ANSYS计算温度场及应力场
- 格式:docx
- 大小:10.06 KB
- 文档页数:3
基于ANSYS的焊接温度场和应力的数值模拟研究一、本文概述随着现代工业技术的飞速发展,焊接作为一种重要的连接工艺,在航空、汽车、船舶、石油化工等领域的应用日益广泛。
然而,焊接过程中产生的温度场和应力场对焊接结构的性能有着至关重要的影响。
为了深入理解焊接过程中的热-力行为,预测焊接结构的变形和残余应力,进而优化焊接工艺参数和提高产品质量,本文旨在利用ANSYS有限元分析软件,对焊接过程中的温度场和应力场进行数值模拟研究。
本文首先简要介绍了焊接数值模拟的意义和现状,包括焊接数值模拟的重要性、国内外研究现状和存在的问题等。
随后,详细阐述了ANSYS 软件在焊接数值模拟中的应用,包括其基本原理、分析流程、模型建立、参数设置等方面。
在此基础上,本文以某典型焊接结构为例,详细阐述了焊接温度场和应力场的数值模拟过程,包括模型的建立、边界条件的设定、求解参数的选择、结果的后处理等。
对模拟结果进行了详细的分析和讨论,验证了数值模拟方法的准确性和可靠性,为实际工程应用提供了有益的参考。
本文的研究不仅有助于深入理解焊接过程中的热-力行为,为优化焊接工艺参数和提高产品质量提供理论支持,同时也为ANSYS软件在焊接数值模拟领域的应用推广和进一步发展奠定了基础。
二、焊接理论基础焊接是一种通过加热、加压或两者并用,使两块或多块金属在原子层面结合形成永久性连接的工艺过程。
焊接过程涉及复杂的物理和化学变化,包括金属的熔化、凝固、相变以及应力和变形的产生等。
因此,深入了解焊接过程的理论基础对于准确模拟焊接过程中的温度场和应力分布至关重要。
焊接过程中,热源将能量传递给工件,导致工件局部快速升温并熔化。
熔池形成后,随着热源的移动,熔池中的液态金属逐渐凝固形成焊缝。
焊接热源的类型和移动速度、工件的材质和厚度等因素都会影响焊接过程的温度场分布。
为了准确模拟这一过程,需要了解各种热源模型(如移动热源模型、体积热源模型等)及其适用范围,并选择合适的模型进行数值模拟。
《基于ANSYS的焊接温度场和应力的数值模拟研究》篇一一、引言焊接作为一种重要的工艺方法,广泛应用于各种工程结构中。
然而,焊接过程中产生的温度场和应力分布对焊接结构的质量、性能和使用寿命有着重要的影响。
因此,对焊接温度场和应力的研究具有非常重要的意义。
本文将通过ANSYS软件进行焊接温度场和应力的数值模拟研究,以期为焊接工艺的优化提供理论依据。
二、焊接温度场的数值模拟1. 建模与材料属性设定在ANSYS中建立焊接结构的几何模型,设定材料的热学性能参数,如热导率、比热容等。
同时,设定焊接过程中的热源模型,如高斯热源模型等。
2. 网格划分与边界条件设定对模型进行合理的网格划分,以便更好地捕捉温度场的分布情况。
设定边界条件,包括环境温度、对流换热系数等。
3. 求解与结果分析通过ANSYS的瞬态热分析模块进行求解,得到焊接过程中的温度场分布情况。
分析温度场的变化规律,研究焊接过程中的热循环行为。
三、焊接应力的数值模拟1. 建模与材料属性设定在ANSYS中建立与温度场分析相同的几何模型,设定材料的力学性能参数,如弹性模量、泊松比等。
同时,导入温度场分析的结果作为应力分析的初始条件。
2. 网格划分与约束条件设定对应力分析模型进行网格划分,并设定约束条件,如固定支座等。
这些约束条件将影响应力的分布情况。
3. 求解与结果分析通过ANSYS的结构分析模块进行求解,得到焊接过程中的应力分布情况。
分析应力的变化规律,研究焊接过程中的残余应力分布情况。
同时,结合温度场分析结果,研究温度与应力之间的关系。
四、结果与讨论1. 温度场分析结果通过ANSYS的数值模拟,得到了焊接过程中的温度场分布情况。
结果表明,在焊接过程中,焊缝处的温度较高,随着距离焊缝的增大,温度逐渐降低。
