 证:由s(T)≤∑=n1i i )f(ξ△x i ≤S(T),可知相对于任何点集{ξi },上和与下和分别是全体积分和的上界与下界. 任给ε>0,在各个△i 上有上确界M i ,可选取点ξi ∈△i ,使f(ξi )>M i -a-b ε. ∴∑=n1i i )f(ξ△x i >∑=⎪⎭⎫ ⎝⎛n1i i a -b ε-M △x i =∑=n1i i M △x i -∑=n 1i i x △a -b ε=S(T)-ε. ∴S(T)=∑=∆∈n1i i x )f(ξsup i △x i . 同理可证:s(T)=∑=∆∈n1i i x )f(ξinf i△x i .性质2:设T ’为分割T 添加p 个新分点后所得到的分割,则有 S(T)≥S(T ’)≥S(T)-(M-m)p T ;s(T)≤s(T ’)≤s(T)+(M-m)p T . 即增加分点后,上和不增,下和不减.证:将p 个新分点同时添加到T ,与逐个添加到T ,得到同样的T ’. 可先取p=1,则新分点将某小区间△k 分成两个小区间△k ’与△k ”. ∴S(T)-S(T 1)=M k △x k -(M ’k △x ’k +M ”k △x ”k )=M k (△x ’k +△x ”k )-(M ’k △x ’k +M ”k △x ”k )=(M k -M ’k )△x ’k +(M k -M ”k )△x ”k . ∵m ≤M ’k (或M ”k )≤M k ≤M ,∴0≤S(T)-S(T 1)≤(M-m)△x ’k +(M-m)△x ”k =(M-m)△x k ≤(M-m)T . 依次对T i 增加一个分点得到T i+1,可得0≤S(T i )-S(T i+1)≤(M-m)i T ≤(M-m)0T , i=0,1,2,…, p-1,T 0=T ,T p =T ’. 将这些不等式依次相加,可得:0≤S(T)-S(T ’)≤(M-m)p T ,即 S(T)≥S(T ’)≥S(T)-(M-m)p T . 同理可证:s(T)≤s(T ’)≤s(T)+(M-m)p T .性质3:若T ’与T ”为任意两个分割,T=T ’+T ”表示把T ’与T ”的所有分点合并而得的分割,则. S(T)≤S(T ’), s(T)≥s(T ’);S(T)≤S(T ”), s(T)≥s(T ”). 证:将T 看作T ’或T ”添加新分点后得到的分割,由性质2可知.性质4:对任意两个分割T ’与T ”,总有s(T ’)≤S(T ”). 证:令T=T ’+T ”,则有s(T ’)≤s(T)≤S(T)≤S(T ”).注:由性质4可知,对[a,b]上的所有分割来说,所有下和有上界,所有上和有下界,且分别有上确界与下确界,记作S=Tinf S(T), s=Tsup s(T).通常称S 为f 在[a,b]上的上积分,s 为f 在[a,b]上的下积分.性质5:m(b-a)≤s ≤S ≤M(b-a).性质6:(达布定理)上、下积分也是上和与下和在T →0时的极限,即0T lim →S(T)=S ,0T lim →s(T)=s. 证:任给ε>0,由S 的定义,必存在某一分割T ’使得S(T ’)<S+2ε.设T ’由p 个分点所构成,则对另一分割T ,T+T ’至多比T 多p 个分点, ∴S(T)-(M-m)p T ≤S(T+T ’)≤S(T ’),即S(T)≤S(T ’)+(M-m)p T . 只要取T <m)p -2(M ε,就有S(T)<S(T ’)+2ε≤S+ε,即S-ε<S ≤S(T)<S+ε,∴0T lim →S(T)=S. 同理可证:0T lim →s(T)=s.二、可积的充要条件定理:(可积的第一充要条件)函数f 在[a,b]上可积的充要条件是:f 在[a,b]上的上积分与下积分相等,即S=s.证:[必要性]设f 在[a,b]上可积,J=⎰ba f(x )dx. 由定积分的定义知, 任给ε>0,存在δ>0,只要T <δ,就有|∑=n1i f (ξi )△x i -J|<ε.又S(T)与s(T)分别为积分和关于点集{ξi }的上、下确界,∴当T <δ时, 有|S(T)-J|≤ε,|s(T)-J|≤ε,即当T →0时,S(T)与s(T)都以J 为极限. 根据达布定理知,S=s=J.[充分性]设S=s=J ,由达布定理有:0T lim →S(T)=0T lim →s(T)=J. 任给ε>0, 存在δ>0,只要T <δ,就有:J-ε<s(T)≤∑=n1i i )f(ξ△x i ≤S(T)<J+ε,∴∑=→n1i 0T f lim (ξi )△x i =J ,即f 在[a,b]上可积,且⎰ba f(x )dx=J.定理:(可积的第二充要条件)函数f 在[a,b]上可积的充要条件是:任给ε>0,总存在某一分割T ,使得S(T)-s(T)<ε, 即i n1i i x △ω∑=<ε.证:[必要性]设f 在[a,b]上可积,则有0T lim →[S(T)-s(T)]=0,即任给ε>0,只要T 足够小,则有S(T)-s(T)<ε.