步进电机控制及高速脉冲指令
- 格式:ppt
- 大小:12.39 MB
- 文档页数:29
用plc控制两台伺服做两轴控制用PLSY指令控制步进电机实际上德国人有更好的办法,就是用真正的光学绝对值码盘的绝对值编码器,并同时输出正余弦信号,其绝对值信号也是用通讯形式输出,例如海德汉的EnDat,或STEGMANN的Hipeface,其时钟频率可在1MHz以上,虽然绝对值信号输出,仍然要编码-解码,速度快了,响应一样跟不上,但是不要忘了,其是真正光学刻线的绝对值,其响应不上并不丢脉冲。
并不影响精度,而只是滞后,这时,其同时输出的正余弦信号就有用了,既可以作为速度反馈(即时的),也可以作为高速定位的冗余,此高速定位是减速,等速度下来,仍然由高精度绝对信号定位停车,从而做到高速高精度。
用这种方法,编码器是贵了,但运动控制卡的成本就可以下来,这的确是种好方法,可惜,国内做运动控制的,基本是跟着日本人走,还很少有人认识到这种方法。
三菱PLC的PLSY指令我想实现步进电机旋转60° 我这样写对不对 PLSY k3000 k240 y3 步进电机的步距角是0.9不对的首先对脉冲输出仅限于y000或y001 也就是说不能指定y003一个脉冲是赚一个步距角吗plsy k3000 k66 y000PLSY K3000 K1548 Y3步距0.9的Y0和Y1同时输出PLSY指令是可以的(其实也不是同时,因为你得分别写两条这个指令,所以只能说是在同一扫描周期内执行而已.姑且认为是同时吧)如下:LD X0PLSY K1000 K2000 Y0PLSY K1000 K2000 Y1Y0和Y1的高速输出标志各是各的,不会互相影响.不可以同时执行同一个输出点的两条PLSY指令.首先用MT晶体管系列的,其次,最好不用PLSY指令,使用DIVR指令,可重复使用.对于脉冲输出来控制伺服电机,台达PLC完全可以胜任,而且已经有很多实际应用,PLSY/PLSR指令是脉冲输出控制指令,DRVI/DRVA/ZRN是专门定位指令,还有PWM脉宽调制指令都可以使用,其中PLSY是直接脉冲输出,PLSR是可以设置加减速时间脉冲输出指令.前几日改造设备,原设备用的PLC是三菱FX1N的,运动机构用的是安川的伺服电机。
我们一般采用高速输出信号控制步进电机和伺服电机做位置,角度和速度的控制,比如定位,要实现这个目的,我们要知道这几个条件:1、PLC高速输出需要晶体管输出,继电器属于机械动作,反应缓慢,而且易坏2、以PLC为例,高速输出口采用Y0 、Y13、高速输出指令常用的有PLSY 脉冲输出PLSR 带加减速PLSV……可变速的脉冲输出ZRN……原点回归DRVI……相对定位DRVA……绝对定位4、脉冲结束标志位M80295、D8140 D8141 为Y0总输出脉冲数6、在同一个程序里面Y0做为脉冲输出,程序可以存在一次,当需要多次使用的时候,可以采用变址V进行数据的切换,频率,脉冲在不同的动作模式中,改变数据正对上述讲解的内容:我们用一个程序来表示若我们以后可能接触步进;伺服这一块,上述内容,大家一定要熟练掌握在高速计数器与编码器配合使用之前,我们首先要知道是单向计数,还是双向计数,需要记录记录的数据,需要多少个编码器,在PLC中也需要多少个高速输入点,我们先要确认清楚;当我们了解上面的问题以后,参照上题的寄存器分配表得知我们该选择什么高速计数器如:现在需要测量升降机上升和下降的高度,那么我们需要采用双向编码器,即可加可减的,AB相编码器,PLC需要两个IO点,查表得知,X0 X1为一路采用C251高速计数器那么我们可以这样编程,如图开机即启动计数,上升时方向,C251加计数下降时方向,C2 51减计数我们要求编码器转动的数据达到多少时,就表示判断实际升降机到达的位置注意:在整个程序中没有出现X0、X1这个两个软元件是因为C251为X0、X1的内置高速计数器,他们是一一对应的,只要见到c251,X0 X1就在里面了,当然,用了C251以后,X0 、X 