关于正项级数敛散性的判别法
- 格式:doc
- 大小:650.50 KB
- 文档页数:13
级数收敛与发散的判定方法级数是由一系列连加的无穷项组成的数列。
在数学中,判断一个级数是收敛还是发散是一个重要的问题。
下面我将介绍几种常见的方法来判定级数的收敛性或发散性。
一、正项级数收敛判定法正项级数是指级数的每一项都是非负数。
对于正项级数,我们可以使用以下几种方法来判定其收敛性或发散性。
1. 比较判别法:如果一个正项级数的每一项都小于等于另一个已知收敛的正项级数的对应项,那么这个级数也是收敛的;如果一个正项级数的每一项都大于等于另一个已知发散的正项级数的对应项,那么这个级数也是发散的。
2. 比值判别法:对于正项级数,计算相邻两项的比值,如果这个比值的极限存在且小于1,则级数收敛;如果大于1,则级数发散;如果等于1,则无法判定。
3. 根值判别法:对于正项级数,计算相邻两项的根的比值,如果这个比值的极限存在且小于1,则级数收敛;如果大于1,则级数发散;如果等于1,则无法判定。
二、交错级数收敛判定法交错级数是指级数的每一项交替正负。
对于交错级数,我们可以使用以下方法进行判定。
1. 莱布尼茨判别法:对于交错级数,如果级数的每一项绝对值递减趋向于零,并且满足单调性条件,即后一项的绝对值不大于前一项的绝对值,那么该级数收敛。
三、级数收敛判定法对于非正项级数,也有一些方法可以判定其收敛性。
1. 绝对收敛判别法:如果一个级数的绝对值级数收敛,那么原级数也收敛。
2. 条件收敛判别法:如果一个级数是收敛的但不是绝对收敛的,那么它是条件收敛的。
四、其他级数的判定方法除了上述常见的判定法外,还有一些特殊的级数判定方法。
1. 积分判别法:将一个级数与一个函数的积分进行比较,如果积分收敛,则级数收敛;如果积分发散,则级数发散。
2. 定积分法:将级数的前n项求和表示为一个关于n的函数,然后对该函数进行定积分,如果定积分收敛,则级数收敛;如果定积分发散,则级数发散。
总结:级数的收敛与发散的判定方法有比较判别法、比值判别法、根值判别法、莱布尼茨判别法、绝对收敛判别法、条件收敛判别法、积分判别法和定积分法等。
第二节 正项级数及其敛散性判别法正项级数是数项级数中比较简单,但又很重要的一种类型.若级数∑∞=1n nu中各项均为非负,即u n ≥0(n =1,2,…),则称该级数为正项级数.这时,由于u n =s n -s n -1, 因此有s n =s n -1+u n ≥s n -1,即正项级数的部分和数列{s n }是一个单调增加数列.我们知道,单调有界数列必有极限,根据这一准则,我们可以得到判定正项级数收敛性的一个充分必要条件.定理1 正项级数∑∞=1n nu收敛的充要条件是正项级数∑∞=1n nu的部分和数列{s n }有界.例1 试判定正项级数∑∞=122sin n nnπ的敛散性. 解 由s n =21121121218141212sin 8sin 4sin 21264-⎪⎭⎫⎝⎛-=++++<++++n n nn πππ<1, 即其部分和数列{s n }有界,因此正项级数∑∞=1πn nn2sin 2收敛. 直接应用定理1来判定正项级数是否收敛,往往不太方便,但由定理1可以得到常用的正项级数的比较判别法.定理2 (比较判别法) 设有两个正项级数∑∞=1n nu和∑∞=1n nv,如果存在正整数N ,使当n>N 时,u n ≤v n 成立,那么(1) 若级数∑∞=1n nv收敛,则级数∑∞=1n nu也收敛;(2) 若级数∑∞=1n nu发散,则级数∑∞=1n nv也发散.证 我们不妨只对结论(1)的情形加以证明. 设∑∞=1n nu的前n 项和为A n ,∑∞=1n nv的前n 项和为B n ,于是A n ≤B n .因为∑∞=1n nv收敛,由定理1,就有常数M 存在,使得B n ≤M (n =1,2,3,…)成立.于是A n≤M (n =1,2,3,…),即级数∑∞=1n nu的部分和数列有界,所以级数∑∞=1n nu收敛.证明结论(2)的方法与上面相同,读者不难自行完成. 推论1 (比较判别法的极限形式) 若正项级数∑∞=1n nu与∑∞=1n nv满足nnn v u ∞→l i m=ρ,则(1) 当0<ρ<+∞时,∑∞=1n nu与∑∞=1n nv具有相同的收敛性;(2) 当ρ=0时,若∑∞=1n nv收敛,则∑∞=1n nu亦收敛;(3) 当ρ=+∞时,若∑∞=1n nv发散,则∑∞=1n nu亦发散.证 (1) 由于nnn v u ∞→lim=ρ>0,取ε=2ρ>0,则存在N >0,当n >N 时,有ρ-n n v u <2ρ即n v ⎪⎭⎫ ⎝⎛-2ρρ<u n <n v ⎪⎭⎫ ⎝⎛+2ρρ.由比较判别法,知结论成立.结论(2)、结论(3)的证明类似,请读者自己完成.例2 判断级数∑∞=1n nn 31sin2的收敛性. 解 由于0≤2n n 31sin <2n ·n 31=n ⎪⎭⎫ ⎝⎛32,而级数∑∞=⎪⎭⎫ ⎝⎛132n n 收敛,由比较判别法知∑∞=1n n n 31sin2收敛. 例3 讨论p -级数∑∞=1n pn1的敛散性.解 当p =1时,p -级数即为调和级数∑∞=1n n 1,它是发散的. 当p <1时,p n 1≥n 1>0,由∑∞=1n n 1发散及比较判别法知,∑∞=1n p n1发散.当p >1时,由习题8-1的习题3知,正项级数加括号不影响其收敛性.现对级数从左至右依次按1,2,22, (2),…个项对p -级数加括号,得1+⎪⎭⎫⎝⎛+p p 3121+⎪⎭⎫ ⎝⎛+++p p p p 71615141+⎪⎭⎫ ⎝⎛++p p 15181 +…. 而⎪⎭⎫ ⎝⎛+p p 3121<⎪⎭⎫ ⎝⎛+p p 2121=121-p ,⎪⎭⎫ ⎝⎛++p p 7141<⎪⎭⎫ ⎝⎛++p p 4141 =2121⎪⎭⎫ ⎝⎛-p ,⎪⎭⎫ ⎝⎛++p p 15181<⎪⎭⎫ ⎝⎛++p p 8181 =181-p =3121⎪⎭⎫ ⎝⎛-p ,………………于是,p -级数加括号后的级数的每一项均小于以r =121-p (<1)为公比的等比级数的相应项,而该等比级数收敛,故由比较判别法知,原级数∑∞=1n p n 1收敛. 