高等数学 线面积分(4)
- 格式:doc
- 大小:122.00 KB
- 文档页数:3
一、曲线积分、曲面积分的计算公式1. 对弧长的曲线积分(,)Lf x y ds ⎰的计算公式:(,)Lf x y ds ⎰中,L 为一段光滑的平面曲线,其参数方程为(),t (),x x t y y t αβ=⎧≤≤⎨=⎩ (,)f x y 为定义在曲线L 上的一连续函数.为熟练掌握计算公式,关键是把握以下两点:1)积分变量,x y 在曲线L 上,故,x y 满足曲线L 的方程;2)ds 是曲线L的弧长的微分,故ds =. 所以有如下的计算公式:(,)[(),(Lf x y ds f x t y t βα=⎰⎰.对L 是空间曲线段的情况,有类似的公式. 设L 的方程为 (),(), t (),x x t y y t z z t αβ=⎧⎪=≤≤⎨⎪=⎩(,,)f x y z 在L 上连续,则对弧长的曲线积分(,,)[(),(),(Lf x y z ds f x t y t z t βα=⎰⎰.弧微元 dt t z t y t x ds )(')(')('222++=2. 对坐标的曲线积分(,)(,)ABL P x y dx Q x y dy +⎰在(,)(,)ABL P x y dx Q x y dy +⎰中,AB L 是以A 为起点,以B 为终点,参数方程为 ()()x x t y y t =⎧⎨=⎩的平面曲线,A 点的坐标为((),())x y αα,B 点的坐标为((),())x y ββ.物理意义:变力F沿曲线L 所做的功⎰⎰+=∙=LLQdy Pdx r d F W其中 }.,{;}),(,),({dy dx r d y x Q y x P F ==为熟练掌握该积分的计算公式,关键是把握以下两点:1) 积分变量(,x y )在AB L 上,故满足曲线方程(),()x x t y y t ==; 2) (),()dx x t dt dy y t dt ''==. 对坐标的曲线积分的计算公式为(,)(,){[(),()]()[(),()]()}ABL P x y dx Q x y dy P x t y t x t Q x t y t y t dt βα''+=+⎰⎰.,αβ分别对应于,A B 点的参数t 的值,可能,αβ<也可能αβ>.类似地,对于空间曲线AB L ,也有类似的计算公式.设AB L 是以A 为起点,以B 为终点,参数方程为 ()()()x x t y y t z z t =⎧⎪=⎨⎪=⎩的空间曲线,A 点的坐标为((),(),())x y z ααα,B 点的坐标为((),(),())x y z βββ,(,,),(,,),(,,)P x y z Q x y z R x y z 在曲线AB L 上连续,则(,,)(,,)(,,)ABL P x y z dx Q x y z dy z x y z dz ++⎰{[(),(),()]()[(),(),()]()[(),(),()]()}P x t y t z t x t Q x t y t z t y t R x t y t z t z t dt βα'''=++⎰.两类曲线积分之间的关系。
2007年爲务紅兮菴赛培训班线面积分练习题参考解答2006.5.13一•填空题(每小题3分,共15分)1 •设厶为椭圆手+召=1,其周长为Q , 解:贞(2xy 2+ 3x 2+ 4y 2心=巾 2xy 2ds + 血(3x 2+ 4y 2)dy =0 4-也 则 j (2 卩 2 + 3x 2 + 4b )d5= 12° L 2•设27:x + y + z=l,则Jj(x + |^|)dS =JA /3 ・L解:JJ(x + A|)dS = Hxd5 + JJ[41SJI 2As = 1 2Q •<4加iX+ M +》|)dS 二胡 dS二制x 2+(y+l)2<2Wl + z :+zfdrd 尸制Vjdxd 尸耳再・1・1 =扌屁%丫2 + / + 2 二 R 23 •密度为仏的均匀金属丝厂:X 十V 十〜—K 对于兀轴的转动惯量x+尹十z=04 =細)尿・解:—也3+门“亦=訓厂(++尸+才)“佔時“尼血论詁疋.2欣=扌“()兀7?'・4 •设厶:宀(卩+ 1)2二2xdy-ydx x 2十尹2 +2尹十3-7T5.设X:z = -y]l-x 2-y 2,贝!j / = jj x 2dydz + cos ydzdx + zdxdy =3 71解:/ = JJ x 2dydz+ JJ cos ydzdx + JJ zdxdy = 0 + 0 - jj -^X-x 2 -y 2dxdy =i^-评注:对于第二类线、面积分也可利用对称性简化计算,但要注意①不能就组合积分整体使用,要分成单个积分进行;②与Riemann积分的对称性的结论刚好相反,例如光滑曲面刀关于x = 0(即yOz平面)对称(包括侧也对称),则有0, 若伪x的偶函数,⑵dj也二2j“(xj,z)dWz,若f为x的奇函数.L刀半③也可利用轮换对称性。