1不能在程序里面再当做开关量使用了接线参照下图相对11题定时器和计数器来说,本题目主要是告诉大家学习高数处理的功能PLC内部高速计时器是计数器功能的扩展,高速计数器指令与定位指令使PLC的应用范围从逻辑控制、模拟量控制扩展到了运动控制领域;特点:其最大的特点就是执行的过程中不受PLC的扫描周期影响,而是按照中断方式工作,并且立即输出;之前的题目中,我们说过内部信号计数器,它可以对编程元件X、Y、M、S、T、C信号进行计数;当X信号计数时,要求X的断开和接通一次时间应大于PLC的扫描周期,否则会出现丢步的现象,如果PLC的扫描周期为40ms,则一秒里X的信号频率最高位25HZ;这么低的速度限制了PLC的高速应用范围,如编码器,可以达到10000HZ;编码器后面会讲到我们看高速计数器,可以先参照下面表格图片出处:FX编程手册U:增计数输入;D:减计数输入;A:A相输入;B:B相输入;R:复位输入;S:启动输入;一般不同型号的PLC,可能对应高速计数器的点位控制不一样,首先满足硬件功能;然后在软件上进行实现,两者缺一不可图片出处:三菱编程手册我们现在说说高速计数器与普通计数器的区别:1、高速计数器相对于普通计数器,不受扫描周期的影响,但是,速度还是有限制的;2、多个高速计数输入口,和对应的高速计数器不是任意选择的,由上表得知,他们是一一对应的3、所有高速计数器均为停电保持型,题当前值和出点状态在停电时都会保持停电前的状态,也可以利用参数设定为非停电保持型;4、作为高速计数器的高速输入信号,建议使用电子开关信号,而不要使用机械开关触点信号,由于机械触点的振动会引起信号输入误差,从而影响到正确计数;考考大家的理解能力看了上图,再看后面的内容,我们会不会对高速计数器又一步加深理解编码器是产生脉冲反馈给PLC的检测装置,一般用来检测外围设备走的距离和速度,我们常见的检测位置的元件有:光电编码器、光栅编码器;最常用感应同步器、磁栅编码器、容栅编码器;10年前的产品电位器;30多年前的产品激光干涉仪、机器视觉系统;高精度、高成本旋转式光电编码器原理:光电编码器,是通过光电转换将输入轴上机械几何位移量转换成脉冲数字量的传感器; 光电编码器是有码盘和光电检测装置组成;码盘是在一定直径的透明圆板上等分的印制了若干个细长线,如图,经发光二极管等电子元件组成的检测装置检测脉冲输出信号,即可测量编码器输入轴的转角;通过计算单位时间编码器输出脉冲的个数就能计算出输入轴的转速;增量式编码器:增量式编码器是直接利用光电转换原理输出三组方波脉冲:A、B和脉冲相位差90度,以判断旋转方向,如下图所示;增量式编码器特点:l 构造简单,l 机械寿命长,l 抗干扰能力强,可靠性高;l 缺点是无法输出轴转动角的绝对位置;绝对式编码器:绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数;这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码;显然,码道越多,分辨率就越高,对于一个具有N位二进制分辨率的编码器,其码盘必须有N条码道;特点:1.可以直接读出角度坐标的绝对值;2.没有累积误差;3.电源切除后位置信息不会丢失;4.有10位、14位、16位等品种;。
步进电机总线控制与脉冲控制的区别
步进电机是靠接收脉冲电流来实现速度、位置和方向的掌握,脉冲的多少打算步进电机的位置,脉冲的速率打算电机的转速,脉冲的方向打算电机的转向。
现在大多数步进电机的掌握方式就是用plc发脉冲给驱动器,驱动器驱动电机运转。
脉冲型方式已经存在了几十年,对于一些应用要求比较高的场合脉冲型已经不能满意需求,需要总线型来掌握。
对于需要使用许多电机的场合,比如许多医疗器械都有二三十个轴,假如使用脉冲型一是不好掌握,一个plc最多也就可以掌握六七个轴,电机一多就需要多个上位机,对空间体积要求比较大,而大多医疗器械体积就比较小巧紧凑,二是电机多了脉冲型布线很难,线路一多就存在信号干扰问题导致设备不稳定。
假如使用总线型就只需要两根信号线和电源线把全部电机串联起来就搞定,设计和安装都特别便利,也不会存在大量布线的信号干扰问题。