[充分性]由s(T)≤s ≤S ≤S(T),有0≤S-s ≤S(T)-s(T)<ε. 由ε的任意性,必有S=s ,∴f 在[a,b]上可积.定理:(可积的第三充要条件)函数f 在[a,b]上可积的充要条件是:任给正数ε, η,总存在某一分割T ,使得属于T 的所有小区间中,对应于振幅ωk ’≥ε的那些小区间△k ’的总长∑''k k x △<η.证:[必要性]设f 在[a,b]上可积,则对于εη>0,存在某一分割T ,使∑kk kx △ω<εη. ∴ε∑''k k x △≤∑'''k k k x △ω≤∑kk k x △ω<εη,∴∑''k k x △<η.[充分性]任给ε’>0,取ε=a)-2(b ε'>0,η=m)-2(M ε'>0. 设某分割T 中,ωk ’≥ε的那些△k ’的总长∑''k k x △<η,其余那些小区间为△k ”,则有∑kk kx △ω=∑'''k k k x △ω+∑''''''k k k x △ω<(M-m)∑''k k x △+ ε∑''''k k x △≤(M-m) η+ε(b-a)=2ε'+2ε'=ε’. ∴f 在[a,b]上可积.例1:利用求可积的第三充要条件证明黎曼函数在[0,1]上可积,且定积分等于0.证:已知黎曼函数为:f(x)=⎪⎩⎪⎨⎧=>=.)1,0(0,1x 0 p.q ,q p, ,qp x q 1内的无理数以及互素,,任给正数ε, η, ∵满足q 1≥ε, 即q ≤ε1的有理点qp 只有有限个, 设为K 个, ∴含这类点的小区间至多有2K 个,在其上ωk ’≥ε.当T <2K η时,就有∑''k k x △≤2K T <η,∴f 在[0,1]上可积. 又m i =ix inf ∆∈f(x)=0, i=1,2,…,n ,∴s(T)=0,∴⎰10f(x )dx=s=0.例2:证明:若f 在[a,b]上连续,φ在[α,β]上可积,a ≤φ(t)≤b, t ∈[α,β],则f ◦φ在[α,β]上可积.证:任给正数ε, η,∵f 在[a,b]上一致连续,∵存在δ>0,使 当x ’,x ”∈[a,b]且|x ’-x ”|<δ时,|f(x ’)-f(x ”)|<η.又∵φ在[α,β]上可积,∴存在某分割T ,使得T 所属的小区间中 满足ωk ’≥δ的所有△k ’的总长∑''k k t △<ε,而其余小区间△k ”上ωk ’<δ.设F(t)=f(φ(t)), t ∈[α,β],则在T 中的小区间△k ”上ωF k ”<η, 至多在所有△k ’上ωF k ’≥η,而这些小区间的总长至多为∑''k k t △<ε.∴f ◦φ在[α,β]上可积.习题1、证明性质2中关于下和的不等式:s(T)≤s(T ’)≤s(T)+(M-m)p T . 证:先取p=1,则新分点将某小区间△k 分成两个小区间△k ’与△k ”. ∴s(T 1)-s(T)=m ’k △x ’k +m ”k △x ”k -m k △x k=m ’k △x ’k +m ”k △x ”k -m k (△x ’k +△x ”k )=(m ’k -m k )△x ’k +(m ”k -m k )△x ”k . ∵m ≤m k ≤m ’k (或m ”k )≤M ,∴0≤s(T 1)-s(T)≤(M-m)△x ’k +(M-m)△x ”k =(M-m)△x k ≤(M-m)T . 依次对T i 增加一个分点得到T i+1,可得0≤s(T i+1)-s(T i )≤(M-m)i T ≤(M-m)0T , i=0,1,2,…, p-1,T 0=T ,T p =T ’. 将这些不等式依次相加,可得:0≤s(T ’)-s(T)≤(M-m)p T ,即 s(T)≤s(T ’)≤s(T)+(M-m)p T .2、证明性质6中关于下和的极限式:0T lim →s(T)=s. 证:任给ε>0,由s 的定义,必存在某一分割T ’使得s(T ’)>s-2ε. 设T ’由p 个分点所构成,则对另一分割T ,T+T ’至多比T 多p 个分点, ∴s(T)+(M-m)p T ≥s(T+T ’)≥s(T ’),即s(T)≥s(T ’)-(M-m)p T . 只要取T <m)p -2(M ε,就有s(T)≥s(T ’)-2ε>s-ε,即s-ε<s(T)≤s<s+ε,∴0T lim →s(T)=s.3、设f(x)=⎩⎨⎧.x 0.x x 为无理数为有理数,,试求f 在[0,1]上的上积分和下积分;并由此判断f 在[0,1]上是否可积.解:对于[0,1]的任一分割T ,由有理数和无理数在实数中的稠密性知: 在任一小区间△i 上,M i ≠0,m i =0,记f(ξi )=M i (ξi 为有理数),则 S(T)=i n 1i i x △)f(ξ∑=,s=s(T)=0;又S=0T lim →S(T)=i n1i i 0T x △)f(ξlim ∑=→=⎰10x dx=21; ∵S ≠s ,∴f 在[0,1]上不可积.4、设f 在[a,b]上可积,且f(x)≥0, x ∈[a,b]. 试问f 在[a,b]上是否可积为什么解:f 在[a,b]上可积。