同时,随着时间的变化,温度场呈现出明显的热循环行为。
2. 应力分析结果在应力分析中,我们发现焊接过程中会产生较大的残余应力。
这些残余应力主要分布在焊缝及其附近区域,并呈现出一定的规律性。
ANSYS计算温度场及应力场在ANSYS中计算温度场需要考虑的因素有很多,比如热源、热传导、边界条件等。
首先,我们需要在ANSYS中建立一个三维模型,包括几何形状、材料属性和初始条件。
然后,我们可以选择合适的求解器,比如热传导方程求解器,来解决温度场的传导问题。
在建立模型时,需要给定材料的热导率和密度等属性,这些参数可以通过实验测量或者文献资料获得。
对于复杂的几何形状,可以使用ANSYS 的建模工具,比如CAD软件,将实际的几何形状导入到ANSYS中。
然后,我们需要给定边界条件,比如边界上的温度和热通量。
这些条件可以通过实验测量或者根据实际情况进行估计。
在设置好模型后,我们可以选择求解器来解决温度场的传导问题。
ANSYS提供了多种求解器,包括有限元法、有限差分法和有限体积法等。
这些方法可以根据不同的情况选择合适的求解器,并通过迭代计算来获得温度场的分布。
在计算完温度场后,我们可以使用ANSYS的后处理工具来分析和可视化结果。
例如,可以绘制温度云图、温度剖面和温度梯度图,以展示温度场的分布情况。
此外,还可以计算温度场的平均值、最大值和最小值等统计量,以评估系统的性能和安全性。
另外,ANSYS还可以用于计算应力场。
在计算应力场时,需要考虑的因素包括材料的应变-应力关系、加载条件和几何形状等。
首先,我们需要在ANSYS中建立一个三维模型,包括几何形状、材料属性和初始条件。
然后,选择合适的求解器,比如有限元法求解器,来解决应力场的静力学问题。
在建立模型时,需要给定材料的弹性模量、泊松比和密度等属性。
这些参数可以通过实验测量或者文献资料获得。
对于复杂的几何形状,可以使用ANSYS的建模工具,比如CAD软件,将实际的几何形状导入到ANSYS 中。
然后,我们需要给定加载条件,比如施加在模型上的力和边界约束。
这些条件可以根据实际情况进行估计。
在设置好模型后,我们可以选择求解器来解决应力场的静力学问题。
ANSYS提供了多种求解器,包括有限元法、边界元法和模态分析等。
ansys 求当结构内侧温度为0度而外侧温度为-10度时的变形1.引言1.1 概述概述本文旨在研究在给定条件下的结构变形问题。
具体而言,我们关注的是当结构内侧温度为0度,而外侧温度为-10度时,结构的变形情况。
为了解决这一问题,我们采用了ANSYS模拟方法。
ANSYS作为一种常用的工程仿真软件,能够对复杂结构进行力学分析,并得出相应的结果。
通过在ANSYS中设置合适的边界条件和材料属性,我们可以模拟不同温度下的结构变形情况。
在本文中,我们首先进行了背景介绍,介绍了该问题的背景和相关研究现状。
然后,我们详细讨论了使用ANSYS进行模拟的方法。
通过分析和讨论模拟结果,我们将得出对结构变形情况的评估和结论。
通过本文的研究,我们希望能够揭示在不同温度条件下结构的变形情况,为相关工程实践提供参考和指导。
同时,我们也期待这项研究能够为进一步探索结构变形领域提供一定的理论和实践基础。
1.2文章结构文章结构部分的内容可以按照以下方式编写:1.2 文章结构本文主要分为引言、正文和结论三个部分。
引言部分主要包括对本篇文章的概述、文章结构和研究目的的介绍。
首先概述研究的背景和意义,说明研究的目的和重要性。
然后介绍文章的结构,即各个章节的内容和逻辑顺序。
最后明确研究的目的,指出本文的研究重点和亮点。
正文部分主要包括背景介绍和ANSYS模拟方法。
在背景介绍章节中,可以从结构分析的角度出发,说明为什么需要对结构内侧温度为0度而外侧温度为-10度时的变形进行研究。
