正项级数敛散性判别法的讨论
- 格式:doc
- 大小:460.79 KB
- 文档页数:10
关于正项级数敛散性判定方法的总结比较正项级数指的是所有项都是正数的级数。
求解正项级数的敛散性是数学分析、高等数学、物理等学科中经常使用的基本问题。
以下是关于正项级数敛散性判定方法的总结。
1. 通项公式法如果正项级数的通项公式可以明确地表示出来,那么可以通过解析判断级数的敛散性。
例如:$\sum\limits_{n=1}^{\infty} \frac{1}{n^2}$,该级数的通项公式为$\frac{1}{n^2}$,由于是调和级数的平方,因此它是收敛的。
但如果通项公式不容易明确表示出来,就需要采用其他方法。
2. 比较判别法当正项级数与一个已知收敛或发散的级数的通项公式形式非常类似时,就可以使用比较判别法。
若存在一个收敛级数$\sum\limits_{n=1}^{\infty} a_n$,则当正项级数$\sum\limits_{n=1}^{\infty} b_n$满足$\lim\limits_{n\to\infty}\frac{b_n}{a_n}=c>0$时,$\sum\limits_{n=1}^{\infty}b_n$与$\sum\limits_{n=1}^{\infty} a_n$同时敛散。
其中,$a_n$和$b_n$都是正数。
3. 极限比值法极限比值法也叫作柯西-黎曼判别法。
该方法需要计算正项级数的项数无穷大时的比值$\lim\limits_{n\to\infty}\frac{a_{n+1}}{a_n}$,如果该比值$<1$,则级数收敛;如果$>1$,则级数发散;如果$=1$,则判别不出敛散性。
此外,当无法计算极限时,也可以将比值的极限转化为自然对数的形式再进行计算。
将正项级数转化为积分形式,再判断积分的敛散性。
若存在一个$a>0$,使得函数$f(x)$在$[a,+\infty)$上单调递减且非负,则当正项级数$\sum\limits_{n=1}^{\infty} a_n$的通项公式为$a_n=f(n)$时,级数敛散与积分$\int_a^{+\infty} f(x)dx$的敛散性相同。
关于正项级数敛散性判定方法的总结比较1. 引言1.1 介绍正项级数是数学中一个非常重要的概念,它在数学分析、实变函数论等领域都有着广泛的应用。
正项级数的收敛性质对于理解数学问题、解决实际问题都有着重要的意义。
在研究正项级数的收敛散性判定方法时,我们可以利用一些常用的方法来对其进行分析和求解。
在数学中,我们经常会遇到各种各样的级数,如调和级数、几何级数等。
这些级数的收敛性质可能相差甚远,有些级数可能收敛,而有些级数可能发散。
我们需要通过一些方法来判断一个级数是否收敛。
对于正项级数而言,有一些常用的判定方法,如比较判别法、根值判别法、积分判别法、对数判别法等。
本文将重点介绍正项级数的收敛散性判定方法,通过比较这些方法的特点和适用范围,帮助读者更好地理解正项级数的收敛性质。
希望本文能够为相关领域的研究者提供一些帮助,并为未来的研究工作提供一定的参考。
1.2 研究意义正项级数是数学中重要的研究对象,对其收敛和发散性进行判定具有重要的理论和实际意义。
正项级数的收敛性判定可以帮助我们了解无穷级数的性质,进一步推导出一些重要的数学定理和结论。
正项级数在实际问题中的应用十分广泛,比如在概率论、统计学、物理学等领域都有着重要的应用价值。
通过对正项级数的收敛性进行准确判断,可以帮助我们更好地理解和解决实际问题。
研究正项级数的收敛性判定方法,可以拓展数学领域中的知识体系,丰富数学理论的内涵,推动数学学科的发展。
深入研究正项级数的收敛性判定方法具有重要的研究意义和实际应用价值。
1.3 研究现状正项级数是数学中重要的概念,其收敛性对于分析问题的解决具有重要的意义。
关于正项级数的收敛性判定方法,已经有许多经典的理论成果,这些方法在实际问题的解决中发挥着重要作用。
在研究现状方面,正项级数的收敛性已经得到了深入的研究和总结。
目前常用的级数收敛判定方法有比较判别法、根值判别法、积分判别法和对数判别法。
这些方法各有特点,能够适用于不同类型的正项级数,为研究者提供了多种选择。
正项级数敛散性的判别方法正项级数是指级数的所有项都是非负数的级数。
判断正项级数的敛散性的方法主要有以下几种:比较判别法、根式判别法、积分判别法、极限判别法和对数判别法。
一、比较判别法:1. 比较判别法之比较大法:如果对于正项级数∑an和∑bn,当n趋向于无穷大时有an≤bn,那么若∑bn收敛,则∑an也收敛;若∑bn发散,则∑an也发散。
2. 比较判别法之比较小法:如果对于正项级数∑an和∑bn,当n趋向于无穷大时有an≥bn,那么若∑bn发散,则∑an也发散;若∑bn收敛,则∑an也收敛。
二、根式判别法:设an≥0,如果存在正常数p使得lim[(an)^1/n]=a,则1. 若a<1,则级数∑an收敛;2. 若a>1,则级数∑an发散;3.若a=1,根式判别法无法确定级数的敛散性。
三、积分判别法:将正项级数∑an转化为函数f(x)的积分,即∫f(x)dx,如果对于函数f(x),当x趋向于无穷大时有f(x)递减且连续,则1. 若∫f(x)dx收敛,则级数∑an也收敛;2. 若∫f(x)dx发散,则级数∑an也发散。
四、极限判别法:如果存在常数L>0,使得lim(n→∞)n*an=L,则1. 若L<1,则级数∑an收敛;2. 若L>1,则级数∑an发散;3.若L=1,极限判别法无法确定级数的敛散性。
五、对数判别法:设an≥0,如果存在正常数p使得limln(an)/ln(n)=a,则1. 若a<1,则级数∑an收敛;2. 若a>1,则级数∑an发散;3.若a=1,对数判别法无法确定级数的敛散性。
