数项级数收敛性讲义判别法
- 格式:ppt
- 大小:1.05 MB
- 文档页数:32
级数收敛的概念和判别法则级数是数学中重要的概念之一,它是由无穷多个数相加而成的一种数列。
级数的收敛性与数列的求和有着密切的关系,它在分析学、数学物理等领域中都有广泛的应用。
本文将介绍级数收敛的概念及其判别法则。
一、级数收敛的概念级数是指由无穷多个数按照一定次序相加而成的表达式。
设a₁,a₂,a₃,……,aₙ,……是一个数列,则级数可以表示为S = a₁ +a₂ + a₃ + …… + aₙ + ……当数列{Sₙ}存在有限的极限值S时,称级数S收敛,记作∑aₙ = S。
反之,若数列{Sₙ}不存在有限的极限值,则称级数S发散。
二、级数收敛的判别法则为了判断一个级数是否收敛,数学家们提出了多种判别法则,下面将介绍其中几种常见的方法。
1. 初等判别法初等判别法适用于一些简单级数的判断。
对于级数∑aₙ,如果当n趋于无穷大时,aₙ趋于零,即lim(aₙ) = 0,那么级数必收敛。
2. 比较判别法比较判别法适用于正项级数的判定。
设有两个级数∑aₙ和∑bₙ,且对于所有n,都有0 ≤ aₙ ≤ bₙ成立。
若级数∑bₙ收敛,则级数∑aₙ也收敛;若级数∑aₙ发散,则级数∑bₙ也发散。
3. 极限判别法极限判别法适用于形式为aₙ = f(n)的级数。
若存在正整数N和常数p,使得当n > N时,有aₙ ≤ (n^p)成立,那么根据级数∑(n^p)的收敛性来判断∑aₙ的收敛性。
4. 比值判别法比值判别法适用于正项级数的判定。
设有级数∑aₙ,若存在正实数q,使得当n足够大时,有(aₙ₊₁/aₙ) ≤ q成立,那么如果q < 1,级数∑aₙ收敛,如果q > 1,级数∑aₙ发散,若q = 1,则该方法不适用。
5. 根值判别法根值判别法适用于正项级数的判定。
设有级数∑aₙ,若存在正实数r,使得当n足够大时,有(n√aₙ) ≤ r成立,那么如果r < 1,级数∑aₙ收敛,如果r > 1,级数∑aₙ发散,若r = 1,则该方法不适用。
级数收敛的判别方法1. 比较判别法:若级数的通项与一个已知的收敛级数或发散级数之间存在比较关系,通过比较它们的大小可以判断级数的收敛性。
2. 极限判别法:对于正项级数,若其通项在n趋于无穷大时的极限存在且非零,那么级数收敛;若极限为零或不存在,则级数发散。
3. 比值判别法:对于正项级数,计算相邻两项的比值的极限,若极限小于1,则级数收敛;大于1,则级数发散;等于1,则判别不出结果,可能为发散也可能为收敛。
4. 高斯判别法:对于形如an = f(n)g(n)的级数,若函数f(n)和g(n)满足一定的条件,那么级数收敛。
5. 绝对收敛和条件收敛:若级数的绝对值级数收敛,则原级数也收敛,否则原级数发散。
条件收敛是指原级数在绝对收敛的前提下仍然收敛。
6. 积分判别法:对于正项级数,将通项进行积分,若积分级数收敛,则原级数收敛;若积分级数发散,则原级数发散。
7. Ratio Test:For a series with positive terms, if the ratio of consecutive terms has a limit less than 1, then the series converges. If the limit is greater than 1 or does not exist, the series diverges.8. Root Test:For a series with positive terms, if the nth root of the absolute value of each term has a limit less than 1, then the series converges. If the limit is greater than 1 or does not exist, the series diverges.9. Alternating Series Test:For an alternating series with decreasing terms, if the absolute value of the terms tends to zero as n approaches infinity, then the series converges.10. Power Series Convergence Test:For a power series of the form ∑(an(x-c)^n), if there exists a number R such that the series converges for |x-c| < R and diverges for |x-c| > R, then the series converges for the interval (c-R, c+R) and diverges elsewhere.。