介绍相关的理论知识和前人研究成果,展示研究的基础和现有问题。
在ANSYS模拟方法章节中,详细介绍使用ANSYS软件进行结构分析的步骤和方法。
包括建模、网格划分、边界条件设置等。
同时,可以说明为什么选择ANSYS作为研究工具,以及其在结构分析领域的优势和应用。
结论部分主要包括对结果的分析和结构变形评估。
在结果分析章节中,对模拟结果进行定量或定性的分析,解释温度变化对结构变形的影响。
基于ANSYS的焊接过程模拟分析方法研究作者:安超来源:《数字技术与应用》2013年第02期摘要:本文探讨了利用ANSYS软件对焊接过程进行模拟的分析方法。
通过实例计算得到了焊接过程中的温度场、应力场分布,对焊接模拟过程进行了验证。
关键词:ANSYS 焊接温度场应力场中图分类号:TG44 文献标识码:A 文章编号:1007-9416(2013)02-0064-02随着现代计算机技术的广泛应用,焊接生产信息化已成为大势所趋。
利用计算机技术对焊接过程进行模拟,可以深入研究焊接过程的本质规律,使焊接技术更加科学化。
通过计算机技术模拟复杂的焊接过程,可以有效防止焊接缺陷的发生,对提高焊接质量有重大意义。
ANSYS是全球最通用的大型有限元分析软件之一,在CAE仿真分析中发挥着重要作用。
其界面友好、功能强大,可以有效模拟焊接的非线性过程。
因此,ANSYS软件在焊接过程模拟分析中得到了广泛的应用。
1 ANSYS分析方法焊接温度场问题,可以看作是在一定初始条件和边界条件下,工件内部的热传导问题。
对于一个实体,当不同部位的温度存在差异时,热量就会发生流动从而形成热导。
热传导过程符合傅里叶热导方程:(1)式中、、分别为x、y、z三个方向上的热导系数,是单位体积热生成率。
求解过程必须考虑边界和初始条件,温度场边界条件分三种类型:(1)第一类边界条件:物体在某些边界上的温度函数为已知,即:(2)式中是边界温度,它可以随位置和时间变化。
(2)第二类边界条件:物体某些边界上的热流密度为已知。
(3)式中为边界外法线方向,为边界上的热流密度,物体向外流为正。
(3)第三类边界条件:物体在某些边界上的对流条件为已知。
(4)式中是对流系数,是流体参照温度。
2 关键问题的处理2.1 高斯移动热源焊接热源具有局部集中、瞬时、快速移动的特点,很容易形成不均匀的温度场。
这种不均匀的温度场,是形成焊接残余应力和变形最根本的原因。
因此,建立焊接热源模型对焊接温度场的模拟尤为重要。
《基于ANSYS的焊接温度场和应力的数值模拟研究》篇一一、引言随着科技的发展,焊接技术作为制造行业中的关键工艺之一,其质量和效率直接关系到产品的性能和寿命。
因此,对焊接过程中的温度场和应力分布进行精确的数值模拟显得尤为重要。
ANSYS作为一种功能强大的工程仿真软件,被广泛应用于焊接过程的数值模拟。
本文将基于ANSYS,对焊接温度场和应力进行数值模拟研究,以期为实际生产提供理论依据。
二、焊接温度场的数值模拟1. 模型建立在ANSYS中建立焊接过程的有限元模型,包括焊件、焊缝、热源等部分。
其中,焊件采用实体单元进行建模,焊缝则通过线单元进行描述。
热源模型的选择对于模拟结果的准确性至关重要,应根据具体的焊接工艺选择合适的热源模型。
2. 材料属性及边界条件根据实际材料,设定焊件和焊缝的热导率、比热容、热扩散率等物理参数。
同时,设定初始温度、环境温度等边界条件。
3. 数值模拟过程根据焊接过程的实际情况,设定加载步和时间步长,模拟焊接过程中的温度变化。
通过ANSYS的热分析模块,得到焊接过程中的温度场分布。
三、焊接应力的数值模拟1. 耦合分析焊接过程中,温度场的变化会导致应力的产生。
因此,在ANSYS中,需要将在热分析中得到的温度场结果作为应力分析的输入条件,进行热-结构耦合分析。
2. 本构关系与材料模型根据材料的本构关系和力学性能,设定材料的弹性模量、泊松比、热膨胀系数等参数。