这些判别方法在实际应用中都有其适用范围和局限性,需要根据具体情况选择合适的方法进行判断。
同时,在判断级数的敛散性时,还可以结合其他定理和方法,如柯西收敛准则、阿贝尔定理、绝对收敛等进行综合分析。
摘要:级数是高等数学教学中的一个重要内容,而正项级数又是级数的重要组成部分,判别正项级数敛散性的方法很多,本文主要讨论了正项级数的判别法一些特性,及判别正项级数敛散性的一般步骤.并阐述一些正项级数判别的新方法.关键词:正项级数、收敛、判别法Abstract:Higher Mathematics series is an important part of teaching, The series of positive terms is an important series Part, Positive identification of Convergence and Divergence of many ways, This paper discusses the positive series of distinguishing a number of sub-features, and determine the positive series for convergence of the general steps. and presents a number of positive series of new methods of identification.Key words: Positive series; Convergence; Discriminance;引言数项级数是数的加法从有限到无限的自然推广.但在作加法运算时,许多有限次加法的性质在计算无限次加法时发生了改变.首先,有限次相加的结果总是客观存在的,而无限次相加则可能不存在有意义的结果.也就是说,一个级数可能是收敛或发散的.因而,判别级数敛散性的问题往往被看作级数的首要问题.教材和很多文献已经给出了关于级数敛散性的判别方法,但实际应用中往往会遇到这样的问题:对于一个给定级数,应采用哪种判别法才能快速而又简洁的判定它的敛散性呢?即应按怎样的步骤去思考,在短时间内很难把握.本文就这一问题做了一些总结和讨论.1正项级数的定义和收敛的充要条件1.1正项级数的定义如果级数1n n u ∞=∑中各项均有0n u ≥,这种级数称为正项级数.1.2 正项级数收敛的充要条件如果级数1n n u ∞=∑中,部分和数列{}n S 有界,即存在某正数M ,对0,n ∀>有{}n S M <.2 正项级数判别法2.1 比较判别法【 1】设n u ∑和n v ∑是两个正项级数,如果存在某个正数N ,对一切n>N 都有n un v ≤,那么(1) 若级数n v ∑收敛,则级数n u ∑也收敛; (2) 若级数n u ∑发散,则级数n v ∑也发散.比较判别法的极限形式: 设n u ∑和n v ∑是两个正项级数.若limnn nu l v →∞=,则 (1)当0l <<+∞时,n u ∑和n v ∑同时收敛或同时发散; (2)当0l =时,若级数n v ∑收敛,则级数n u ∑也收敛; (3)当l =+∞,若级数n v ∑发散,则级数n u ∑也发散. 2.2 比式判别法【2】设为n u ∑正项级数,且存在某正整数0N 及常数(01)q q << (1) 若对一切0n N >,成立不等式1n nu q u +≤,则级数n u ∑收敛; (2)若对一切0n N >,成立不等式11n nu u +≥,则级数n u ∑发散.比式判别法的极限形式 若为n u ∑正项级数,则 (1)当1lim 1n n n u u +→∞<时,级数n u ∑收敛;(2)当1lim1n n nu u +→∞≥时,级数n u ∑发散.2.3 根式判别法【2】设为n u ∑正项级数,且存在某正整数0N 及常数l(1) 若对一切0n N >1l ≤<,则级数n u ∑收敛; (2) 若对一切0n N >1≥,则级数n u ∑发散;根式判别法的极限形式:设n u ∑是正项级数,且n l =,则(1) 当1l <时,则级数n u ∑收敛; (2) 当1l >时,则级数n u ∑发散. 2.4 积分判别法设()f x 为[1,)+∞上非负递减函数,那么正项级数()f n ∑与反常积分1()f x dx +∞⎰同时收敛或同时发散.2.5 Raabe 判别法【 1】设n a ∑为正项级数(0)n a >,且则111(),()n n a l o N a n n+=++→∞ (1)当1l >时,级数n a ∑收敛;(2)当1l <时,级数n a ∑发散.2.5.1 第一对数判别法【2】设n a ∑为正项级数(0)n a >,且1ln()lim ln nx a l n→∞=.则 (1)当1l >时,级数n a ∑收敛;(2)当1l <时,级数n a ∑发散.2.5.2 第二对数判别法【2】设n a ∑为正项级数(0)n a >,且1lim lnnx n a n l a →∞+=则 (1) 当1l >时,级数n a ∑收敛;(2)当1l <时,级数n a ∑发散.引理1 当0x >,有不等式ln(1)1xx x x <+<+: 证明 作函数()ln f x x =.在区间[]1,1x +上应用lagrange 中值定理可得1ln(1)ln111,11111x x x x ξξ+-<=<<<+++- 也就是说,当0x >,有ln(1)1xx x x <+<+. 