二.选择题(每小题3分,共15分)(将正确选项的代号填在括号内)1 •设曲线积分\c xy2dx^y(p(x)dy与路径无关,其中0(x)有连续的导数,且0(0) = 0 ,贝叮(:;xy2dx + y(p(x)dy等于(A)l・(B) 0・(C) 21. (D)|.(::xy2dx + y(p(x)dy = J; w(0)dy + [兀• F dx = 0 + * = £ 2.设S:x2+/+z2=l 解:(沦0),5是S在第一卦限中的部分,则有(A) 口xdS = 4JJ xdS ・(B) jj ydS = 4 jj xdS ・S S] S S](C) JJ zdS = 4jj xdS ・(D) jj xyzdS = 4JJ xyzdS ・答:(C )S S\ S S\解:因为S :x2 + y2 -\-z2 =1 (z > 0)关于x = 0对称,关于尹=0也对称,且兀和入;yz 都是x的奇函数、尹是尹的奇函数,于是U xdS = 0, jj xyzdS = 0, jj>d5 = 0 , s s s {B 4jj xdS > 0,4JJ xyzdS > 0 ,故(A)、(B)、(D)都不对•事实上,将JJzdS S] S| s 视为密度〃 =z时$的质量,则显然有Jjzd5 = 4jj zdS ,再由x,y,z在S】上S S|的轮换对称性有Jj zdS = 4口zdS = 4口xdS・S S] S]3•设Z = {(x,j;?z)|x2+/+z2=^2},在以下四组积分中,一组的两个积分同时为零的是(A) x2dS,^j* x2dvdz ・(B)前xdS,曲Xdpdz ・E2•外z(C)前xdS,曲xdydz ・(D)前xydS,前ydzdx・答:(B )解:因为2'关于x = 0 (即yOz 平面)对称,x 和卩是x 的奇函数,而F 是x 的xydS = 09 x 2dS = 2[Jf x 2dS =;£ 乞半而第二类曲面积分xdydz = 2 xdydz = 2 jj yjR 2-y 2-z 2dydz =,/ 第 y 2+z 2<R 2有前 ydzdx = 2 前 ydzdx -4•设曲线厶:/(x,^) = l (/(x,y )具有一阶连续偏导数)过第II 象限内的点M 和 第IV 象限的点N,厂为厶上从点M 到点N 的一段弧,则下列积分少于零的是(A) J 厂/Cr,y)d¥ ・(C) J 厂/(x 』)d5・(B) \r f(x,y)Ay ・(D) J 厂./;(s)dr + /:(x 』)dp ・ 答:(B)解:J 厂/(x,,)& = ]*厂& = J dx 〉0,不选(A);J./(兀J )dy =(厂dp = J dx<0,选(B); J 厂 f(x,y)d5 = J 厂ch > 0,不选(C);J 厂 /:(x ,y)^ + f ;(x, y)dy = J 厂 df(x,y) = J : df(x 9 y) = = 1-1 =0, 不选(D)・5 •设 Z :z = x 2+ y 2(z < 1), D xv :x 2+ y 2< \ ,则 jj zdydz 可化为二重积分 (B) jj(x 2+y 2) (-2x)dxdy ・%,偶函数,故第一类曲面积分皿(A) || (x 2+ 尸)• 2xdxdy ・(C) ^(x 2+y 2)-2ydxdy.5(D) jj(x 2+y 2)-(Lrdy.因为⑪血二cosodS二空陞dx® (—般地有业二气 =3屯),而“cosy " cos a cos p cosy 解:X:z = x2 +y2 (z < 1)的外侧即下侧,故dydz = -z^dxdy = -2xdxdy 9所以JJ zdydz = -jj (x2 +y2)- (-2x)dxdy = JJ (x2 + 才)• 2xdxdy ・三. (本题 6 分)计算/ = [jj/ -z 2)dx + (2z 2 -x 2)dj ; + (3x 2 -y 2)dz ,其中厶是平 面x + y + z = 2与柱面|x| + |y| = l 的交线,从z 轴正向看去,厶为逆时针方向.解:设》为平面x + j ; + z = 2上由厶所围成部分的上侧,久是》在xQy 面上的投影域,则》的法向量的方向余弦为COSQ 二COS0二cosy 二洽, D xy : |x| +1_y| < 1, 27 的曲面面积元素dS = y/3dxdy.