同时,选择合适的材料模型,如各向同性模型或各向异性模型。
3. 应力分析通过ANSYS的结构分析模块,结合耦合后的温度场结果,进行应力分析。
得到焊接过程中的应力分布和变化情况。
四、结果与讨论1. 温度场结果分析通过ANSYS的后处理功能,可以得到焊接过程中的温度场分布图。
分析温度场的分布情况,可以了解焊接过程中的热传导和热扩散情况,为优化焊接工艺提供依据。
2. 应力结果分析同样,通过后处理功能可以得到焊接过程中的应力分布图。
分析应力的分布和变化情况,可以了解焊接过程中产生的残余应力和变形情况。
=====【热力耦合分析单元简介】======SOLID5-三维耦合场实体具有三维磁场、温度场、电场、压电场和结构场之间有限耦合的功能。
本单元由8个节点定义,每个节点有6个自由度。
在静态磁场分析中,可以使用标量势公式(对于简化的RSP,微分的DSP,通用的GSP)。
在结构和压电分析中,具有大变形的应力钢化功能。
与其相似的耦合场单元有PLANE13、SOLID62和SOLID98。
INFIN9-二维无限边界用于模拟一个二维无界问题的开放边界。
具有两个节点,每个节点上带有磁向量势或温度自由度。
所依附的单元类型可以为PLANE13和PLANE53磁单元,或PLANE55和PLANE77和PLANE35热单元。
使用磁自由度(AZ)时,分析可以是线性的也可以是非线性的,静态的或动态的。
使用热自由度时,只能进行线性稳态分析。
PLANE13-二维耦合场实体具有二维磁场、温度场、电场和结构场之间有限耦合的功能。
由4个节点定义,每个节点可达到4个自由度。
具有非线性磁场功能,可用于模拟B-H曲线和永久磁铁去磁曲线。
具有大变形和应力钢化功能。
当用于纯结构分析时,具有大变形功能,相似的耦合场单元有SOLID5、SOLID98和SOLID62。
LINK31-辐射线单元用于模拟空间两点间辐射热流率的单轴单元。
每个节点有一个自由度。
可用于二维(平面或轴对称)或三维的、稳态的或瞬态的热分析问题。
允许形状因子和面积分别乘以温度的经验公式是有效的。
发射率可与温度相关。
如果包含热辐射单元的模型还需要进行结构分析,辐射单元应当被一个等效的或(空)结构单元所代替。
LINK32-二维传导杆用于两节点间热传导的单轴单元。
该单元每个节点只有一个温度自由度。
可用于二维(平面或轴对称)稳态或瞬态的热分析问题。
如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。
LINK33-三维传导杆用于节点间热传导的单轴单元。
该单元每个节点只有一个温度自由度。
焊接温度场和应力场的有限元分析张华波;刘志义【摘要】本文通过ANSYS有限元分析软件平台,实现了高斯移动热源载荷下平板堆焊的焊接温度场和应力场的数值模拟分析,得到了焊接温度场和应力场的分布情况和变化规律.【期刊名称】《石油和化工设备》【年(卷),期】2016(019)009【总页数】4页(P27-30)【关键词】温度场;应力场;ANSYS;有限元模拟【作者】张华波;刘志义【作者单位】中南大学材料科学与工程学院, 湖南长沙 410083;中南大学材料科学与工程学院, 湖南长沙 410083【正文语种】中文焊接是一个快速升温并随后快速冷却的过程,焊接物理现象包括焊接时的传热过程、金属的熔化和凝固、电磁、冷却时的相变、变形、焊接应力等。
焊接时,在焊件上将产生局部高温的不均匀温度场,焊缝中心处的温度可达1500℃以上,焊缝填料受热向外膨胀但受到周围母材的约束,从而在焊件内产生较大的温度应力,此应力会随着温度和时间发生不断的变化,某些部位的焊接应力甚至达到材料的屈服强度而发生塑性变形,在焊件冷却后残存于内部成为残余应力。
焊接所产生的残余应力和变形,可对焊接结构质量产生重大影响。