引理2 无穷级数11p n n ∞=∑,当时1p >收敛;当时1p <发散 引理3 设级数n a ∑和n b ∑为正项级数(0,0)n n a b >>,存在正整数N ,当n N >,满足不等式:11n n n na b a b ++≤,则(1) 如果n b ∑收敛,则n a ∑收敛;(2)如果n a ∑发散,则n b ∑发散. 对数第二判别法的证明(1)当1l >时,则存在1p >,使1l p >>,由1lim lnnn n a n l a →∞+=知,对0l p ε=->存在正整数N ,使得当n N >时,有1()n n a l l p p a +>--=,即ln 1p n n ae a +>. 由数列1(1)n n ⎧⎫+⎨⎬⎩⎭单调递减且趋于e 知对一切正整数n 有1(1)n e n+<.于是当n N >时有11111(1)(1)(1)p nn p p n n n n a a a n n a n++⎡⎤>+=+⇔<+⎢⎥⎣⎦ 而无穷级数11pn n∞=∑,当时1p >收敛,故由引理3知当1l >时,级数n a ∑收敛. (2)当1l <时,存在正数1,2p p ,使1l p q <<<,由1lim lnnn n a n l a →∞+=知,对0l p ε=->存在正整数1N ,使得当1n N >时, 有1n n a a +< ()l p l p +-=,即ln ln 1p n q n n n ae e a +<< 根据q e e <且1lim(1)n n e n→∞+=知,存在正整数2N ,得当2n N >时有1(1)n q e n+>.取{}12max ,N N N =,则当n N >时有ln ln 1p n q n n n a e e a +<<11111(1)(1)nn n n a n n a n +⎡⎤<+=+⇔>⎢⎥⎣⎦而调和级数1n∑是发散的,故由引理3知当1l <时,级数n a ∑发散.2.5.3 第二对数判别法和Raabe 判别法的等价性既然第二对数判别法和Raabe 判别法都是以p 一级数作为比较标准得出的,那么它们之间有什么内在的必然的联系呢?下面我们将证明第二对数判别法和Raabe 判别法是等价的.我们有:定理 数列n a 是正数列,则1lim lnnn n a n l a →∞+=充要条件是111(),()n n a l o n a n n+=++→∞. 证明 (充分性)若111(),()n n a l o n a n n+=++→∞.由引理1有 11()11ln ln 1()(),()11()n n l o a l l n n o o n l a n n n n o n n ++⎡⎤<=++<+→∞⎢⎥⎣⎦++ 111()ln (),()11()n n n n l no a a n n n l no n l a a o n n +++⇒<<+→∞++ 对上式取极限,可得1lim lnnn n a n l a →∞+=. (必要性)若1lim lnn n n a n l a →∞+=,有,1ln (0,)n n n n an l n a εε+=+→→∞,于是有 ,11ln(0,),exp()n n n n n n n a a l l n a n n a n nεεε++=+→→∞⇒=+,(0,)n n ε→→∞1lim exp()1lim (1)n n n n n l a n n n l a nε→∞→∞+⎡⎤+-⎢⎥⎣⎦⇒-==1111(1),(0,),11(),()n n n n n n n n n a a a l l n l n o n a a a n n n nεεε+++⇒-=+→→∞⇒==++=++→∞由定理可知,第二对数判别法是Raabe 判别法的等价变形,因而将第二对数判别法称为Raabe 对数判别法更合理一些.对于有的正项级数有Raabe 对数判别法是很方便的.应用举例 例1 1!2!!2!n n u n ++=分析:本题无法使用根式判别法与比式判别法,因此选择比较判别法进行判断.!10,()!(1)(2)(1)(2)(21)(2)n n n n u n n n n n n n n <≤=<→∞++-且级数11(21)(2)n n n ∞=-∑收敛所以级数收敛. 例2112(1)(1)(1)nn n a a a a ∞=+++∑分析:本题无法使用根式判别法、比式判别法,或比较判别法以及其他的判别法进行判断,因此选用充要条件进行判断11211211(1)(1)(1)(1)(1)(1)n n n n u a a a a a a ∞=-=-++++++∑111212111(1)(1)(1)(1)(1)(1)nn n n n n a S a a a a a a ∞∞====-<++++++∑∑n S 单调递增且有界所以级数收敛. 例3 1ln n pu n n=分析:本题分母含有ln n 的表达式,优先选择积分判别法 121,(2),1,ln (1)ln p p dx x p x x p x+∞-=≤≤+∞≠-⎰当且仅当1p >时收敛. 2ln ln ,(2),1,ln p dxx x p x x +∞=≤≤+∞=⎰级数收敛.例4 2(1)2nn+-∑ 分析:本题中分子中含有(1)n -,无法用比式判别法或其他判别法进行判别,所以这种判别法是根式判别法的类型,取上极限进行判别,因此,选用根式判别法.1lim 12n n →∞→∞==< 级数收敛. 3 正项级数新的判别方法引理 设正数列{}n u 单调递减,则级数1n n u ∞=∑与212n nn u ∞=∑同时收敛【 1】. 证明 级数202n nn u ∞=∑与212n nn u ∞=∑有相同的收敛性,不妨设级数1n n u ∞=∑的部分和为n S ,级数202n nn u ∞=∑的部分和为 n T .