数列与级数的收敛判别法数列与级数是数学中常见的概念,它们在数学分析、微积分等领域有着广泛的应用。
在研究数列与级数时,我们常常需要判断它们是否收敛,即是否存在有限的极限值。
本文将介绍几种经典的数列与级数的收敛判别法。
一、数列的收敛判别法1. 有界性判别法对于数列{an},如果存在一个实数M,使得对于所有的n,都有|an|≤M成立,那么数列{an}是有界的。
根据实数的确界原理,有界的数列必定存在收敛子列,因此可以推断该数列也是收敛的。
2. 单调性判别法对于数列{an},如果对于所有的n,都有an≤an+1或an≥an+1成立,即数列{an}单调递增或单调递减,那么该数列收敛的充分必要条件是{an}单调有界。
3. 夹逼定理夹逼定理是判别数列收敛性的重要工具。
设数列{an}、{bn}和{cn}满足an≤bn≤cn,并且lim(an)=lim(cn)=a。
如果数列{bn}收敛,那么它的极限必定是a。
二、级数的收敛判别法1. 正项级数判别法若级数Σan收敛,且对于任意的n,都有an≥0成立,则该级数是正项级数。
正项级数的收敛判别法有以下几个重要的定理:(1)比较判别法:若对于所有的n,都有0≤an≤bn成立,且级数Σbn收敛,则级数Σan也收敛;若级数Σan发散,则级数Σbn也发散。
(2)极限判别法:若存在正数c,使得lim(an/bn)=c,则有以下几种情况:当0<c<∞时,若级数Σbn收敛,则级数Σan也收敛;若级数Σan发散,则级数Σbn也发散。
当c=0时,若级数Σbn收敛,则级数Σan也收敛。
当c=∞时,若级数Σan收敛,则级数Σbn发散;若级数Σan发散,则级数Σbn收敛。
(3)比值判别法:若lim(|an+1/an|)=r,其中r为非负实数,那么有以下几种情况:当r<1时,级数Σan收敛。
当r>1时,级数Σan发散。
当r=1时,级数的敛散性不确定。
2. 交错级数判别法交错级数是指级数Σ(-1)^n*an,其中an为正数。
数项级数收敛性的判别一、基本概念数项级数是由一列实数构成的无限级数,形式化表示为:$$\sum_{n=1}^{\infty}a_n=a_1+a_2+...+a_n+...$$其中$a_n$为级数中第$n$个数。
对于数项级数$\sum_{n=1}^{\infty}a_n$,我们关心的问题是其收敛性或发散性。
设数列$\{S_n\}$表示数项级数的前$n$项和,则有:二、基本判别法1.正项级数判别法正项级数指所有项都是非负数的级数。
对于正项级数$\sum_{n=1}^{\infty}a_n$,若存在正整数$p$,使得对于任意$n\ge p$,都有$a_n\ge a_{n+1}$,则数项级数收敛。
该判别法常被称为级数单调有界准则,或称作单调有界原理,其思路为:单调有界必收敛。
当级数中第$p$项后,级数的每一项都小于等于$a_p$,同时又因为级数的每一项都为非负数,所以$\{S_n\}$必单调不降;又由于$a_n$单调减少,$\{S_n\}$最终必定收敛。
2.比较判别法(1)当级数$\sum_{n=1}^{\infty}b_n$收敛时,级数$\sum_{n=1}^{\infty}a_n$也收敛。
比较判别法常被称为比较原理,其思路为:级数$\sum_{n=1}^{\infty}a_n$的上界为级数$\sum_{n=1}^{\infty}b_n$的上界,则当$\sum_{n=1}^{\infty}b_n$收敛时,$\sum_{n=1}^{\infty}a_n$必定收敛;反之,当$\sum_{n=1}^{\infty}a_n$发散时,$\sum_{n=1}^{\infty}b_n$必定发散。
设极限$L=\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$存在,则:若$L=1$,则比值判别法无法断定级数的收敛性。
在比值判别法中,我们通常都称级数$\sum_{n=1}^{\infty}\frac{a_{n+1}}{a_n}$为原级数的比值级数。