有些机械上面自身就带有电脑主机,假如使用脉冲型就不能发挥电脑主机的用处,还需要一个上位机或者运动掌握卡来掌握步进电机驱动系统,而使用总线型直接就可以通过电脑主机来掌握,有运动掌握卡方式的专业性能,而且成本和空间体积比起另外两种方式也很大优势。
有些产品在运动过程中需要力矩模式,比如锁螺丝机有些使用力矩模式,脉冲型是无法对电机电流做到掌握从而调整力矩,而总线型就
可以做到。
总线型方式相对于脉冲型不仅仅是体积上面小巧许多,掌握程序的编写也会相对于plc梯形程序简洁很多,而且还能做到电机电流、电压、温度、堵转等的时时反馈,电流、细分的时时转变,s形加减速、模拟量、同步指令、离线掌握等的简洁掌握。
总的来说总线型对于脉冲型来说有许多新的功能特点而且没有什么劣势,总线型是将来步进电机运动掌握的进展方向和趋势。
步进电机的单脉冲控制、双脉冲控制、开环控制和闭环控制
步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器。
虽然步进电机已被广泛地应用,但步进电机并不能像普通的直流电机,交流电机在常规下使用。
它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。
因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。
步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。
随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。
步进电机的单脉冲控制与双脉冲控制步进电机的控制有单电压和高低电压控制之分;
单电压控制用一串脉冲信号控制一个电子开关的通、断来控制电机驱动绕组得电、失电;高低电压控制在单电压控制的基础上,用另一串脉冲控制一个电子开关的通、半导通,两个开关串联,两个控制脉冲同频率但不同相位和宽度。
达到给绕组的供电电压全、一半、迅速关断的目的。
步进电机的开环控制和闭环控制步进电机的开环控制
1、步进电机开环伺服系统的一般构成
步进电动机的电枢通断电次数和各相通电顺序决定了输出角位移和运动方向,控制脉冲分配频率可实现步进电动机的速度控制。
因此,步进电机控制系统一般采用开环控制方式。
图为开环步进电动机控制系统框图,系统主要由控制器、功率放大器、步进电动机等组成。
2、步进电机的控制器
1、步进电机的硬件控制
步进电动机在个脉冲的作用下,转过一个相应的步距角,因而只要控制一定的脉冲数,即。
PLC如何控制步进电机PLC(可编程逻辑控制器)是一种广泛应用于工业自动化领域的控制设备,通过输入/输出模块对各种机电设备进行控制。
在PLC系统中,步进电机是常见的执行元件之一,它具有准确的位置控制和高的加减速性能。
本文将介绍PLC如何控制步进电机,包括步进电机的驱动方式、PLC的控制原理及步进电机控制的程序设计。
一、步进电机的驱动方式1.串行通信驱动方式:步进电机通过串行通信驱动方式与PLC进行通信和控制。
首先,将PLC与串行通信模块相连,通过串行通信模块与步进电机控制器进行通信。
PLC通过串行通信模块发送指令,步进电机控制器接收指令后控制步进电机运动。
2.并行通信驱动方式:步进电机通过并行通信驱动方式与PLC进行通信和控制。
与串行通信驱动方式类似,首先将PLC与并行通信模块相连,通过并行通信模块与步进电机控制器进行通信。
PLC通过并行通信模块发送指令,步进电机控制器接收指令后控制步进电机运动。
3.脉冲驱动方式:步进电机通过脉冲驱动方式与PLC进行通信和控制。
在脉冲驱动方式中,需要PLC输出脉冲信号控制步进电机。
通常情况下,PLC将脉冲信号传递给步进电机驱动器,在驱动器中产生相应的控制信号,实现对步进电机的控制。
二、PLC的控制原理PLC作为控制器,一般采用扫描运行方式。
其运行原理如下:1.输入信号读取:PLC将外部输入信号输入到输入模块中,采集输入信号,并将其从输入模块传递给中央处理器(CPU)进行处理。