如果级数212n nn u ∞=∑收敛,即级数202n n n u ∞=∑收敛,又由于1n n u ∞=∑是单调递减的正项级数,则有112222n n n n S S u u k u u -<=++++11232212()()n n n u u u k u u k u ++≤+++++++ 12222n u u k u ≤+++=n T 所以212nn n u∞=∑收敛时,1nn u∞=∑也收敛.反之,当1n n u ∞=∑收敛时,有112342212()()n n n S u u u u k u u -+=++++++11242112222n n n u u u k u T -≥++++=所以1n n u ∞=∑收敛时,212n n n u ∞=∑也收敛.命题1(隔项比值法)设正数列{}n u 单调递减,且2lim n n nu u ρ→∞=.若12ρ<,则级数1n n u ∞=∑收敛. 证明 当21lim2n n n u u ρ→∞=<时,有22lim 21n n nu u ρ→∞=<.现取2,k n k N =∈,就有112.222222lim21lim212k k kkk kn n u u u u ρρ++→∞→∞=<⇒=<上式正是正项级数12220222kk k k k uu u k u k ∞==++++∑第k+1项与第k 项之比的极限,由比式判别法的极限形式可知212n n n u ∞=∑收敛,再由引理可知1n n u ∞=∑收敛.例1 判断正项级数21ln n nn∞=∑的收敛性. 证明 因为221ln(1)lim lim 1ln (1)n n n nu n n u n n +→∞→∞+==+ 可见比式判别法失效,现2ln n n ⎧⎫⎨⎬⎩⎭单调递减,改用隔项比值法求解.222ln(2)11lim lim ln 42(2)n n n n u n n u n n →∞→∞==< 由此可知级数21ln n nn∞=∑收敛. 命题2 设正数列{}n a 单调递减,且2lim n n na na ρ→∞=,若12ρ<,则正项级数1n n a ∞=∑收敛证明 记222,2,k k k k k k u a v u k N ==∈,由引理可知n a ∑与k u ∑同时收敛k u ∑与k v ∑同时收敛,故n a ∑与k v ∑同时收敛,在2lim n n na na ρ→∞=中令22kn =k N ∈,就有1122221222(2)2222222222k k k kk kkkkn naa a u na a u a +++===11122211..222k k k k k ku vu v +++==再令n →∞即得证. 例2 证明级数的221ln n n n ∞=∑收敛性 证明 设21ln n u n n=,因为正数列{}n u 单调递减,且有 222222ln 11lim lim ln 42n n n n u n n n u n n ρ→∞→∞===<由命题2知221ln n n n ∞=∑收敛. 4 总结与展望数学分析作为数学系的重要专业基础课程,对学习好其他科目具有重要作用.级数理论是数学分析的重要组成部分,在实际生活中的运用也较为广泛,如经济问题等.而正项级数又是级数理论中重要的组成部分,级数的收敛性更是级数理论的核心问题,要想解决正项级数的求和问题必须先解决正项级数收敛性判断.判断正项级数的一般顺序是先检验通项的极限是否为0,若为0则发散,若不为0则判断级数的部分和是否有界,有界则收敛,否则发散.若级数的一般项可以进行适当的放缩则使用比较判别法,或可以找到其等价式用等价判别法.当通项具有一定的特点时,则根据其特点选择适用的方法,如比值判别法、根式判别法.当上述方法都无法使用时,根据条件选择积分判别法、柯西判别法判别法.当无法使用根式判别法时,通常可以选用比式判别法,当比式判别法也无法使用时,使用比较判别法,若比较判别法还是无法判别时再使用充要条件进行断.由此,我们可以得到正项级数的判别法是层层递进使用的,每当一种判别法无法判断时,就出现一种新的判别法来进行判断,因此正项级数的判别法有无穷多种.正项级数收敛性判断的方法虽然较多,但使用起来仍有一定的技巧,根据不同的题目特点分析、判断选择适宜的方法进行判断,能够最大限度的节约时间,提高效率,特别是一些典型问题,运用典型方法,才能事半功倍.本文归纳总结正项级数收敛性判断的一些典型方法,比较这些方法的不同特点,总结出一些典型的正项级数,根据不同的题目特点分析、判断选择适宜的方法进行判断.正项级数收敛判别法也可用于判定负项级数及变号级数的绝对收敛性,也可以推广到傅立叶级数的敛散性判别,在复变函数中也可以用于判定级数在复平面上的敛散性和收敛半径.由于时间仓促,本文尚有许多不足之处,欢迎大家提出意见和建议,同时希望通过本文能加深学习者对正项级数的了解.参考文献[1] 陈欣.关于数项级数求和的几种特殊方法 .[J] . 武汉工业学院学报,2002,4.[2] 胡适耕,张显文编著.数学分析原理与方法 [M] .北京:科学出版社,2008,5[3] 吴良森等编著.数学分析习题精解[M] . 北京:科学出版社,2002,2.[4] 胡洪萍数列与级数敛散性判别定理[J] 西安联合大学学报,2004,2[5] B.A卓里奇编著,蒋锋等译. 数学分析[M] .北京高等教育出版社,2006,12[6] 夏学启. 贝努利数的简明表达法[J] . 芜湖职业技术学院学报,2006,2[7] 周应编著.数学分析习题及解答[M] . 武汉:武汉大学出版社,2001,8[8] 陈纪修,于崇华,金路编著. 数学分析下册[M]. 北京:高等教育出版社,2000,4。