数项级数收敛的判别方法数项级数是数学中的一个重要概念,它由一组序列所构成,有无穷多个数相加而成。
判断数项级数是否收敛是一个重要的问题,本文将围绕“数项级数收敛的判别方法”展开讨论。
第一步,先说一下收敛和发散的定义。
对于一个数列(即只有一项的“级数”),如果其极限值存在,则称这个数列是收敛的,否则就是发散的。
对于一个数项级数,如果其部分和的极限值存在,则称该级数是收敛的,反之,则是发散的。
因此,我们要判断一组序列相加后的部分和是否收敛,就需要寻找相应的判别方法。
第二步,几种常用的判别方法。
1. 比较判别法比较判别法是数项级数判别法中最常用的一种。
其基本思想是通过与其它更简单的级数进行比较,来判断该级数的收敛性。
具体做法有两种:(1)比较原则一:若0≤an≤bn,且级数∑bn收敛,则级数∑an也收敛。
(2)比较原则二:若0≤bn≤an,且级数∑bn发散,则级数∑an也发散。
2. 极限判别法极限判别法是另一种常用的判断级数收敛性的方法。
它的基本思想是利用极限的大小关系来判断级数的收敛性。
具体做法如下:若an>0,且limn→∞an/bn=L(L为常数),则(1)若L< ∞,则级数∑an和级数∑bn收敛或发散;(2)若L > 0,∑bn收敛,则∑an收敛;(3)若L = ∞,∑bn发散,则∑an也发散。
3. 交错级数判别法交错级数是一种类似于分数的级数形式,其每一项的符号交替出现。
交错级数判别法的基本思想是,若交错级数满足某些特殊条件,该级数就是收敛的。
具体做法如下:若交错级数∑(-1)nan满足以下条件,则该级数收敛:(1)an > 0;(2)an单调递减;(3)limn→∞an=0。
第三步,应用判别法解决实际问题。
当我们遇到一个分数、一个根号,或者一个三角函数等等一些复杂的级数时,直接用极限或比较原则对其进行处理可能会非常复杂。
这时我们就需要灵活运用各种级数收敛性判别方法,比如利用洛必达法则求解极限,或通过变形将其转化为其他形式更容易处理的级数。
函数项级数收敛的判别方法1.比较判别法比较判别法是根据函数项级数与已知的正项级数进行比较来判定其收敛性。
设函数项级数为∑an(x)和已知的正项级数∑bn(x),若对于所有的n,存在正数M使得,an(x),≤Mbun(x),则函数项级数与正项级数的收敛性同时成立。
比较判别法的关键是寻找一个已知的正项级数,使得函数项级数的绝对值小于等于正项级数的绝对值,并且根据正项级数的收敛性来推断函数项级数的收敛性。
2.比值判别法比值判别法是通过计算函数项级数相邻两项的比值的极限值来判定其收敛性。
设函数项级数为∑an(x),如果存在正数r,当n趋向于无穷大时,具有lim ,an+1(x)/an(x), = r,那么:-若r<1,函数项级数绝对收敛;-若r>1,函数项级数发散;-若r=1,比值判别法不确定。
比值判别法可以通过计算函数项级数的极限值和已知的收敛级数或发散级数的极限值比较,来判断函数项级数的收敛性。
3.根值判别法根值判别法是通过计算函数项级数项的绝对值的n次方根的极限值来判定其收敛性。
设函数项级数为∑an(x),如果存在正数r,当n趋向于无穷大时,具有lim ,an(x),^(1/n) = r,那么:-若r<1,函数项级数绝对收敛;-若r>1,函数项级数发散;-若r=1,根值判别法不确定。
根值判别法与比值判别法类似,也可以通过计算函数项级数的极限值和已知的收敛级数或发散级数的极限值比较,来判断函数项级数的收敛性。
4.积分判别法积分判别法是通过将函数项级数与一个已知的函数进行积分比较来判定其收敛性。
设函数项级数为∑an(x),如果存在函数f(x),当x大于等于其中一点a时,具有∫[a,+∞) ,an(x),dx = ∑∫[a,+∞)an(x)dx = ∫[a,+∞)f(x)dx,那么:- 若∫[a,+∞)f(x)dx收敛,函数项级数绝对收敛;- 若∫[a,+∞)f(x)dx发散,函数项级数发散。
级数收敛的定义判别方法
级数收敛是数学中的一个重要概念,它在许多领域都有广泛的应用。
在本文中,我们将介绍级数收敛的定义及其判别方法。
首先,我们来回顾一下级数的定义。
给定一个数列{an},我们可以构造一个级数S=∑an,其中S表示前n项和。
如果S存在有限极限,即limn→∞S=L,则我们称级数S收敛于L。
如果S不存在有限极限,即limn→∞S不存在或为无穷大,我们称级数S发散。
接下来,我们将介绍几种常见的判别级数收敛的方法:
1. 比较判别法:如果存在一个收敛的级数∑bn,使得对于所有的n,有|an|≤|bn|,则级数∑an收敛。