综上所述,当p >1时,∑∞=1n p n 1收敛;当p ≤1时,∑∞=1n p n1发散.例4 判断级数∑∞=+1n n n )1(12的敛散性.解 因为231)1(1lim2n n n n +∞→=nn n n +∞→323lim =2111lim n n +∞→=1,而p -级数∑∞=1231n n收敛(p =23>1),故由推论1知∑∞=+1n n n )1(12收敛.例5 试证明正项级数∑∞=+++1n n nn 2512发散. 证 注意到2512+++n n n >28n n =n181⋅ (n =1,2,3,…),因调和级数∑∞=1n n1是发散的,由比较判别法知,∑∞=+++1n n n n 2512发散.仔细分析例4与例5,我们就会发现,如果正项级数的通项u n 是分式,而其分子分母 都是n 的多项式(常数是零次多项式),只要分母的最高次数高出分子的最高次数一次以上(不 包括一次),该正项级数收敛,否则发散.利用比较判别法,把要判定的级数与等比级数比较,就可建立两个很有用的判别法.定理3 [达朗贝尔(d ′Alembert)比值判别法] 设有正项级数∑∞=1n nu,如果极限n n n u u 1lim+∞→=ρ,那么(1) 当ρ<1时,级数收敛;(2) 当ρ>1(包括ρ=+∞)时,级数发散;(3) 当ρ=1时,级数可能收敛也可能发散. 证 (1) 由于nn n u u 1lim+∞→=ρ<1,因此总可找到一个小正数ε0>0,使得ρ+ε0=q <1.而对此给定的ε0,必有正整数N 存在,当n ≥N 时,有不等式ρ-+nn u u 1<ε0 恒成立.得nn u u 1+<ρ+ε0=q . 这就是说,对于正项级数∑∞=1n nu,从第N 项开始有u N +1<qu N , u N +2<qu N +1<q 2u N ,….因此正项级数u N +u N +1+u N +2+…=nn Nu∞=∑的各项(除第一项外)都小于正项级数u N +qu N +q 2u N +…=∑∞=1n Nu ·q n -1 的各对应项,而级数∑∞=1n Nuq n -1是公比的绝对值|q|<1的等比级数,它是收敛的,于是由比较判别法可知,级数nn Nu∞=∑收敛,由上节性质1,知∑∞=1n nu也收敛.(2) 由于nn n u u 1lim +∞→=ρ>1,可取ε0>0,使得ρ-ε0>1.对此ε0,存在N >0,当n >N 时,有ρ-+nn u u 1<ε0 恒成立.得nn u u 1+>ρ-ε0>1 这就是说正项级数∑∞=1n nu从第N 项开始,后项总比前项大.这表明n n u ∞→lim ≠0,因此,由级数收敛的必要条件可知,正项级数∑∞=1n nu发散.(3) 当ρ=1时,正项级数∑∞=1n nu可能收敛,也可能发散.这个结论从p -级数就可以看出.事实上,若∑∞=1n nu为p -级数,则对于任意实数p ,有nn n u u 1lim+∞→=ppn n n 1)1(1lim +∞→=1, 但当p ≤1时,p -级数发散;p >1时,p -级数收敛.例6 试证明正项级数∑∞=1πn nn 3tan 2收敛.证 因为n n n u u 1lim +∞→=nn n n n 331tan 2tan 2lim 1ππ⋅⋅++∞→=32<1,所以由比值判别法知,级数收敛.例7 讨论级数2!∑∞=⎪⎭⎫⎝⎛1n n x n (x >0)的敛散性.解 因为nn n u u 1lim +∞→=n n n n x n n x n ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+++∞→!1)!1(lim 1=ex n x nn =⎪⎭⎫ ⎝⎛+∞→11lim, 所以当x <e,即e x <1时,级数收敛;当x >e ,即ex>1时,级数发散. 当x =e 时,虽然不能由比值判别法直接得出级数收敛或发散的结论,但是,由于数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+n n 11是一个单调增加而有上界的数列,即nn ⎪⎭⎫ ⎝⎛+11≤e (n =1,2,3,…),因此对于任意有限的n ,有n n u u 1+=n n n n x ⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+1111e>1. 于是可知,级数的后项总是大于前项,故n n u ∞→lim ≠0,所以级数发散.例7说明,虽然定理3对于p =1的情形,不能判定级数的敛散性,但若能确定在n n n u u 1lim+∞→=1的过程中,n n u u1+是从大于1的方向趋向于1,则也可判定级数是发散的.此外,凡是用比值判别法判定发散的级数,都必有n n u ∞→lim ≠0.定理4 [柯西(Cauchy)根值判别法] 设正项级数∑∞=1n nu满足n n n u ∞→lim =ρ,那么(1) 当ρ<1时,∑∞=1n nu收敛;(2) 当ρ>1(包括ρ=+∞)时,∑∞=1n nu发散;(3) 当ρ=1时,∑∞=1n nu可能收敛,也可能发散.它的证明与定理3的证明完全相仿,这里不重复了.但同样要注意的是,若ρ=1,则级数的敛散性仍需另找其他方法判定.例8 判别级数∑∞=⎪⎭⎫⎝⎛+1n nn n 12的敛散性.解 因为n nn n n ⎪⎭⎫⎝⎛+∞→12lim =12lim +∞→n n n =21<1, 故级数∑∞=⎪⎭⎫ ⎝⎛+1n nn n 12收敛.例9 判别级数∑∞=⎪⎭⎫ ⎝⎛1n na x 的敛散性,其中x ,a 为正常数.解 因为n nn a x ⎪⎭⎫⎝⎛∞→lim =ax a x n =∞→lim . 故当x >a 时,a x>1,级数发散;当0<x <a 时,ax <1,级数收敛;当x =a 时,一般项u n =1不趋于零,级数发散.习题9-21. 判定下列正项级数的收敛性: (1)∑∞=++1n n n )2)(1(1; (2)∑∞=+1n n n 1; (3)∑∞=++1n n n n )2(2;(4)∑∞=+1n n n )5(12;(5)∑∞=+1n na )1(1(a >0); (6)∑∞=+1n nba 1(a , b >0); (7)()∑∞=--+1n a n a n 22 (a >0);(8)∑∞=-+1n n n 1214; (9) ∑∞=⋅1n nnn 23; (10) ∑∞=1n nn n !;(11)∑∞=+⋅⋅⋅⋅+⋅⋅⋅⋅1n n n )13(1074)12(753 ; (12)∑∞=1n n n3; (13)∑∞=1n n n 22)!(2;(14) ∑∞=⎪⎭⎫ ⎝⎛+1n nn n 12;(15)∑∞=1πn nn 3sin 2;(16) ∑∞=1πn nn n 2cos 32. 2. 试在(0,+∞)内讨论x 在什么区间取值时,下列级数收敛:(1) ∑∞=1n nnx ;(2) nn x n ∑∞=⎪⎭⎫⎝⎛123.。