关于正项级数敛散性的判别法作者: 学号: 单位: 指导老师摘要:级数是数学分析中的主要内容之一,我们学习过的数项级数敛散性判别法有许多种,柯西(Cauchy )判别法、达朗贝尔(D'Alembert )判别法、高斯(Gause )判别法、莱布尼兹(Leibniz )判别法、阿贝尔(Abel )判别法等,对数项级数敛散性判别法进行归纳,使之系统化.关键词:正项级数;敛散性;判别法1引言设数项级数121...++...nn n aa a a ∞+==+∑的n 项部分和为:121......nn n i i S a a a a ==++++=∑.若n 项部分和数列为{n S }收敛,即存在一个实数S ,使lim n x S S →∞=.则称这个级数是收敛的,否则我们就说它是发散的.在收敛的情况下,我们称S 为级数的和,可见无穷级数是否收敛,取决于lim n x S →∞是否存在,从而由数列的柯西(Cauchy )收敛准则,可得到级数的柯西(Cauchy )收敛准则[1]: 数项级数1nn a∞=∑收敛⇔0,,,N N n N p N ε++∀>∃∈∀>∀∈对,有+1+2++...+<n n n p a a a ε.当p=1时,可得推论:若级数∑∞=1n nu收敛,则u lim n n =∞→.其逆否命题为:若lim n ≠∞→,则级数∑∞=1n nu发散.2 正项级数敛散性判别法设数项级数1nn a∞=∑为正项级数()0n a ≥,则级数的n 项部分和数列{}n S单调递增,由数列的单调有界定理,有定理2.1:正项级数n 1u n ∞=∑收敛⇔它部分和数列{}n S 有上界.证明:由于,...),2,1(0u i =>i 所以{n S }是递增数列.而单调数列收敛的充要条件是该数列有界(单调有界定理),从而本定理得证 . 由定理2.1可推得 定理2.2(比较判别法):设两个正项级数n 1u n ∞=∑和n 1n v ∞=∑,且,n ,N N N ≥∀∈∃+有n n cv u ≤,c 是正常数,则1)若级数n 1n v ∞=∑收敛,则级数n 1u n ∞=∑也收敛;2)若级数n 1u n ∞=∑发散,则级数n 1n v ∞=∑也发散.证明:由定理知,去掉,增添或改变级数n 1u n ∞=∑的有限项,,则不改变级数n1u n ∞=∑的敛散性.因此,不妨设,+∈∀N n 有n n cv u ≤,c 是正常.设级数n 1n v ∞=∑与n1u n ∞=∑的n 项部分和分部是n B A 和n ,有上述不等式有,n n n n cB v v v c cv cv cv u A =+++=++≤+++=)...(......u u 212121n .1)若级数n 1n v ∞=∑收敛,根据定理1,数列{n B }有上届,从而数列{n A }也有上届,再根据定理1,级数n 1u n ∞=∑收敛;2)若级数n 1u n ∞=∑发散,根据定理1,数列{n A }无上届,从而数列{n B }也无上届,在根据定理1,级数n1un ∞=∑发散.其极限形式:定理2.2.1(比较判别法的极限形式):设n 1u n ∞=∑和n 1n v ∞=∑(n v 0≠)是两个正项级数且有lim =n x nuv λ→∞,+∞≤≤λ0,1)若级数n 1n v ∞=∑收敛,且+∞<≤λ0,则级数n 1u n ∞=∑也收敛;2)若级数n 1n v ∞=∑发散,且+∞≤<λ0,则级数n 1u n ∞=∑也发散.证明:1)若级数n1n v∞=∑收敛,且+∞<≤λ0,,由已知条件,,,,00N n N N ≥∀∈∃>∃+ε,有0u ελ<-nnv ,即n n v N )(u ,n 0ελ+<≥∀有,根据柯西收敛准则推论的逆否命题,级数n 1u n ∞=∑收敛;2)若级数n 1n v ∞=∑发散,且+∞≤<λ0,由已知条件,,u ,,,00n nv N n N N <-≥∀∈∃+∞<<∃+ελλε有:根据柯西收敛准则推论的逆否命题知,则级数n 1u n ∞=∑也发散.若级数n 1n v ∞=∑发散,且+∞=λ,有已知条件,,u ,,0M v N n N N M nn>≥∀∈∃>∃+有,即,u ,,0M v N n N N M nn>≥∀∈∃>∃+有,根据’柯西收敛准则推论的逆否命题,则级数n 1u n ∞=∑也发散.例1 判别级数∑∞=+1)1(1n n n 的敛散性.分析: 考虑通项)1(1+n n ,分子n 的最高幂是0(只有常数1 ),分母n 的最高幂是2,这时通项接近2201n n n =,原级数也接近于级数∑∞=121n n ,这是12>=p 的收敛的p-级数,那么原级数也一定收敛.事先知道级数是收敛的,就把通项放大,放大为一个收敛的级数通项,这个级数一般就是∑∞=121n n ,至多差一个系数. 解: 因为21)1(1n n n <+(分母缩小,分数放大),又由于∑∞=121n n收敛.则由此比较判别法,原级数∑∞=+1)1(1n n n 也收敛.例2 判别级数∑∞=--+12521n n n n 的敛散性. 分析: 考虑通项5212--+n n n ,分子n 的最高幂是1,分母n 的最高幂是2,这时通项接近,n n n 2122=,原级数也接近于级数∑∞=11n n,至多差一个系数.解: 因为52152221222--+≤--<=n n n n n n n n n (分子缩小,分母放大,分数缩小),又由于∑∞=11n n是发散的,则由比较判别法,原级数也是发散的.由比较判别法可推得:定理2.3(比值判别法——达朗贝尔判别法):设n 1u n ∞=∑(0>n u )为正项级数,且存在正常数q,则有1) 若,1u ,,1<≤≥∀∈∃++q u N n N N nn 有则级数n1un ∞=∑收敛;2) 若N n N N ≥∀∈∃+,,有1n n u v ≥,则级数n1u n ∞=∑发散. 