由 Stokes 公式,得 左/ (y 2- z? )dx + (2z 2- x 2)dy + (3x 2- y 2)dz£ ds 二 + J](-8x -4y-6z)dSz V 3三学口 (4x + 2p + 3z)dS 二乎JJ (兀一尹 + 6)>/3dxdj ; "3 z "3 J =-2 0 + 0 + j]6drdy =-12-(A /2)2 =-24. 另解:将其化为平面曲线积分.记厶在面上的投影曲线为C,则C:x + y=l,取逆时针方向,C 所域记为2*•因为z-2-x-y , dz = -dx-dy ,故原积分可化为见[一4兀$ + 牡 + 4尹 一 2xy + j/2]dx + [-2x 2 -Sx-Sy- +4.ry + 3j^2 ]dy恪林公式=Jj(-2x + 2j/-12)cLrdy = 0 + 0-12jjdxdy = -24. S ・ D巧四. (本题6分)求密度为“°的均匀半球壳Z:z = ylR 2-x 2-y 2对于z 轴的转动 惯量.2 2y-zd_2Z 2-X 2I=\^[y 2-(2-x-y)2]dx + [2(2-x-y)2-x 2]iy- (3x 2- y 2)dx - (3x 2- y 2)dy解:/严口(工+尸)角辽二“。
9线面积分一、曲线积分、曲面积分的计算公式1. 对弧长的曲线积分«Skip Record If...»的计算公式:«Skip Record If...»中,«Skip Record If...»为一段光滑的平面曲线,其参数方程为«Skip Record If...»«Skip Record If...»为定义在曲线«Skip Record If...»上的一连续函数.为熟练掌握计算公式,关键是把握以下两点:1)积分变量«Skip Record If...»在曲线«Skip Record If...»上,故«Skip Record If...»满足曲线«Skip Record If...»的方程;2)«Skip Record If...»是曲线«Skip Record If...»的弧长的微分,故«Skip Record If...».所以有如下的计算公式:«Skip Record If...».对«Skip Record If...»是空间曲线段的情况,有类似的公式.设«Skip Record If...»的方程为«Skip Record If...»«Skip Record If...»在«Skip Record If...»上连续,则对弧长的曲线积分«Skip Record If...».弧微元«Skip Record If...»2. 对坐标的曲线积分«Skip Record If...»在«Skip Record If...»中,«Skip Record If...»是以«Skip Record If...»为起点,以«Skip Record If...»为终点,参数方程为«Skip Record If...»的平面曲线,«Skip Record If...»点的坐标为«Skip Record If...»,«Skip Record If...»点的坐标为«Skip Record If...».物理意义:变力«Skip Record If...»沿曲线«Skip Record If...»所做的功«Skip Record If...»其中«Skip Record If...»为熟练掌握该积分的计算公式,关键是把握以下两点:1) 积分变量(«Skip Record If...»)在«Skip Record If...»上,故满足曲线方程«Skip Record If...»;2) «Skip Record If...».对坐标的曲线积分的计算公式为«Skip Record If...».«Skip Record If...»分别对应于«Skip Record If...»点的参数«Skip Record If...»的值,可能«Skip Record If...»也可能«Skip Record If...»«Skip Record If...».类似地,对于空间曲线«Skip Record If...»,也有类似的计算公式.设«Skip Record If...»是以«Skip Record If...»为起点,以«Skip Record If...»为终点,参数方程为«Skip Record If...»的空间曲线,«Skip Record If...»点的坐标为«Skip Record If...»,«Skip Record If...»点的坐标为«Skip Record If...»,«Skip Record If...»在曲线«Skip Record If...»上连续,则«Skip Record If...»«Skip Record If...».●两类曲线积分之间的关系。