关于正项级数敛散性判定方法的总结比较正项级数指的是所有项都是正数的级数。
求解正项级数的敛散性是数学分析、高等数学、物理等学科中经常使用的基本问题。
以下是关于正项级数敛散性判定方法的总结。
1. 通项公式法如果正项级数的通项公式可以明确地表示出来,那么可以通过解析判断级数的敛散性。
例如:$\sum\limits_{n=1}^{\infty} \frac{1}{n^2}$,该级数的通项公式为$\frac{1}{n^2}$,由于是调和级数的平方,因此它是收敛的。
但如果通项公式不容易明确表示出来,就需要采用其他方法。
2. 比较判别法当正项级数与一个已知收敛或发散的级数的通项公式形式非常类似时,就可以使用比较判别法。
若存在一个收敛级数$\sum\limits_{n=1}^{\infty} a_n$,则当正项级数$\sum\limits_{n=1}^{\infty} b_n$满足$\lim\limits_{n\to\infty}\frac{b_n}{a_n}=c>0$时,$\sum\limits_{n=1}^{\infty}b_n$与$\sum\limits_{n=1}^{\infty} a_n$同时敛散。
其中,$a_n$和$b_n$都是正数。
3. 极限比值法极限比值法也叫作柯西-黎曼判别法。
该方法需要计算正项级数的项数无穷大时的比值$\lim\limits_{n\to\infty}\frac{a_{n+1}}{a_n}$,如果该比值$<1$,则级数收敛;如果$>1$,则级数发散;如果$=1$,则判别不出敛散性。
此外,当无法计算极限时,也可以将比值的极限转化为自然对数的形式再进行计算。
将正项级数转化为积分形式,再判断积分的敛散性。
若存在一个$a>0$,使得函数$f(x)$在$[a,+\infty)$上单调递减且非负,则当正项级数$\sum\limits_{n=1}^{\infty} a_n$的通项公式为$a_n=f(n)$时,级数敛散与积分$\int_a^{+\infty} f(x)dx$的敛散性相同。
一、 正项级数敛散性的判别设∑∞=1n n u 是正项级数,假设 0lim ≠∞→n n u ,那么∑∞=1n n u 发散。
若0lim =∞→n n u ,那么∑∞=1n n u 可能收敛也可能发散。
可依照下面的思路判别其敛散性。
(1)若是通项n u 包括有n !之类的因子,或关于n 的假设干因子连乘形式,那么用比值判别法,即ρ=+→∞n n n u u 1lim ,那么当1<ρ时∑∞=1n n u 收敛,当1>ρ时∑∞=1n n u 发散。
若是nn n u u 1lim +∞→不易计算,或不存在,或存在为1,那么适当放大n u ,使得n n v u ≤,并对∑∞=1n nv 应用比值判别法,若是∑∞=1n n v 收敛,那么∑∞=1n n u 收敛;或适当缩小n u ,使得0>≥n n v u ,并对应用比值判别法,若是∑∞=1n n v 发散,则∑∞=1n n u 发散。
(2)若是通项n u 包括有n 或关于n 的函数为指数的因子,那么用根值判别法,即ρ=∞→n lim n n u ,那么当1<ρ时∑∞=1n nu收敛,当1>ρ时∑∞=1n n u 发散。
若是n lim n n u →∞不易计算,或不存在,或存在为1,那么适当放大n u ,使得n n v u ≤,并对∑∞=1n n v 应用根值判别法,若是∑∞=1n n v 收敛,那么∑∞=1n n u 收敛;或适当缩小n u ,使得0>≥n n v u ,并对应用根值判别法,若是∑∞=1n n v 发散,那么∑∞=1n n u 发散。
(3)当n u 不是以上情形时,寻觅∞→n 时n u 的等价无穷小,可利用等价无穷小的经常使用公式和麦克劳林展开式,取得)0(~>C nCu n α,第八讲 常数项级数敛散性的判别等价的通项,两级数应具有相同的敛散性。
因此当1>α时∑∞=1n n u 收敛;当1≤α时∑∞=1n nu发散。
正项级数敛散性的判别方法正项级数是指级数的所有项都是非负数的级数。
判断正项级数的敛散性的方法主要有以下几种:比较判别法、根式判别法、积分判别法、极限判别法和对数判别法。
一、比较判别法:1. 比较判别法之比较大法:如果对于正项级数∑an和∑bn,当n趋向于无穷大时有an≤bn,那么若∑bn收敛,则∑an也收敛;若∑bn发散,则∑an也发散。
2. 比较判别法之比较小法:如果对于正项级数∑an和∑bn,当n趋向于无穷大时有an≥bn,那么若∑bn发散,则∑an也发散;若∑bn收敛,则∑an也收敛。
二、根式判别法:设an≥0,如果存在正常数p使得lim[(an)^1/n]=a,则1. 若a<1,则级数∑an收敛;2. 若a>1,则级数∑an发散;3.若a=1,根式判别法无法确定级数的敛散性。
三、积分判别法:将正项级数∑an转化为函数f(x)的积分,即∫f(x)dx,如果对于函数f(x),当x趋向于无穷大时有f(x)递减且连续,则1. 若∫f(x)dx收敛,则级数∑an也收敛;2. 若∫f(x)dx发散,则级数∑an也发散。
四、极限判别法:如果存在常数L>0,使得lim(n→∞)n*an=L,则1. 若L<1,则级数∑an收敛;2. 若L>1,则级数∑an发散;3.若L=1,极限判别法无法确定级数的敛散性。
五、对数判别法:设an≥0,如果存在正常数p使得limln(an)/ln(n)=a,则1. 若a<1,则级数∑an收敛;2. 若a>1,则级数∑an发散;3.若a=1,对数判别法无法确定级数的敛散性。