证明:1)不妨设q N n n u u ,1n ≤∈∀+有, n=1, q u u 12≤;n=2,;u 2123q u q u ≤≤ n=3,;u 3134q u q u ≤≤......n=k,kk k q u u 11u ≤≤+......已知几何级数)10(11<<∑∞=q qu kk 收敛,根据柯西收敛准则推论的逆否命题,则级数n 1u n ∞=∑收敛.2)已知,1,n ,1≥≥∀∈∃++nn u u N N N 有即正项级数{n u }从N 项以后单调增加,不去近乎0()∞→0,则级数n1un ∞=∑发散.定理2.3.1(比值判别法的极限形式):设n 1u n ∞=∑(0>n u )为正项级数,且l u u n n n =+∞→1lim,有,1) 若1<l ,则级数n 1u n ∞=∑收敛;2) 若1>l ,则级数n 1u n ∞=∑发散.证明:1),1:q <<∃q l 由数列极限定义,l q l N N N l nn -<->∀∈∃>=∃++u u ,n ,,0-q 10有ε即1u u 1<<+q nn ,根据达朗贝尔判别法,级数n 1u n ∞=∑收敛;2)已知1>l ,根据数列极限的保号性,1u u ,,n1n >≥∀∈∃++有N n N N ,达朗贝尔判别法,级数n1un ∞=∑发散.例3 判别级数∑∞=1!n n n n 的敛散性. 解: 由于11])11(1[lim )1(lim ]!)1()!1([lim lim11<=+=+=++=∞→∞→+∞→+∞→en n n nn n n u u n n n n nn n n n n ,所以根据达朗贝尔判别法的推论知,级数∑∞=1!n nnn 收敛. 例4 判别级数∑∞=155n nn的敛散性.解: 由于15)1(5lim ]5)1(5[lim lim55511>=+=+=∞→+∞→+∞→n n nn u u n n n n n n n ,根据达朗贝尔判别法的推论知,级数∑∞=155n nn发散.当正项级数的一般项n u 具有积、商、幂的形式,且n u 中含有!n 、!!n 、n a 以及形如)()2)((nb a b a b a +++ 的因子时,用达朗贝尔判别法比较简便.定理2.4(根式判别法——柯西判别法):设n 1u n ∞=∑)0(u n >为正项级数,存在常数q ,则有1) 若,n ,N N N ≥∀∈∃+有1n <≤q u n ,则级数n 1u n ∞=∑收敛;2) 若存在自然数列的子列{}i n ,使得1u ≥nn ,则级数n 1u n ∞=∑发散.证明:1)已知,n ,N N N ≥∀∈∃+有qu n ≤n,有已知几何级数∑∞=<≤0n )10(q qn收敛,于是级数∑∞=0n nu收敛;2)已知存在无限个n,有1n≥n u ,即n u 趋近于0(∞→n ),于是级数n1un ∞=∑发散.定理2.4.1(根式判别法的极限形式):设n 1u n ∞=∑为正项级数,若lu n n n =∞→lim1) 若1<l 时,级数n 1u n ∞=∑收敛;2) 若1>l 时,则级数n 1u n ∞=∑发散.证明:1):q ∃1<<q l ,由数列极限定义,11,n ,,01q n 0<<--≥∀∈∃>-=∃+q u q l u N N N n n n 即有ε,根据柯西判别法,级数n 1u n ∞=∑收敛;2)已知1>l ,根据数列极限的保号性,1,n ,n >≥∀≥∃+n u N N N 有,根据柯西判别法,级数n 1u n ∞=∑发散.注意:在比值判别法和根式判别法的极限形式中,对=1r 的形式都为论及.实际上,当+1lim=1n x n u u →∞或+1lim =1n x nuu →∞时,无法使用这两个法判别来判断敛散性,如级数=11n n ∞∑和2=11n n∞∑,都有1+1lim =lim =11+1x x n n n n→∞→∞,()2221+1lim =lim =11+1x x n n n n →∞→∞⎛⎫ ⎪⎝⎭,lim x →∞,lim x →∞但前者发散而后者收敛.此外,定理2.3和定理2.4中,关于收敛条件+1q<1n nu u ≤和<1q ≤也不能放宽到+1<1n n u u,.例如对调和级数=11n n∞∑,有+1=<1+1n n u nu n ,,但级数却是发散的.例1 判别级数nnnn)12(1∑∞=+的敛散性.分析: 该级数的通项nnn)12(+是一个n次方的形式,于是联想到柯西判别法,对通项开n次方根,看其结果与1的大小关系.解: 由于12112lim)12(limlim<=+=+=∞→∞→∞→nnnnunnnnnnn,根据柯西判别法的推论,可得级数nnnn)12(1∑∞=+收敛.例2 判别级数∑∞=1ln32nnn的敛散性.解: 由于123232lim32limlimlnln>====∞→∞→∞→nnnnnnnnnnu,所以根据柯西判别法的推论知,级数∑∞=1ln32nnn发散.我们知道,广义调和级数(P-级数)11npnn=∑当1q>时收敛,而当1q≤时发散,因此,取P-级数作为比较的标准,可得到比比式判别法更为精细而又应用方便的判别法.即定理2.5(拉阿贝判别法):设1nnnu=∑是正项级数且有)0(u>n,则存在常数q,1)若11n,n,1>≥⎪⎪⎭⎫⎝⎛-≥∀∈∃++quuNNNnn有,则级数1nnnu=∑收敛;2)若11n,,1≤⎪⎪⎭⎫⎝⎛-≥∀∈∃++nnuuNnNN有,则级数1nnnu=∑发散.证明:1)由q u u n n ≥⎪⎪⎭⎫ ⎝⎛-+11n 可得n qu n n -<+1u 1,选p 使1<p<q.