2. 程序执行:CPU根据事先编写好的程序进行处理,包括数据处理、逻辑运算和控制计算等。
PLC程序一般采用ladder diagram(梯形图)进行编写。
3.输出信号控制:根据程序的执行结果,CPU将处理好的数据通过输出模块发送给外部设备,用于控制和操作外部设备。
三、步进电机控制的程序设计步进电机的控制程序主要包括参数设定、模式选择、起停控制、运动控制等部分。
下面以一个简单的例子来说明步进电机控制的程序设计过程:1.参数设定:首先需要设定步进电机的一些参数,如电机型号、步距角度、运动速度等。
干货:三菱FX3U控制伺服的高速脉冲指令,跟我一起做,马上就会三菱FX3U做为一款入门级PLC,应用很广泛,其实学习PLC就几点,开关量的输入、输出,就是我们平常所说的IO、伺服(或者步进电机)的控制、Modbus通信、模拟量输入输出,掌握了这些,基本可以做80%的项目了,小编今天主要来和大家说一下伺服电机(或者步进电机)的控制方法。
其实伺服电机就是高级一点的步进,其自带编码器,驱动器功能更加强大,支持位置模式、速度模式和转矩模式三种类型,因为伺服电机可以精确定位,所以通常我们用到的是位置模式。
位置模式需要PLC发送高速脉冲串给伺服驱动器,伺服驱动器再驱动伺服电机按照一定的角度和速度来旋转,从而达到位置控制的模式三菱FX3U这款PLC控制伺服电机有两种方法,一种是高速脉冲模式,一种是定位模式,其指令是不一样的,同时,FX3U只支持三路高速脉冲的发送,分别是Y0、Y1、Y2,所以最多只能控制三台伺服电机,如果想控制超三台伺服电机,可以选择加装定位模块或者几台PLC组网来实现。
一、高速脉冲模式1、PLSY指令PLSY是高速脉冲输出指令,可以指定Y0、Y1或者Y2发送高速脉冲,其指令格式如下如上图所示,分别是16位高速脉冲输出和32位高速脉冲输出,16位高速脉冲输出可以发送最大频率为32767的数据,而32位高速脉冲输出可以发送最大频率为200,000Hz的脉冲串,各位同学可以根据实际需要进行选择,不过这里小编建议大家养成一个好习惯,就是坚持用32位运算进行程序处理,可以有效防止程序溢出。
熟悉了相关指令,我们看下详细用法。
比如我们想接通M0的同时,让Y0输出频率为10000,数量为25000的脉冲串,那么就这样来写程序其中:频率为每秒钟发送的脉冲数,表示到伺服电机就是速度发送脉冲数即为一共发送多少个脉冲给驱动器,转换到伺服电机就是走过的距离或者角度Y0为输出通道,接线到驱动侧的高速脉冲输入点。
这里M0只要保持接通,就会以当前速度发送25000个脉冲,中间如果M0断开,则停止发送脉冲,再次接通M0则重新发送25000个脉冲直到完成。
S7-200用于步进电机控制一、步进电机与步进电机驱动器的接线步进电机是一种将电脉冲转化为角位移的执行机构。
当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。
现在比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)和单相式步进电机等。
电机固有步距角:它表示控制系统每发一个步进脉冲信号,电机所转动的角度。
电机出厂时给出了一个步距角的值。
如86BYG250A型电机给出的值为0.9°/1.8°(表示半步工作时为0.9°、整步工作时为1.8°),这个步距角可以称之为‘电机固有步距角’,它不一定是电机实际工作时的真正步距角,真正的步距角和驱动器有关。
步进电机的相数:是指电机内部的线圈组数,目前常用的有二相、三相、四相、五相步进电机。
电机相数不同,其步距角也不同,一般二相电机的步距角为0.9°/1.8°、三相的为0.75°/1.5°、五相的为0.36°/0.72° 。
在没有细分驱动器时,用户主要靠选择不同相数的步进电机来满足自己步距角的要求。
如果使用细分驱动器,则‘相数’将变得没有意义,用户只需在驱动器上改变细分数,就可以改变步距角。