这些判别方法在实际应用中都有其适用范围和局限性,需要根据具体情况选择合适的方法进行判断。
同时,在判断级数的敛散性时,还可以结合其他定理和方法,如柯西收敛准则、阿贝尔定理、绝对收敛等进行综合分析。
关于正项级数敛散性判定方法的总结比较正项级数是指级数中所有的项均为非负数的级数,即对于级数\sum_{n=1}^{\infty}a_n,其中a_n\geq0。
正项级数的收敛性和发散性对于数学分析和实际问题都具有重要意义,在实际应用中,我们经常需要对正项级数的收敛性进行判定。
针对正项级数的收敛性和发散性,数学中有多种方法来进行判定,本文将对这些方法进行总结比较。
一、比较判别法比较判别法是判定正项级数收敛性和发散性的常用方法之一。
该方法的基本思想是通过比较给定级数与一个已知级数的大小关系来判定。
比较判别法分为两种情况,分别是比较判别法和极限比较判别法。
比较判别法是指对于给定级数\sum_{n=1}^{\infty}a_n和另一个级数\sum_{n=1}^{\infty}b_n,如果对于任意n均有a_n\leq b_n,且级数\sum_{n=1}^{\infty}b_n收敛,则级数\sum_{n=1}^{\infty}a_n也收敛;如果级数\sum_{n=1}^{\infty}b_n发散,则级数\sum_{n=1}^{\infty}a_n也发散。
比较判别法的优点是简单易用,只需找到一个已知级数与待判定级数的大小关系即可进行判定;缺点是对于不同的级数,需要选择合适的已知级数进行比较,因此并不是所有情况都适用。
2. 极限比较判别法极限比较判别法的优点是适用范围广,可以处理更多的情况,但缺点是需要计算极限值,有时可能较为复杂。
二、积分判别法积分判别法是判定正项级数收敛性和发散性的另一种重要方法。
对于给定正项级数\sum_{n=1}^{\infty}a_n,如果a_n是连续函数f(x)在[1,+\infty)上的值,且f(x)在[1,+\infty)上单调递减,则级数\sum_{n=1}^{\infty}a_n与函数的积分\int_{1}^{\infty}f(x)dx的收敛性是一致的。
积分判别法的优点是利用了函数积分的性质,简化了级数的判定过程;但缺点是需要对函数进行积分运算,有时可能不太容易求得积分结果。
一个正项级数敛散性的判别法
正项级数敛散性是指一个级数能够在某种给定的运算规则下被加起来,表示为一个有穷的值。
它允许积分,求和,数组操作以及定义特定类型的序列的可行性。
鉴于其运算的复杂性,正项级数敛散性广泛应用于计算数学,统计学,机器学习等领域。
正项级数敛散性的判别法是指识别任意可求正项级数敛散性序列是否为有穷数的过程。
换句话说,它检查序列中是否有一项或多项位于极限,以检测序列是否有穷。
正项级数的敛散性表示的是序列的最后一项的特性。
若序列的最后一项是有限的,则该序列敛散;若序列的最后一项是无限的,则该序列不敛散。
例如,以下是一个最基本的级数:a_n=1/n^2。
该序列的最后一项是无限的,因此该序列不敛散。
正项级数敛散性的判别法测试可分为三步:首先,检查有限比,它由西格玛紧缩度度量表示;其次,计算绝对正项级数的和;最后,依据给定的条件来定义是否有限。
与奇偶性判断法相比,正项级数敛散性判断法有更少的变量限制,可使用于更多情况下。
总之,正项级数敛散性的判别法是通过检查有限比、计算绝对正项级数的和,以及依据给定条件来判断序列是否有穷的过程,作为鉴别级数是否有穷的效率高、功能强大的数学工具,可广泛应用于计算数学、统计学和机器学习等领域。
引言初等数学中,我们研究有限个实数相加,其结果是一个实数,如果延伸至无限个实数相加(无穷级数),其和是否存在?由于在实际应用中,往往是在给定的误差范围内,用部分和代替级数的和,因此判断级数的敛散性是要着力解决的问题.但用级数收敛、发散的定义来判别级数敛散性是十分困难的,因此有必要寻找判别级数敛散性的简单有效的方法.本文讨论正项级数的敛散性问题,并在教材的基础上加以进一步的研究.判断正项级数的敛散性的主要方法有:定义法、比较判别法、比式判别法、根式判别法、拉贝判别法以及积分判别法六种方法.本文给出了这六种方法的证明.定义法是正项级数敛散性的基本判别法则;比较判别法常用几何级数、调和级数、P—级数作为与其它级数相比较的标准;比式判别法与根式判别法都是基于把正项级数与等比级数比较而得到的;拉贝判别法补充了比式与根式判别法的不足,但仍有其局限性;积分判别法有两种证明方法,一种放入无穷级数里处理,另一种放入定积分中处理,同时给出这种判别法的一个推广.另外,我们采用四种不同的方法讨论了P—级数的敛散性:一是利用P—级数的部分和是否有界来判别的,此法较为简单、直观;二是利用比较判别法来判别的,需要参照物作为比较,从而根据参照物的敛散性来判定P—级数的敛散性;三是利用积分判别法来判别的,需要微积分作为工具;四是利用积分判别法的推广来判别的,该推广比积分判别法有着更广泛的应用.正项级数敛散性的判别法设0(1,2,3,)n u n >=⋅⋅⋅,则称级数1n n u ∞=∑为正项级数.正项级数的特点是部分和数列n S {}单调递增,而单调递增数列收敛的充分必要条件是该数列有上界,这一点正是正项级数收敛判别法的基础.其常用的性质是: (1)若级数1n n u ∞=∑收敛于s ,常数0a ≠,则级数1n n au ∞=∑收敛于as .(2)如果级数1n n u ∞=∑发散,常数0a ≠,则级数1n n au ∞=∑发散.(3)添加或去掉有限项不改变级数的敛散性. (4)级数收敛的必要条件:0()n u n →→∞. 下面着重讨论正项级数敛散性的判别法.一 定义法定理1 正项级数收敛的充分必要条件是它的部分和数列有界. 证明 如果正项级数1n n u ∞=∑的部分和数列n S {}有界,即存在正数M ,使n S M n ≤(=1,2,3,⋅⋅⋅),又n S {}单调增加,由单调有界数列必有极限的准则知,n S {}必有极限:lim n n S s →∞=,从而级数1n n u ∞=∑收敛且其和为s .