一.第一类线面积分的简化充分利用积分曲线与曲面的方程与对称性.例.求(22LI x x y ds ⎡⎤=++⎣⎦⎰ ,其中()22:11L x y +-=.解.(((22222LLLI y ds yds ds π⎤=+=+=+=+⎦⎰⎰⎰. 例.求()I xy z ds Γ=+⎰ ,其中2221:0x y z x y z ⎧++=Γ⎨++=⎩. 解.()()()1233I xyds x y ds xy yz zx ds x y z ds ΓΓΓΓ=-+=++-++=⎰⎰⎰⎰ ()()22221110663x y z x y z ds ds πΓΓ⎡⎤++-++-=-=-⎣⎦⎰⎰ . 注.求()23I x y z ds Γ=++⎰ ,其中2221:0x y z x y ⎧++=Γ⎨+=⎩. 解.()()32333002I x y z ds xds zds x y ds ΓΓΓΓ=++=+=++=⎰⎰⎰⎰ . 例.求()2I x dS ∑=⎰⎰ ,其中222:2x y z y ∑++=.解.()()()222222222342222I x y z dS x y dS x y z dS ∑∑∑=++=+=++=⎰⎰⎰⎰⎰⎰()441416ydS y dS dS π∑∑∑=-+=⎰⎰⎰⎰⎰⎰ .二.第二类线面积分的估值例.设()33cos :02sin x a t L t y a t π⎧=≤≤⎨=⎩,逆时针方向,()()222L ydx xdy F a x xy y -=++⎰ , 证明:()lim 0a aF a →+∞=. 解.设()222yP xxy y=++,()222xQ xxy y-=++,则()LF a Pdx Qdy =+=⎰(),max 6n LLLP Q e ds ds a ⋅≤≤=⋅⎰⎰⎰,而22222x y x xy y +++≥()3322222432a x xy y x y =≤≤+++,故 ()2192F a a ≤,因此()lim 0a aF a →+∞=.例.设∑为圆柱体()()()2200413x x y y z -+-≤≤≤的外表面,证明:()()22cos sin 2x y dydz xy dzdx dxdy ∑+++≤⎰⎰ . 证.()n n A dS A e dS A e dS A dS dS ∑∑∑∑∑⋅=⋅≤⋅≤≤⎰⎰⎰⎰⎰⎰⎰⎰,证毕.注.第二类线面积分的估值除了转化为第一类线面积分,也可以 用格林公式和高斯公式转化为重积分.例.设22:0L x y x y +++=,逆时针,证明:22cos sin Lx y dy y x dx -≤⎰证.左式()()2222cos sin cos sin 2DDy x d x x d πσσ=+=+≤⎰⎰⎰⎰,证毕.例.设22:1L x y +=,逆时针,证明:sin sin 222545y x Lxe dy ye dx x y π--≥+⎰. 证.左式sin sin sin sin sin sin 222254545y x y x y xL D D xe ye e e e e dy dx d y x y x σ---⎛⎫+=-=+≥= ⎪-+-+⎝⎭⎰⎰⎰⎰⎰ ()sin sin 122555x xD D e e d d σσπ-+≥=⎰⎰⎰⎰,即得,证毕. 三.第二类线积分的计算 例.求224Lxdy ydxI x y-=+⎰,其中L 从()1,0A -沿y =到()1,0B ,然后 再沿直线到()1,2D -的有向曲线.解一. cos :sin x tAB y t=⎧⎨=⎩,:0t π-→,:1BD y x =-+,:11x →-,故12221374cos sin 521288dt dx I t t x x ππππ---=+=+=+-+⎰⎰; 解二.由于Q Px y ∂∂=∂∂,故取()1,1C --,()1,1E -,()1,2F ,则 ACCEEBBFFDI =++++⎰⎰⎰⎰⎰;解三.除原点,Q Px y ∂∂=∂∂,取222:4C x y r +=,逆时针,则L DA DAI +=-=⎰⎰ 222222241172488CDAx y r xdy ydx dy dxdy r r y πππ+≤---=-=-=+⎰⎰⎰⎰⎰. 注.若在区域D 内Q Px y ∂∂=∂∂,则(1)当D 单连通时,0CPdx Qdy +=⎰ ; (2)当D 内有洞时,对所有绕洞的闭曲线C ,CPdx Qdy +=⎰ 常数.例.求()()()()22222222222222L y y x xI dx dy x y x y x y x y ⎡⎤⎡⎤-+=++-⎢⎥⎢⎥-+++-+++⎢⎥⎢⎥⎣⎦⎣⎦⎰ , 其中22:9L x y +=,取逆时针方向.