驱动器就是为步进电机分时供电的,多相时序控制器,它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用两相四线的步进电机,四根引出线分别为:●红色:A●绿色:A-●黄色:B●蓝色:B-●接线时应于步进驱动器一一对应。
海为一路脉冲控制两台步进电机
发布人:厦门海为科技有限公司
一、引言
海为S系列PLC有一路的高速脉冲输出,一般情况下只能控制一台步进电机进行工作。
但是为了充分利用资源节约成本,可以利用正转/反转输出脉冲的模式再增加两个输出端来控制两台步进电机进行工作。
正转脉冲和反转脉冲分别接的是两台步进电机的脉冲输入端口,而两台步进电机的方向则通过其它输出端口进行控制。
这样就实现了通过一路正转/反转脉冲输出来控制两台步进电机的功能。
l 适用条件:两台步进电机(脉冲+方向)分时工作(不可同时工作)
二、硬件连接示意图及配置
1、PLC与步进电机的硬件连接图如下所示。
2、在PLC硬件配置中,脉冲输出通道号的输出模式必须改成“2-正转/反转脉冲”
三、PLC程序示例
下面是根据上述思路,对两台步进电机进行简单的正反转控制示例
步进电机1正反转:
PauF端:输出频率,PauN端:脉冲输出的个数(必须为正,表示控制电机1)
Y2是控制步进电机1的正反转,Y2失电时,步进电机1正转;Y2得电时,步进电机1反转。
步进电机2正反转:
PauF端:输出频率,PauN端:脉冲输出的个数(必须为负,表示控制电机2)
Y3是控制步进电机1的正反转,Y3失电时,步进电机2正转;Y3得电时,步进电机2反转。
四、总结
通过一路的高速脉冲输出达到可以控制两台步进电机进行分时工作的目的。
不足之处在于不能控制两台步进电机同时进行工作。
步进电机的PWM控制作者:马天才鲍小春来源:《速读·中旬》2017年第04期摘要:随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用,所以步进电机的控制就显得尤为重要。
本文介绍了PWM向导控制的设定方法,并阐述利用PWM实现步进电机控制的系统设计。
关键词:步进电机;PWM;控制步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。
随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用,所以步进电机的控制就显得尤为重要。
步进电机的控制方法有很多种,比如PLS控制、运动向导控制等,在众多控制中,PWM控制具有它独特的优点。
一、控制要求步进电机选用KINCO公司的2S86Q-03080两相双极微步型电机,驱动器选用KINCO-2M530。
设置驱动器细分为10,输出相电流为3.0A。
按下正转启动按钮,步进电机顺时针旋转,转一圈用时5秒,按下反转启动按钮,步进电机逆时针旋转,转一圈用时10秒,并且步进电机在任何时刻都能够从正转变为反转或从反转变为正转,按下停止按钮,步进电机停止。
二、控制方案步进电机是一种将电脉冲转化为角位移或线位移的执行机构。
当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(即步进角)。
通过控制脉冲个数来控制角位移量或线位移量,从而达到准确定位的目的;通过控制脉冲频率来控制电机转动的速度,从而达到调速的目的。
驱动器细分为10,则设定DIP1=OFF、DIP2=OFF、DIP3=OFF、DIP4=ON,输出相电流为3.0A,则设定DIP6=OFF、DIP7=OFF、DIP8=ON。
2S86Q-03080型步进电机的步进角是1.8°,而驱动器细分为10,于是每来一个脉冲,步进电机旋转的角度为0.18°,旋转一圈就需要2000个脉冲。
旋转角=步进角/细分数=1.8°/10=0.18°旋转一圈脉冲数=2∏/旋转角=360°/0.18°=2000PWM输出周期=转一圈所需时间/转一圈所需脉冲数所以本步进电机正转时的PWM输出周期=2500us/脉冲,反转时的PWM输出周期=5000us/脉冲。