反之,如果正项级数1n n u ∞=∑收敛于和s ,即有lim n n S s →∞=,由收敛数列必有界的性质知,级数的部分和数列有界.例1.1 P −级数1111123P P p p n p n n∞=1+++⋯++⋯= (>0)∑的部分和为111111,23n p p p pk S kk ∞===+++⋅⋅⋅+∑就1p p p >1,0<<1=和三种情况分别加以讨论.命题1 当p >1时,n S {}有界.证明 由实数的性质,当 p >1时,一定存在两个正整数m 、h ,且h m >使得:1hp m≥>,于是对于正整数2n ≥,有 11111111111111123211211111211(1)()[(1)][(1)](1)(1)()()[(1)]()[(1)][(1)]()11()[](1)()1[(m m m m m mh h h pm m m m m m m m m m m m m m m m h m m m h mmm n n n n n n n n n n n n n n n n n n n n m n n n n m n --------------≤=<=⋅--+-+-+⋅⋅⋅+- <-⋅- ≤ 111](21).1)m mh m n - -≤--因此,对任何正整数n ,有11123n P P pS n =1+++⋯+11111111111111[][][]1223(1)11[1]1m m m m m mmm m m n n m m n <+-+-+⋯+--=+-<+ .即n S {}有界.命题2 当01p <<时,n S {}无界.证明 由实数的性质,当01p <<时,一定存在两个正整数m 、h ,且h m <,使得01hp m<≤<,于是对于正整数n ,有11111111111232111(1)[(1)]()[(1)][(1)][(1)][(1)]()()m mm m m m h h h p m m mm m m m m m m m m m h mn n n n n n nn n n n n n n n n n----+-+-≥===+-⋅++++++⋅⋅⋅+11111()[(1)][(1)](1).m mm mh mmmm n n n nm n n h m ->+-≥ +- ≥-因此,对于任何正整数n ,有11123n P P pS n =1+++⋯+11111111[21][32][(1)][(1)1].mmmmmmmm m m n n m n >+-+-+⋯++-=+-这样,当n →∞时,n S →∞,即n S {}无界.命题3 当1p =时,n S {}无界.(此时P −级数为调和级数). 证明 对于任意正整数m 、n ,有1111112111111111111(1)[(1)][(1)(1))][(1)]1[(1)1]m m mmmmm m m m m m m mmm m m m m m mmm mmmn n n n n n n nn n n n n n n nn n mnn n m n-------+-+-+-===⋅++++⋯+(+- >=+- .由于上式对任意大的正整数m 都成立,所以111(1)111lim[(1)1]lim 1m m m m n m n nm→∞→∞+-≥+-=122111(1)ln(1)()lim11ln(1)ln(1)ln .m m n n m mn n n→∞++-=-=+=+- 于是,对任何正整数n ,有111123(ln 2ln1)(ln 3ln 2)[ln(1)ln ]ln(1).n S nn n n =+++⋯+≥-+-+⋯++- =+ 这样,当n →∞时,n S →∞,即n S {}无界.有了以上三个结论,再由正项级数收敛与发散的充要条件,立即得到:当01p <≤时,P −级数发散;当1p >时,P −级数收敛.二 比较判别法定理2 设1n n u ∞=∑和1n n v ∞=∑是两个正项级数,如果存在某正数N ,对一切n N >都有:n n u v ≤,那么(1) 若级数1n n v ∞=∑收敛,则级数1n n u ∞=∑也收敛;(2) 若级数1n n u ∞=∑发散,则级数1n n v ∞=∑也发散.证明 (1)由于级数前加上或去掉有限项不改变其敛散性,因此不妨设对一切自然数n 都有n n u v ≤成立。
关于正项级数敛散性判定方法的总结比较正项级数是一种特殊的级数,指其中所有的项都是非负数。
在数学和物理等领域中,正项级数被广泛应用。
为了研究正项级数的敛散性,数学家们提出了很多敛散性判别法。
1. 比较判别法比较判别法是判断正项级数敛散性的最基本方法之一。
如果对于级数 $\sum a_n$ 和级数 $\sum b_n$,存在正常数 $C$,使得对于充分大的 $n$,都有 $a_n \leq Cb_n$,那么若级数 $\sum b_n$ 收敛,则级数 $\sum a_n$ 收敛,反之则发散。
比较判别法原理的思路是将待求级数和已知级数比较,将待求级数与已知收敛的级数比较,若待求级数的项小于已知级数的项,则待求级数收敛;若待求级数的项大于已知级数的项,则待求级数发散。
比较判别法需要能选择一个已知级数,使得比较条件能够确定,最好的情况是能选择极大简单(或极小复杂)的已知级数。
例如,在比较判别法的应用中,经常使用常数级数 $\sum C$ 的敛散性,当 $C=0$ 时收敛,当 $C > 0$ 时发散。
因此,只要 $a_n$ 的增长快于常数,就能证明级数 $\suma_n$ 发散。
极限判别法的适用条件为比值必须是存在的,即当 $n$ 充分大时,$\frac{a_n}{b_n}$ 有意义。
比较判别法和极限判别法的区别在于,比较判别法可以比较不同级数之间的项,而极限判别法必须将比值限定在同一个级数内进行比较。
3. Cauchy判别法Cauchy判别法和其他方法不同的地方在于,它并不结合其他级数进行比较,而是对直接对级数的项进行判断。
它的适用条件是需要找到一个不依赖于 $n$ 的实数$\varepsilon$,这也是极度苛刻的。
积分判别法是利用一般函数积分或其他积分的性质来判断正项级数的敛散性。
设$f(x)$ 是定义在 $[1,\infty)$ 上的连续正函数,若 $\int_1^\infty f(x)dx$ 收敛,则正项级数 $\sum_{n=1}^\infty f(n)$ 也收敛。