解.取()2221:2L x y r -+=,()2222:2L x y r ++=,均为逆时针方向,则12L L I =+⎰⎰ ,而()()112222222222222r L L B y y x x dx dy d r r r x y x y σπ⎡⎤⎡⎤-+-=++-==-⎢⎥⎢++++⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰ , 类似地,22L π=-⎰ ,故224I πππ=--=-.例.求x y z dx y z x dy z x y dz I +-++-++-=,其中的Γ为曲线22211x y z x y z ⎧++=⎨++=⎩上逆时针从()1,0,0A 到()0,0,1B 的一段弧.解一.2221:1x y z x y z ⎧++=Γ⎨++=⎩在xOy 上的投影为22:0x xy y x y 'Γ++--=,22223x y x xy y ξηξηξη=-⎧⎨=+⎩++=+,故2222032x xy y x y ξηξ++--=⇒+-=2211333ξη⎛⎫-+= ⎪⎝⎭,令11cos 3311cos 1133cos 33121cos 33x t t t y t t tz x y tξη⎧=+-⎪⎧⎪=+⎪⎪⎪⇒=++⎨⎨⎪⎪=⎪⎪⎩=--=-⎪⎩,又:013z t ππ→⇒=-→,故3I dt ππ==⎰. 解二.()()()12121212BABAI z dx x dy y dz I I ΓΓ+=-+-+-=-=-⎰⎰⎰,其中()11,1,1rot 12,12,12121212n ijkI z x y e dS x y z z x y∑∑∂∂∂=---⋅==∂∂∂---⎰⎰⎰⎰()11,1,12122,2,23332I dS ππ∑∑⎡⎤⎛⎫=---==--⎥ ⎪ ⎪⎥⎝⎭⎦⎰⎰, ()()()112001211221I x dx d x x dx =--+-=-=-⎡⎤⎣⎦⎰⎰,故I =.注.∑是边长为的等边三角形的外接圆减去一个小圆缺. 解三.代入1z x y =--,则()()221I x y dx x y dy 'Γ=+---=⎰()()1042216216196D OAOA x dx d x dx σπ'Γ+⎛⎫--=---=-+= ⎪ ⎪⎝⎭⎰⎰⎰⎰⎰ . 注.求()()()22222223I y z dx z x dy x y dz Γ=-+-+-⎰,其中1:2x y x y z ⎧+=Γ⎨++=⎩,从z 轴正向看为逆时针方向.解.代入2z x y =--,则()()2222223242I x y z dx x y z dy 'Γ=-+-+-++=⎰()12221224xyxyD D x y d d σσ--+=-=-⎰⎰⎰⎰.例.求()22222ydx xdy z x y dzI x y Γ--+=+⎰,其中22221:1x y a b x y z ⎧+=⎪Γ⎨⎪++=⎩,从z 轴正向 看逆时针. 解.2222rot ,,20y xz x y x y ⎛⎫-=⎪++⎝⎭,但是Γ张成的曲面均与z 轴有交点, 故不能直接用斯托克斯公式,注意到对所有逆时针围绕z 轴的1Γ,Γ与1-Γ均张成一个围绕z 轴的曲面,故()111I Γ+-Γ-ΓΓ=-=⎰⎰⎰ ,于是取2211:0x y z ⎧+=Γ⎨=⎩,则122DI ydx xdy d σπΓ=-=-=-⎰⎰⎰ . 四.第二类面积分的计算注.若12∑=∑+∑关于xOy 面对称,1∑与2∑在xOy 面上的投影相反, 则当()(),,,,R x y z R x y z -=时,(),,0R x y z dxdy ∑=⎰⎰;当()(),,,,R x y z R x y z -=-时,()()1,,2,,R x y z dxdy R x y z dxdy ∑∑=⎰⎰⎰⎰.例.求()()()I y z dydz z x dzdx x y dxdy ∑=-+-+-⎰⎰,其中∑为半球面z =222x y x +=截下部分的上侧.解.由于∑关于xOz 面对称,故()()I y z dydz x y dxdy ∑=-+-⎰⎰,又22222424220x x y x zz x x y z x z y zz z +=⎧-++=⇒⇒=⎨+=⎩,y yz z -=,故 ()()()22,0,,,1x y x I y z x y dxdy y z x y dxdy z z z ∑∑---⎛⎫⎡⎤=--⋅--=-+-= ⎪⎢⎥⎝⎭⎣⎦⎰⎰⎰⎰(()22222xy D x y x y x y d d σσπ+≤⎡⎤+-=⋅=⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰.例.求2222cos cos cos dydz dzdx dxdyI x x y z z∑=+-⎰⎰,其中2222:x y z R ∑++=外侧. 解.()222,,211,,cos cos cos x y z I dS x x y z z R ∑⎛⎫=-⋅=⎪⎝⎭⎰⎰ 2222221211211cos cos cos cos cos cos y dSdS dS R x y z R x z R z∑∑∑⎛⎫⎛⎫+-=-== ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰⎰⎰22224tan x y R R π+≤=⎰⎰.例.求()32222xdydz ydzdx zdxdyI xy z∑++=++⎰⎰,其中()()()22211:1025167x y z z --∑++=≥ 上侧.解.取1:z ∑=()()22222211:0,12516x y z x y r ⎛⎫--∑=+≥+≤ ⎪ ⎪⎝⎭,均取下侧,则12121312I xdydz ydzdx zdxdy r π∑+∑+∑∑∑-∑=--=++=⎰⎰⎰⎰⎰⎰⎰⎰ . 注.若()22:212z x y z ∑=+--≤≤外侧,可取()221:24z x y ∑=+≤上侧,()222:11z x y ∑=-+≤下侧,22223:x y z r ∑++=外侧,则 ()121231231=I xdydz ydzdx zdxdy r ∑+∑+∑∑∑∑∑∑=--=++--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰换曲面,再用高斯公式.。
第五节 对坐标的曲面积分
知识要点
一 几个基本概念
1、双侧曲面和有向曲面
2、双侧曲面正向的规定
3、封闭曲面正向的规定 二 问题的提出
1、求稳定流动的不可压缩流体(设密度为1)在单位时间内流向曲面指定侧的流量
2、处理方法:分割、取近似、作和、取极限 三 概念及性质 1、定义
注 (1)记法和被积表达式的含义
(2)与二重积分和对面积的曲面积分的区别 (3)物理意义
2、存在条件
3、性质
(1) 曲面的可加性 (2) 曲面的有向性 四 计算方法和应注意的问题
1、计算之前能用曲面方程化简被积函数的先化简
2、若曲面是开的,则有 方法一,直接计算法 (1)“一看、二换、三计算”
“看什么”?(是对面积的还是对坐标的、还是重积分呢?)“换什么,(一换被积函数,再换积分区域)怎么换,换时应注意什么?(注意曲面的侧从而定正负号)”“换后如何计算?”(按二重积分的计算方法)
(2)关键是往何坐标面投影,投影域的求法和公式中正负号的确定 (3)还要注意曲面是否需分片,何时不得不分片计算. 方法二,添面用高斯公式法
(1)若直接计算麻烦,特别是被积函数有两项或三项的和,且
z
R
y P x Q ∂∂+
∂∂+∂∂连续,简单,关于
z
R
y P x Q ∂∂+
∂∂+∂∂的三重积分易积,则添面再用高斯公式. (2)所添曲面一般是比较特殊的曲面,一方面要保证原曲面积分在该面上好算,另一方面又要考虑方向和原曲面方向的协调性。
3、若曲面是闭的,则有
方法一:可否直接利用高斯公式?注意高斯公式成立的条件。
方法二:若因由于一阶偏导不连续而不能直接用高斯公式,可通过添加面去掉不连续点然后再用高斯公式,注意所添加面一般是比较特殊的曲面,一方面要保证原曲面积分在该面上好算,另一方面又要考虑方向和原曲面方向的协调性。
方法三:用投影法直接计算,注意该往哪个面投,方向及正负号的确定
4、如果以上方法均失效,可尝试利用两类曲面积分的关系计算,特别是带有三项和且被积表达式中含有抽象函数的时候。
总之,对曲面的积分无论第一型还是第二型的都转化成二重积分计算
1) 统一积分变量,代入曲面方程,方程不同时曲面要分片 2) 积分元素投影:
第一类:面积投影,不考虑曲面的侧和方向
第二类:有向投影,考虑曲面的侧和方向,从而有正负号 3) 确定积分域:把曲面积分域投影到相关坐标面上
典型例题分析
例1、 计算xyzdxdy ∑
⎰⎰,其中∑是球面2221x y z ++=外侧在0,0x y ≥≥的部分
解: 分析:由于是开的,不可以直接用高斯公式,由于被积表达式只有一项,所以直接计算比较简单
(1)由于积分变量为dxdy ,所以必须往xoy 面上投影,从而将z 换成,x y 的函数 (2)因z 有正负,从而必须将∑分成上下两部分
(3)上下两个面的方向及投影后的正负号确定问题:在xoy 面上投影域D 为以原点为心半径为1的四分之一圆域,整体球面的外侧对于上半球面应为上侧,下半球面应为下侧.