由 ()()()11lim11lim 111lim 100<=-=--=---→→∞→qpqx p qx x nq np x px pn ,因此,存在正数N ,是对任意n>N,pn n⎪⎭⎫ ⎝⎛-->111q ,这样p p p n n n n ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛---<+1111111u u n 1n ,于是,当n>N 时就有()Np PN PppN N N n n u n N u N N n n n n u u u u u .1.1...121.......u u u 11n 1n 1n -=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-≤=++++,当p>1时,级数∑∞=1n n1p收敛,故级数 则级数1nn n u =∑收敛;2)由,1111111nn n u u u u n n n n n -=-≥≤⎪⎪⎭⎫ ⎝⎛-++可得于是222231-n n n 1n 1n .1u .21...12.1.u u .....u u .u u u u n n n n n u =--->=++,因为∑∞=1n 1n 发散,故级数1nnn u=∑发散.定理2.5.1(拉阿贝判别法的极限形式): 设正项级数∑∞=1n n u )0(>n u ,且极限存在,若.)1(lim 1l u u n nn n =-+∞→ 1)当1<l 时,级数∑∞=1n n u 收敛;2) 当1>l 时,级数∑∞=1n n u 发散.例1 讨论级数sn n n ∑∞=⎥⎦⎤⎢⎣⎡⋅⋅⋅-⋅⋅⋅1)2(42)12(31 当3,2,1=s 时的敛散性.分析: 无论3,2,1=s 哪一值,对级数sn n n ∑∞=⎥⎦⎤⎢⎣⎡⋅⋅⋅-⋅⋅⋅1)2(42)12(31 的比式极限,都有1lim1=+∞→nn n u u .所以用比式判别法无法判别该级数的敛散性.现在用拉贝判别法来讨论.解: 当1=s 时,由于)(12122)22121()1(1∞→<→+=++-=-+n n n n n n u u n n n , 所以根据拉贝判别法知,原级数是发散的.当2=s 时,由于)(1)22()34()2212(1)1(221∞→<++=⎥⎦⎤⎢⎣⎡++-=-+n n n n n n n u u n n n , 所以原级数是发散的.当3=s 时,∵)(23)22()71812()2212(1)1(3231∞→→+++=⎥⎦⎤⎢⎣⎡++-=-+n n n n n n n n u u n n n , 所以原级数收敛.考虑到级数与无穷积分的关系,可得 定理2.6(积分判别法):设函数()f x 在区间(]1,∞上非负且递减,()n u f n =,n=1,2,……,则级数1nnn u=∑收敛的充分必要条件是极限()1lim xx f x dt →∞⎰存在.证明:()0f x ≥,知()F x =1()xf t dt ⎰单调递增.1lim ()lim ()xx x F x f t dt →∞→∞∴=⎰存在⇔()F x 在(]1,∞有界.(充分性)设1lim ()x x f t dt →∞⎰存在,则存在0M >,使得(]11,,()xx f t dt M ∀∈∞≤⎰级数1n n u ∞=∑的部分和12...n n S u u u =+++()()()12...f f f n =+++()()()()231211...n n f f t dt f t dt f t dt -≤+++⎰⎰⎰()()()111nf f t dt f M=+≤+⎰即部分和数列有上界.所以级数1n n u ∞=∑收敛.(必要性)设正项级数1n n u ∞=∑收敛,则它的部分和有上界,即存在0,,M n N ≥∀∈有,n S M ≤从而对(]1,,x ∀∈∞令[]1n x =+ 则()()2311121()()...()xnn n f t dt f t dt f t dt f t dt f t dt -≤=++⎰⎰⎰⎰⎰()()()112...1n f f f n S M -≤+++-=≤.故极限1()x f t dt ⎰存在.由此我们得到两个重要结论: (1)p 级数11pn n∞=∑收敛1p ⇔>; (2)级数11ln pn n n∞=∑收敛1p ⇔>. 证明:1)在p 级数一般项中,把n 换位x ,得到函数1()(1)pf x x x =≥.我们知道,这个函数的广义积分收敛1p ⇔>,因此根据正项级数的广义积分判定法,结论成立.2)证法同(1). 例1 判别级数∑∞=131n n 的敛散性. 分析:因为将n 换成连续变量x ,即是31x ,显然函数31x在),1[+∞是单调减少的正值函数,所以可以用积分判别法.解:将原级数∑∞=131n n 换成积分形式dx x ⎰+∞131,由于21210)21()21(lim 21121213=+=---=-=+∞→+∞∞+⎰px dx x p ,即dx x ⎰+∞131收敛,根据积分判别法可知,级数∑∞=131n n 也收敛. 例2 证明调和级数∑∞=11n n发散.把n 换成连续变量x 得函数x1,显然这是一个在),1[+∞单调减少的正值函数,符合积分判别法的条件.解:将原级数∑∞=11n n换成积分形式dx x ⎰+∞11,由于+∞=-+∞==∞++∞⎰0ln 111x dx x ,即dx x ⎰+∞11发散,根据积分判别法可知,调和级数∑∞=11n n发散. 3 正项级数敛散性其他两种判别法定理2.7(阶的估计法):设1n n u ∞=∑为正项级数1()()n pu O n n=→∞,即n u 与1p n 当()n →∞是同阶无穷小,则1) 当1p >时,级数1n n u ∞=∑收敛;2) 当1p ≤是,级数1n n u ∞=∑发散.