关于正项级数敛散性的判别法作者: 学号: 单位: 指导老师摘要:级数是数学分析中的主要内容之一,我们学习过的数项级数敛散性判别法有许多种,柯西(Cauchy )判别法、达朗贝尔(D'Alembert )判别法、高斯(Gause )判别法、莱布尼兹(Leibniz )判别法、阿贝尔(Abel )判别法等,对数项级数敛散性判别法进行归纳,使之系统化.关键词:正项级数;敛散性;判别法1引言设数项级数121...++...nn n aa a a ∞+==+∑的n 项部分和为:121......nn n ii S a a a a ==++++=∑.若n 项部分和数列为{nS }收敛,即存在一个实数S ,使lim n x S S →∞=.则称这个级数是收敛的,否则我们就说它是发散的.在收敛的情况下,我们称S 为级数的和,可见无穷级数是否收敛,取决于lim n x S →∞是否存在,从而由数列的柯西(Cauchy )收敛准则,可得到级数的柯西(Cauchy )收敛准则[1]:数项级数1nn a∞=∑收敛⇔0,,,N N n N p N ε++∀>∃∈∀>∀∈对,有+1+2++...+<n n n p a a a ε.当p=1时,可得推论:若级数∑∞=1n nu收敛,则u lim n n =∞→.其逆否命题为:若lim n ≠∞→,则级数∑∞=1n nu发散.2 正项级数敛散性判别法设数项级数1nn a∞=∑为正项级数()0n a ≥,则级数的n 项部分和数列{}n S单调递增,由数列的单调有界定理,有定理2.1:正项级数n 1u n ∞=∑收敛⇔它部分和数列{}n S 有上界.证明:由于,...),2,1(0u i=>i 所以{n S }是递增数列.而单调数列收敛的充要条件是该数列有界(单调有界定理),从而本定理得证 . 由定理2.1可推得 定理2.2(比较判别法):设两个正项级数n 1u n ∞=∑和n 1n v ∞=∑,且,n ,N N N ≥∀∈∃+有n n cv u ≤,c 是正常数,则1)若级数n 1n v ∞=∑收敛,则级数n 1u n ∞=∑也收敛;2)若级数n 1u n ∞=∑发散,则级数n 1n v ∞=∑也发散.证明:由定理知,去掉,增添或改变级数n 1u n ∞=∑的有限项,,则不改变级数n1u n ∞=∑的敛散性.因此,不妨设,+∈∀N n 有nn cv u ≤,c 是正常.设级数n 1n v ∞=∑与n 1u n ∞=∑的n项部分和分部是nB A 和n ,有上述不等式有,nn n n cB v v v c cv cv cv u A =+++=++≤+++=)...(......u u 212121n .1)若级数n 1n v ∞=∑收敛,根据定理1,数列{n B }有上届,从而数列{n A }也有上届,再根据定理1,级数n 1u n ∞=∑收敛;2)若级数n 1u n ∞=∑发散,根据定理1,数列{n A }无上届,从而数列{n B }也无上届,在根据定理1,级数n 1u n ∞=∑发散.其极限形式:定理2.2.1(比较判别法的极限形式):设n 1u n ∞=∑和n 1n v ∞=∑(n v 0≠)是两个正项级数且有lim =n x nuv λ→∞,+∞≤≤λ0,1)若级数n 1n v ∞=∑收敛,且+∞<≤λ0,则级数n1u n ∞=∑也收敛;2)若级数n 1n v ∞=∑发散,且+∞≤<λ0,则级数n 1u n ∞=∑也发散.证明:1)若级数n1n v ∞=∑收敛,且+∞<≤λ0,,由已知条件,,,,00N n N N ≥∀∈∃>∃+ε,有u ελ<-nnv ,即nn v N )(u ,n 0ελ+<≥∀有,根据柯西收敛准则推论的逆否命题,级数n 1u n ∞=∑收敛;2)若级数n 1n v ∞=∑发散,且+∞≤<λ0,由已知条件,,u ,,,00nn v N n N N <-≥∀∈∃+∞<<∃+ελλε有:根据柯西收敛准则推论的逆否命题知,则级数n 1u n ∞=∑也发散.若级数n 1n v ∞=∑发散,且+∞=λ,有已知条件,,u ,,0M v N n N N M nn >≥∀∈∃>∃+有,即,u ,,0M v N n N N M nn >≥∀∈∃>∃+有,根据’柯西收敛准则推论的逆否命题,则级数n 1u n ∞=∑也发散.例1 判别级数∑∞=+1)1(1n n n 的敛散性.分析: 考虑通项)1(1+n n ,分子n 的最高幂是0(只有常数1 ),分母n 的最高幂是2,这时通项接近2201nnn =,原级数也接近于级数∑∞=121n n,这是12>=p 的收敛的p-级数,那么原级数也一定收敛.事先知道级数是收敛的,就把通项放大,放大为一个收敛的级数通项,这个级数一般就是∑∞=121n n,至多差一个系数.解: 因为21)1(1n n n <+(分母缩小,分数放大),又由于∑∞=121n n收敛.则由此比较判别法,原级数∑∞=+1)1(1n n n 也收敛.例2 判别级数∑∞=--+12521n n n n 的敛散性.分析: 考虑通项5212--+n n n ,分子n 的最高幂是1,分母n 的最高幂是2,这时通项接近,n nn 2122=,原级数也接近于级数∑∞=11n n,至多差一个系数.解: 因为52152221222--+≤--<=n n n n n n nn n(分子缩小,分母放大,分数缩小),又由于∑∞=11n n是发散的,则由比较判别法,原级数也是发散的.由比较判别法可推得:定理2.3(比值判别法——达朗贝尔判别法):设n 1u n ∞=∑(>n u )为正项级数,且存在正常数q,则有1) 若,1u ,,1<≤≥∀∈∃++q u N n N N nn 有则级数n 1u n ∞=∑收敛;2) 若Nn N N ≥∀∈∃+,,有1n nu v ≥,则级数n1u n ∞=∑发散.证明:1)不妨设qN n n u u ,1n ≤∈∀+有, n=1, qu u 12≤;n=2,;u 2123q u q u ≤≤ n=3,;u 3134q u q u ≤≤...... n=k,kk k qu u 11u ≤≤+......