如果存在一个发散的级数∑bn,使得对于所有的n,有|an|≥|bn|,则级数∑an发散。
2. 极限判别法:如果limn→∞an/bn=c,其中c是一个常数且0<c<∞,则级数∑an和∑bn同时收敛或同时发散。
如果c=0,则级数∑bn收敛,则级数∑an也收敛。
如果c=∞,则级数∑bn发散,则级数∑an也发散。
3. 积分判别法:如果函数f(x)在区间[1,∞)上单调递减且f(x)≥0,且级数∑an可以表示为∫f(x)dx的形式,则级数∑an和∫
f(x)dx同时收敛或同时发散。
4. 绝对收敛:如果级数∑|an|收敛,则级数∑an绝对收敛。
绝对收敛的级数一定收敛,但收敛的级数不一定绝对收敛。
总之,判别级数收敛的方法有很多种,上述四种方法是最常用的几种。
掌握这些方法,可以有效地判断级数的收敛性,为数学研究提
供有力的工具。
级数收敛定义判别法级数收敛定义判别法是数学中十分重要的概念之一。
在进行级数求和时,判断级数是否收敛对于求解问题至关重要。
以下是常见的几种级数收敛定义判别法。
一、级数收敛的定义如果数列 $S_n=\sum\limits_{k=1}^na_k$ 有极限 $S$,即$\lim\limits_{n\to\infty}S_n=S$,那么级数 $\sum\limits_{n=1}^\inftya_n$ 收敛,否则级数发散。
二、正项级数判别法如果级数 $\sum\limits_{n=1}^\infty a_n$ 的每一项 $a_n$ 都是非负数,且满足$\lim\limits_{n\to\infty}a_n=0$,那么级数收敛;否则级数发散。
三、比值判别法如果级数 $\sum\limits_{n=1}^\infty a_n$ 的每一项 $a_n$ 都是正数,那么对于相邻两项 $a_n$ 和 $a_{n+1}$,若极限$\lim\limits_{n\to\infty}\dfrac{a_{n+1}}{a_n}$ 存在,则:1. 当 $\lim\limits_{n\to\infty}\dfrac{a_{n+1}}{a_n}<1$ 时,级数收敛;2. 当 $\lim\limits_{n\to\infty}\dfrac{a_{n+1}}{a_n}>1$ 时,级数发散;3. 当 $\lim\limits_{n\to\infty}\dfrac{a_{n+1}}{a_n}=1$ 时,判定不定。
四、根值判别法如果级数 $\sum\limits_{n=1}^\infty a_n$ 的每一项 $a_n$ 都是正数,那么对于相邻两项 $a_n$ 和 $a_{n+1}$,若极限$\lim\limits_{n\to\infty}\sqrt[n]{a_n}$ 存在,则:1. 当 $\lim\limits_{n\to\infty}\sqrt[n]{a_n}<1$ 时,级数收敛;2. 当 $\lim\limits_{n\to\infty}\sqrt[n]{a_n}>1$ 时,级数发散;3. 当 $\lim\limits_{n\to\infty}\sqrt[n]{a_n}=1$ 时,判定不定。
数项级数收敛
以下是一篇关于数项级数收敛的简要介绍:
数项级数是由一系列数列的和组成的级数。
数项级数的收敛性是判断级数和是否收敛到一个有限的值。
数项级数的收敛性可以通过不同的方法来判断。
其中一种方法是比较判别法,该方法通过比较给定级数和一个已知的收敛级数或发散级数来判断。
比较判别法主要有以下几种形式:
(1)比较法:如果给定级数的绝对值小于一个已知收敛级数的绝对值,则该级数也收敛。
(2)极限比值判别法:计算级数中相邻两项的绝对值的比值的极限值。
如果极限值小于1,则级数收敛;如果极限值大于1,则级数发散;如果极限值等于1,则判定不确定。
(3)极限根判定法:计算级数中每一项的绝对值的根的极限值。
如果极限值小于1,则级数收敛;如果极限值大于1,则级数发散;如果极限值等于1,则判定不确定。
除了比较判别法之外,还有其他方法来判断数项级数的收敛性,如积分判别法、级数求和法等。
这些方法使用不同的数学工具和技巧来解决不同类型的级数问题。
数项级数的收敛性在实际应用中有重要的作用。
它在数学、物理、工程等领域的计算和建模中经常被使用。
了解数项级数的收敛性判定方法可以帮助我们更好地理解级数的性质,进行数学计算和推导的过程。
数项级数的收敛性判定是数学中的重要内容之一,有多种方法可以用来判断。
通过熟练掌握这些方法,我们可以更好地理解和应用级数的性质。