在实际结构中,多数开裂都是从焊缝处发起的[1],因此对焊接温度场和应力场进行分析是十分必要的。
焊件尺寸及相关参数如下:焊件材质为低碳钢25#,焊丝为H08Mn2SiA,焊件几何尺寸为120 mm×120 mm×6mm,焊缝位于焊件的Y-Z平面中心线。
焊接电压25V,电流180 A,焊接速度10 mm/s,电弧有效半径r=6mm,焊接热效率η=0.75。
在ANSYS有限元分析中,经常会涉及到对称性的构件。
ANSYS给我们提供了对称和反对称两种对称分析类型。
如果分析对象呈对称的几何形状,且所受载荷也对称的话,根据其对称性,可以只考虑采用计算模型的一半进行分析,采用对称分析可以节省计算时间,提高工作效率。
对称面每增加一个,有限元模型就相应地减少近一半[2]。
第36例热应力分析(间接法)实例一液体管路本例介绍了利用间接法进行热应力计算的方法和步骤:首先进行热分析得到结构节点温度分布,然后把温度作为载荷施加到结构上并进行结构分析。
36.1概述利用间接法计算热应力,首先进行热分析,然后进行结构分析。
热分析可以是瞬态的,也可以是稳态的,需要将热分析求得的节点温度作为体载荷施加到结构上。
当热分析是瞬态的时,需要找到温度梯度最大的时间点,并将该时间点的结构温度场作为体载荷施加到结构上。
由于•间接法可以使用所有热分析和结构分析的功能,所以对「•大多数情况都推荐使用该方法。
间接法进行热应力计算的主要步骤如下。
热分析瞬态热分析的过程在前例已经介绍过,下面介绍稳态热分析。
稳态热分析用于研究稳定的热载荷对结构的影响,有时还用于瞬态热分析时计算初始温度场。
稳态热分析主要步骤如bo1.建模稳态热分析的建模过程与其他分析相似,包括定义单元类型、定义单元实常数、定义材料特性、建立几何模型和划分网格等。
但需注意的是:稳态热分析必须定义材料的导热系数。
2.施加载荷和求解⑴指定分析类型。
Main Menu-*Solution-*Analysis Type~*New Analysis,选择Static.⑵施加载荷。
nJ■以施加的载荷有恒定的温度、热流率、对流、热流密度、生热率,Main Menu-*Solution-*Define Loadsf Apply—Thermal.(3)设置载荷步选项。
普通选项包括时间〔用于定义载荷步和子步)、每一载荷步的子步数,以及阶跃选项等,Main Menu-*Solution-*Load Step Opts—k Time/Frequenc->Time->Time Step.非线性选项包括:一迭代次数(默认25), Main Menu-*Solution-*Load Step Opts-* Nonlinear-* Equilibrium Iter;翻开自动时间步长,Main Menu-*Solution-* Load Step Opts —Time/Frequenc—Time—Time Step 等.图36-11转换单元类型对话框设定单元轴对称选项拾取菜单Main Menu —Preprocessor—Element Type —Add/Edit/Delete 弹出“ElementTypes”对话框,单击其“Options”按钮,弹出如图36-12所示的对话框,选择“K3”下拉列表框为“Axisymmetric",单击“0K"按钮,然后单击"Element Types M对话框的“Close"按钮。
基于ANSYS有限元软件实现施工温控仿真的要紧技术(1)研究方式和分析流程
本次计算利用ANSYS软件来进行象鼻岭碾压混凝土拱坝全进程温控仿真计算分析。
具体分析流程如下:
1)搜集资料:包括工程气象水文资料、大坝体型、热力学参数、工程进度、施工方法、防洪度汛和蓄水等。
2)整理分析资料:参数拟合、分析建模方式。
3)建模:采纳ANSYS软件进行建模,划分网格。