已知几何级数)10(11<<∑∞=q qu kk 收敛,根据柯西收敛准则推论的逆否命题,则级数n 1u n ∞=∑收敛.2)已知,1,n ,1≥≥∀∈∃++nn u u N N N 有即正项级数{nu }从N 项以后单调增加,不去近乎0()∞→0,则级数n 1u n ∞=∑发散.定理2.3.1(比值判别法的极限形式):设n 1u n ∞=∑(>n u )为正项级数,且lu u nn n =+∞→1lim,有,1) 若1<l ,则级数n1u n ∞=∑收敛;2) 若1>l ,则级数n 1u n ∞=∑发散.证明:1),1:q <<∃q l 由数列极限定义,lq l N N N l nn -<->∀∈∃>=∃++u u ,n ,,0-q 10有ε即1u u 1<<+q nn ,根据达朗贝尔判别法,级数n 1u n ∞=∑收敛;2)已知1>l ,根据数列极限的保号性,1u u ,,n1n >≥∀∈∃++有N n N N ,达朗贝尔判别法,级数n 1u n ∞=∑发散.例3 判别级数∑∞=1!n nnn 的敛散性.解: 由于11])11(1[lim )1(lim ]!)1()!1([lim lim11<=+=+=++=∞→∞→+∞→+∞→enn n nn n n u u nn nn nn n nn n ,所以根据达朗贝尔判别法的推论知,级数∑∞=1!n nnn 收敛.例4 判别级数∑∞=155n n n的敛散性.解: 由于15)1(5lim ]5)1(5[lim lim55511>=+=+=∞→+∞→+∞→n n nn u u n n n n nn n ,根据达朗贝尔判别法的推论知,级数∑∞=155n n n发散.当正项级数的一般项n u 具有积、商、幂的形式,且n u 中含有!n 、!!n 、n a 以及形如)()2)((nb a b a b a +++ 的因子时,用达朗贝尔判别法比较简便.定理2.4(根式判别法——柯西判别法):设n1u n ∞=∑)0(un>为正项级数,存在常数q ,则有1) 若,n ,N N N ≥∀∈∃+有1n<≤q u n ,则级数n 1u n ∞=∑收敛;2) 若存在自然数列的子列{}i n ,使得1u ≥nn ,则级数n 1u n ∞=∑发散.证明:1)已知,n ,N N N ≥∀∈∃+有qu n ≤n,有已知几何级数∑∞=<≤0n )10(q qn收敛,于是级数∑∞=0n nu收敛;2)已知存在无限个n,有1n≥n u ,即nu 趋近于0(∞→n ),于是级数n 1u n ∞=∑发散.定理2.4.1(根式判别法的极限形式):设n 1u n ∞=∑为正项级数,若lu nn n =∞→lim1) 若1<l 时,级数n 1u n ∞=∑收敛;2)若1>l 时,则级数n1u n ∞=∑发散.证明:1):q ∃1<<q l ,由数列极限定义,11,n ,,01q n0<<--≥∀∈∃>-=∃+q u q l u N N N n n n 即有ε,根据柯西判别法,级数n 1u n ∞=∑收敛;2)已知1>l ,根据数列极限的保号性,1,n ,n >≥∀≥∃+n u N N N 有,根据柯西判别法,级数n 1u n ∞=∑发散.注意:在比值判别法和根式判别法的极限形式中,对=1r 的形式都为论及.实际上,当+1lim=1n x nu u →∞或+1lim=1n x nu u →∞时,无法使用这两个法判别来判断敛散性,如级数=11n n∞∑和2=11n n∞∑,都有1+1lim =lim=11+1x x n n n n→∞→∞,()2221+1lim=lim =11+1x x n n n n→∞→∞⎛⎫⎪⎝⎭,1lim n=1x n→∞,21lim n=1x n→∞但前者发散而后者收敛.此外,定理2.3和定理2.4中,关于收敛条件+1q<1n n u u ≤和n <1n u q ≤也不能放宽到+1<1n nu u ,n <1n u .例如对调和级数=11n n∞∑,有+1=<1+1n nu n u n ,1n =n <1n u n,但级数却是发散的.例1 判别级数nn n n )12(1∑∞=+的敛散性.分析: 该级数的通项nn n )12(+是一个n 次方的形式,于是联想到柯西判别法,对通项开n 次方根,看其结果与1的大小关系.解: 由于12112lim)12(limlim<=+=+=∞→∞→∞→n n n n u n nnn nn n ,根据柯西判别法的推论,可得级数nn n n )12(1∑∞=+收敛.例2 判别级数∑∞=1ln 32n nn的敛散性.解: 由于123232lim32limlimln ln >====∞→∞→∞→nnn nnnn nn n u ,所以根据柯西判别法的推论知,级数∑∞=1ln 32n nn发散.我们知道,广义调和级数(P-级数)11npn n=∑当1q >时收敛,而当1q ≤时发散,因此,取P-级数作为比较的标准,可得到比比式判别法更为精细而又应用方便的判别法.即定理2.5(拉阿贝判别法):设1nn n u =∑是正项级数且有)0(u >n ,则存在常数q ,1)若11n ,n ,1>≥⎪⎪⎭⎫⎝⎛-≥∀∈∃++q u u N N N nn 有,则级数1nnn u =∑收敛;2)若11n ,,1≤⎪⎪⎭⎫⎝⎛-≥∀∈∃++nn u u N n N N 有,则级数1nnn u =∑发散.证明:1)由q u u nn ≥⎪⎪⎭⎫ ⎝⎛-+11n 可得nq u nn -<+1u 1,选p 使1<p<q.由()()()11lim11lim111lim1<=-=--=---→→∞→qp qx p qxx nq np x px pn ,因此,存在正数N ,是对任意n>N,pn n ⎪⎭⎫ ⎝⎛-->111q,这样pp p n n n n ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛---<+1111111u u n1n ,于是,当n>N 时就有()N pPN Pp p NNN n n u n N u N N n n n n u u u u u .1.1...121.......u u u 11n1n 1n -=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-≤=++++,当p>1时,级数∑∞=1n n1p收敛,故级数 则级数1nn n u =∑收敛;2)由,1111111n n n u u u u n n n nn -=-≥≤⎪⎪⎭⎫ ⎝⎛-++可得于是222231-n n n1n 1n .1u .21...12.1.u u .....u u .u u u u nn n n n u =--->=++,因为∑∞=1n 1n发散,故级数1nnn u =∑发散.