xyzdxdy ∑
⎰⎰⎰⎰⎰⎰∑∑+=下
上xyzdxdy xyzdxdy
=
---⎰⎰dxdy y x xy D
2
21dxdy y x xy D
⎰⎰---)1(2
2 = dxdy y x xy D
⎰⎰--2
2
12=
-=⎰⎰rdr r r r d 1
240
1sin cos 2ϑϑϑπ
30
π
例2、计算⎰⎰
∑
++++=2
12222)
()(z y x dxdy a z axdydz I ,其中∑为下半球222y x a z ---=的上
侧)0(>a
解:分析:开的,(1)不能直接用高斯公式,若直接计算,由于被积表达式有两项,计算
较为麻烦。
(2)观察被积函数和曲面方程,发现可以化简。
(3)根据化简后被积函数特点和∑的形状,添面用高斯公式简单。
⎰⎰
∑
++++=2
12
2
2
2)
()(z y x dxdy a z axdydz I =
⎰⎰∑
++dxdy a z axdydz a 2
)(1,添面1∑:0=z ,下侧,则
[]32
25)(21)(11a dxdydz a z a a dxdy a z axdydz a π-=++-=++⎰⎰⎰⎰⎰Ω
∑+∑(由高斯公式得) 所以323232
3
1)(25)(1251a dxdy a a a dxdy a z axdydz a a I xy D πππ-=---=++--=⎰⎰⎰⎰∑
例3、求⎰⎰
∑
++++=2
32
2
2
)
(z y x zdxdy ydzdx xdydz I ,其中∑是椭球面122
2222=++c
z b y a x 的外侧
)0,0,0(>>>c b a
解:分析:(1)∑虽闭,但由于包含原点,而
x P ∂∂,y Q ∂∂,z
R
∂∂在原点不连续,所以不能直接用高斯公式。
(2)直接采用投影计算比较麻烦,而且若转换成对面积的曲面积分也不容易计算,因为
γβαcos ,cos ,cos 不好求,即便求出,将来的积分也很困难。
(3)如果∑为球面方程的话则不仅可以简化被积函数,而且计算也很简单。
经过分析,添加曲面1∑:2
2
2
2
ε=++z y x ,,0>ε且很小,方向取内侧,则
00)
(1
2
3222==++++=
⎰⎰⎰⎰⎰
Ω
∑+∑dxdydz z y x zdxdy ydzdx xdydz I (由高斯公式得)
所以⎰⎰
∑
++++=
2
3222)
(z y x zdxdy ydzdx xdydz I =⎰⎰
∑++++-1
2
3222)
(z y x zdxdy ydzdx xdydz
πε
ε
431
1
1
1
2
2
==
++-
=⎰⎰⎰⎰⎰Ω∑dxdydz zdxdy ydzdx xdydz (再次用高斯公式得)
例4、计算[][][]dxdy z z y x f dzdx y z y x f dydz x z y x f I +++++=
⎰⎰∑
),,(),,(2),,(,其中
),,(z y x f 为具有一阶连续偏导数,∑为平面1=+-z y x 在第四挂限部分上侧 解:分析:(1)∑不闭,直接投影计算不可以,因被积表达式含有抽象函数 (2)添面用高斯公式也不好,因为
x P ∂∂+y Q ∂∂+z
R
∂∂中也会含有抽象函数,无法计算三重积分(3)根据分析和前面的归纳,用两类曲面积分之间的转化计算会好一些。
∑的法向量为{
}1,1,1-,(注意第四挂限部分上侧在此处的作用),所以3
1cos ,3
1cos ,3
1cos =-
==
γβα,由两类曲面积分的转换公式
2
3
13
1)(3
1=
=
+-=
⎰⎰⎰⎰∑
∑
ds ds z y x I (注意利用了简化被积函数和对面积曲面积分的计算方法)。