4)编写计算批处置程序:依照资料结合模型编写计算温度场的ANSYS批处置程序。
5)检查计算批处置程序:第一检查语句,然后导入计算模型检查所加荷载成效。
6)计算温度:利用ANSYS软件温度计算模块进行计算。
7)分析温度结果:要紧分析各时刻的温度场散布和典型温度特点值。
8)应力计算建模:模型结构尺寸与温度分析模型相同,需要改变把温度分析材料参数改成应力分析材料参数。
9)计算应力:利用ANSYS软件温度应力计算模块和自编的二次开发软件进行计算。
10)分析应力结果:要紧分析应力场散布和典型应力特点值。
11)编写报告:对计算流程和结果实施进行提炼总结,提出可行的温控指标和方法。
(2)前处置
1)建模方式选择。
有限元建模一样有两种方式:一种为通过点线面几何拓扑的方式建模,这种建模方式精准,可是比较费时。
关于较大规模的建模任务花费时刻太多。
另一种为通过其他软件导入,如CAD,通过在其他软件中建模,然后输出为ANSYS能够识别的文件类型,再导入ANSYS中完成建模进程,这种建模方式精度较直接建模的精度要稍低一些,可是由于要求建模的模型已经在CAD软件中完成了初步建
模,能够直接拿来稍作处置即可应用,时刻花费较少。
本计算选用从CAD软件导入ANSYS中来成立模型。
2)建模范围。
建模范围能够分为全坝段建模和单坝段建模,全坝段建模能够全面反映整个坝体的温度和应力情形,可是建模难度高、计算量大;单坝段建模建模难度小,计算量也相对较小,一样情形下单坝段建模即可知足要求。
3)施工模拟层厚。
依照已建碾压混凝土坝体会,碾压层厚一样为左右,依照一层建模是最精准的,可是若是依照一层建模,计算网格数量庞大,计算时刻长,关于硬件要求较高,在硬件和时刻达不到要求的情形下,依照3m一层以下精度都是能够大体知足要求的。
4)分区模拟。
由于各分区混凝土水化热不同较大,关于温度计算阻碍较大,因此建模要尽可能反映混凝土大坝内部份区转变。
基岩由于对混凝土只是导热作用,且阻碍范围在10m左右,因此在计算时能够以为是均质体,计算热力学参数采纳靠近建基面的地层参数。
5)参数选取。
参数一样选择可研时期的材料实验报告,若是项目部未能提供这些资料,能够在征求同意的前提下,通过查阅相关书籍,尽可能采取相似工程的资料。
(3)计算
1)ANSYS计算模块。
ANSYS计算温度场模块由其自带,能够直接进入模块计算。
2)化学产热模拟。
通过ANSYS中产热命令BFE模拟。
3)边界条件模拟。
①对流边界条件通过命令SFA模拟。
②接触散热边界条件通过命令D模拟。
4)浇筑模拟。
通过ANSYS中的生死单元功能实现,初始时期所有单元均为死单元,死单元
默许弹模为一个很小的值,其关于结构的力学性能大体没有阻碍。
第一步先把地基激活,恢恢复有材料属性;然后随着时刻推移,激活每一层浇筑的混凝土,以此来模拟浇筑进程。
5)计算方式。
计算通过内部产热的外部边界条件的彼此作用,计算热量在材料内部的转移进程,取得不同时刻的温度场散布。
应力计算在综合考虑结构作用和荷载作用情形下,得出不同时刻的瞬时应力状态。
(4)后处置。
1)特点点温度转变曲线和温度场散布
关于内部散热较慢点、表面直接散热点和表面周围散热较快点别离取特点结点,并通过ANSYS中历时曲线绘制功能,得出其特点点温度转变曲线和温度场散布,依照其转变规律判定仿真分析是不是大体合理。
2)特点点应力转变曲线和应力等值线散布
关于内部散热较慢点、表面直接散热点和表面周围散热较快点别离取特点结点,并通过ANSYS中历时曲线绘制功能,得出其特点点应力转变曲线和应力等值线散布,依照其转变规律判定仿真分析是不是大体合理,提出可行的温控方案。
(5)结果分析。
依照标准要求和计算结果分析内外温差、基础温差等温控标准,同时结合有限元结果分析危险区域和危险时段,以此为依据提出合理化的温控建议和温控方法。