定理2.5.1(拉阿贝判别法的极限形式):设正项级数∑∞=1n n u )0(>n u ,且极限存在,若.)1(lim 1l u u n nn n =-+∞→1)当1<l 时,级数∑∞=1n n u 收敛;2) 当1>l 时,级数∑∞=1n n u 发散.例1 讨论级数sn n n ∑∞=⎥⎦⎤⎢⎣⎡⋅⋅⋅-⋅⋅⋅1)2(42)12(31 当3,2,1=s 时的敛散性. 分析: 无论3,2,1=s 哪一值,对级数sn n n ∑∞=⎥⎦⎤⎢⎣⎡⋅⋅⋅-⋅⋅⋅1)2(42)12(31 的比式极限,都有1lim1=+∞→nn n u u .所以用比式判别法无法判别该级数的敛散性.现在用拉贝判别法来讨论.解: 当1=s 时,由于)(12122)22121()1(1∞→<→+=++-=-+n n n n n n u u n nn ,所以根据拉贝判别法知,原级数是发散的.当2=s 时,由于)(1)22()34()2212(1)1(221∞→<++=⎥⎦⎤⎢⎣⎡++-=-+n n n n n n n u u n n n , 所以原级数是发散的.当3=s 时,∵)(23)22()71812()2212(1)1(3231∞→→+++=⎥⎦⎤⎢⎣⎡++-=-+n n n n n n n n u u n nn ,所以原级数收敛.考虑到级数与无穷积分的关系,可得 定理2.6(积分判别法):设函数()f x 在区间(]1,∞上非负且递减,()n u f n =,n=1,2,……,则级数1nn n u =∑收敛的充分必要条件是极限()1lim xx f x dt →∞⎰存在.证明: ()0f x ≥,知()F x =1()xf t dt ⎰单调递增.1lim ()lim()xx x F x f t dt →∞→∞∴=⎰存在⇔()F x 在(]1,∞有界.(充分性)设1lim ()xx f t dt →∞⎰存在,则存在0M >,使得(]11,,()xx f t dt M ∀∈∞≤⎰级数1n n u ∞=∑的部分和12...n n S u u u =+++()()()12...f f f n =+++ ()()()()231211...n n f f t dt f t dt f t dt -≤+++⎰⎰⎰()()()111nf f t dt f M =+≤+⎰即部分和数列有上界.所以级数1n n u ∞=∑收敛.(必要性)设正项级数1n n u ∞=∑收敛,则它的部分和有上界,即存在0,,M n N ≥∀∈有,n S M ≤从而对(]1,,x ∀∈∞令[]1n x =+ 则()()2311121()()...()xnn n f t dt f t dt f t dt f t dt f t dt -≤=++⎰⎰⎰⎰⎰()()()112...1n f f f n S M -≤+++-=≤.故极限1()xf t dt ⎰存在.由此我们得到两个重要结论:(1)p 级数11pn n∞=∑收敛1p ⇔>;(2)级数11ln pn n n∞=∑收敛1p ⇔>.证明:1)在p 级数一般项中,把n 换位x ,得到函数1()(1)pf x x x=≥.我们知道,这个函数的广义积分收敛1p ⇔>,因此根据正项级数的广义积分判定法,结论成立.2)证法同(1).例1 判别级数∑∞=131n n的敛散性.分析:因为将n 换成连续变量x ,即是31x,显然函数31x在),1[+∞是单调减少的正值函数,所以可以用积分判别法.解:将原级数∑∞=131n n换成积分形式dx x⎰+∞131,由于21210)21()21(lim 21121213=+=---=-=+∞→+∞∞+⎰pxdx xp ,即dx x⎰+∞131收敛,根据积分判别法可知,级数∑∞=131n n也收敛.例2 证明调和级数∑∞=11n n发散.把n 换成连续变量x 得函数x1,显然这是一个在),1[+∞单调减少的正值函数,符合积分判别法的条件.解:将原级数∑∞=11n n换成积分形式dxx⎰+∞11,由于+∞=-+∞==∞++∞⎰0ln 111x dx x,即dxx⎰+∞11发散,根据积分判别法可知,调和级数∑∞=11n n发散.3 正项级数敛散性其他两种判别法定理2.7(阶的估计法):设1n n u ∞=∑为正项级数1()()n pu O n n=→∞,即n u 与1pn当()n →∞是同阶无穷小,则1) 当1p >时,级数1n n u ∞=∑收敛;2) 当1p ≤是,级数1n n u ∞=∑发散.把比较判别法和比式判别法结合,又可得 定理2.8(比值比较判别法):设级数1n n u ∞=∑和1n n v ∞=∑是正项级数且存在自然数N ,使当n N ≥时有11n n nnu v u v ++≤,则1) 若1n n v ∞=∑收敛,则1n n u ∞=∑也收敛;2) 若1n n u ∞=∑发散,则1n n v ∞=∑也发散.证明:当n N ≥时,由已知得12121111.......n N N n N N n n NNN n NN n Nu u u u v v v v u u u u v v v v +++++-+-=≤=由此可得,N N n n n n NNu v u v u v v u ≤≤.再由比较判别法即知定理结论成立.主要参考文献:[1]刘玉琏、傅沛仁等,数学分析讲义(第三版).高等教育出版社,2003 [2]罗仕乐,数学分析绪论.韶关学院数学系选修课程,2003.8 [3]李成章、黄玉民,数学分析(上册).科学出版社,1999.5[4]邓东皋、尹晓玲,数学分析简明教程.高等教育出版社,2000.6[5]张筑生,数学分析新讲.北京大学出版社,2002.6[6]丁晓庆,工科数学分析(下册).科学出版社,2002.9[7]R.柯朗、F.约翰,微积分与数学分析引论.科学出版社,2002.5。