把比较判别法和比式判别法结合,又可得 定理2.8(比值比较判别法):设级数1n n u ∞=∑和1n n v ∞=∑是正项级数且存在自然数N ,使当n N ≥时有11n n n nu v u v ++≤,则1) 若1n n v ∞=∑收敛,则1n n u ∞=∑也收敛;2) 若1n n u ∞=∑发散,则1n n v ∞=∑也发散.证明:当n N ≥时,由已知得12121111.......n N N n N N n n N N N n N N n Nu u u u v v v vu u u u v v v v +++++-+-=≤=由此可得,N N n n n n N Nu vu v u v v u ≤≤.再由比较判别法即知定理结论成立. 主要参考文献:[1]刘玉琏、傅沛仁等,数学分析讲义(第三版).高等教育出版社,2003 [2]罗仕乐,数学分析绪论.韶关学院数学系选修课程,2003.8 [3]李成章、黄玉民,数学分析(上册).科学出版社,1999.5 [4]邓东皋、尹晓玲,数学分析简明教程.高等教育出版社,2000.6 [5]张筑生,数学分析新讲.北京大学出版社,2002.6 [6]丁晓庆,工科数学分析(下册).科学出版社,2002.9[7]R.柯朗、F.约翰,微积分与数学分析引论.科学出版社,2002.5(注:文档可能无法思考全面,请浏览后下载,供参考。
关于正项级数收敛性的判别法On convergence of series with positive terms摘要正项级数作为级数理论中最基本的一类级数,它的敛散性的判定是级数理论的核心问题。
正项级数的敛散性判别方法有很多,本文对正项级数敛散性的各种判别法的特点与联系作了简单、系统的归纳与剖析。
正项级数不仅有一般级数收敛性的判别法,也有许多常用的和一些新的收敛性的判定方法,如比较判别法、柯西判别法、达朗贝尔判别法、拉贝判别法和对数判别法等,但运用起来有一定的技巧,需要根据对不同级数通项的特点进行分析,选择适宜的方法进行判定,这样才能够最大限度的节约时间,提高效率,特别是对于一些典型问题,运用典型方法,更能事半功倍。
关键词:级数;正项级数;收敛;发散。
AbstractDetermining whether or not a series is convergent in the series theory is the core issue. There are many ways to determine if a positive series is convergent. This thesis makes full analysis for the convergence determination methods for positive series. There are many common and some new convergence determination methods, such as comparison criterion, Cauchy criterion, d'Alembert criterion, Log Criterion and Rabe Criterion and other methods. But using which of these methods needs certain skills, needs to analyze the general items of the series. A lot of time can be saved if an appropriate method is used. Key words: Series;positive series; convergence; divergence.目录摘要................................................................................................................................................................. I I ABSTRACT.. (III)目录 (IV)引言 (1)1 基础知识 (2)1.1无穷级数的定义 (2)1.2无穷级数的部分和 (2)1.3无穷级数收敛的定义 (2)2 正项级数敛散性的常用判别法 (3)2.1柯西收敛原理[1] (3)2.2基本定理 (3)2.3比较判别法 (3)2.4达朗贝尔判别法 (4)2.5柯西判别法 (4)2.6积分判别法 (5)2.7阿贝尔判别法 (5)2.8狄利克雷判别法 (5)3 正项级数敛散性的一些新的判别法 (6)3.1定理1(比较判别法的推广) (6)3.2定理2(等价判别法) (6)3.3定理3(拉贝判别法)[3] (7)3.4定理4(高斯判别法)[5] (8)3.5定理5(库默尔判别法)[3] (8)3.6定理6(对数判别法)[4] (9)3.7定理7(隔项比值判别法)[3] (10)3.8定理8(厄尔马可夫判别法)[4] (10)3.9定理9(推广厄尔马可夫判别法)[4] (10)4 正项级数敛散性判别法的比较 (12)5 应用举例 (16)6 总结与展望 (20)参考文献 (21)致谢 (22)引言在数学分析中,数项级数是全部级数理论的基础,主要包括正项级数和交错级数,而正项级数在各种数项级数中是最基本的,同时也是十分重要的一类级数。