数项级数收敛性讲义判别法
- 格式:ppt
- 大小:1.05 MB
- 文档页数:32
级数收敛的概念和判别法则级数是数学中重要的概念之一,它是由无穷多个数相加而成的一种数列。
级数的收敛性与数列的求和有着密切的关系,它在分析学、数学物理等领域中都有广泛的应用。
本文将介绍级数收敛的概念及其判别法则。
一、级数收敛的概念级数是指由无穷多个数按照一定次序相加而成的表达式。
设a₁,a₂,a₃,……,aₙ,……是一个数列,则级数可以表示为S = a₁ +a₂ + a₃ + …… + aₙ + ……当数列{Sₙ}存在有限的极限值S时,称级数S收敛,记作∑aₙ = S。
反之,若数列{Sₙ}不存在有限的极限值,则称级数S发散。
二、级数收敛的判别法则为了判断一个级数是否收敛,数学家们提出了多种判别法则,下面将介绍其中几种常见的方法。
1. 初等判别法初等判别法适用于一些简单级数的判断。
对于级数∑aₙ,如果当n趋于无穷大时,aₙ趋于零,即lim(aₙ) = 0,那么级数必收敛。
2. 比较判别法比较判别法适用于正项级数的判定。
设有两个级数∑aₙ和∑bₙ,且对于所有n,都有0 ≤ aₙ ≤ bₙ成立。
若级数∑bₙ收敛,则级数∑aₙ也收敛;若级数∑aₙ发散,则级数∑bₙ也发散。
3. 极限判别法极限判别法适用于形式为aₙ = f(n)的级数。
若存在正整数N和常数p,使得当n > N时,有aₙ ≤ (n^p)成立,那么根据级数∑(n^p)的收敛性来判断∑aₙ的收敛性。
4. 比值判别法比值判别法适用于正项级数的判定。
设有级数∑aₙ,若存在正实数q,使得当n足够大时,有(aₙ₊₁/aₙ) ≤ q成立,那么如果q < 1,级数∑aₙ收敛,如果q > 1,级数∑aₙ发散,若q = 1,则该方法不适用。
5. 根值判别法根值判别法适用于正项级数的判定。
设有级数∑aₙ,若存在正实数r,使得当n足够大时,有(n√aₙ) ≤ r成立,那么如果r < 1,级数∑aₙ收敛,如果r > 1,级数∑aₙ发散,若r = 1,则该方法不适用。
级数收敛的判别方法1. 比较判别法:若级数的通项与一个已知的收敛级数或发散级数之间存在比较关系,通过比较它们的大小可以判断级数的收敛性。
2. 极限判别法:对于正项级数,若其通项在n趋于无穷大时的极限存在且非零,那么级数收敛;若极限为零或不存在,则级数发散。
3. 比值判别法:对于正项级数,计算相邻两项的比值的极限,若极限小于1,则级数收敛;大于1,则级数发散;等于1,则判别不出结果,可能为发散也可能为收敛。
4. 高斯判别法:对于形如an = f(n)g(n)的级数,若函数f(n)和g(n)满足一定的条件,那么级数收敛。
5. 绝对收敛和条件收敛:若级数的绝对值级数收敛,则原级数也收敛,否则原级数发散。
条件收敛是指原级数在绝对收敛的前提下仍然收敛。
6. 积分判别法:对于正项级数,将通项进行积分,若积分级数收敛,则原级数收敛;若积分级数发散,则原级数发散。
7. Ratio Test:For a series with positive terms, if the ratio of consecutive terms has a limit less than 1, then the series converges. If the limit is greater than 1 or does not exist, the series diverges.8. Root Test:For a series with positive terms, if the nth root of the absolute value of each term has a limit less than 1, then the series converges. If the limit is greater than 1 or does not exist, the series diverges.9. Alternating Series Test:For an alternating series with decreasing terms, if the absolute value of the terms tends to zero as n approaches infinity, then the series converges.10. Power Series Convergence Test:For a power series of the form ∑(an(x-c)^n), if there exists a number R such that the series converges for |x-c| < R and diverges for |x-c| > R, then the series converges for the interval (c-R, c+R) and diverges elsewhere.。
数列与级数的收敛判别法数列与级数是数学中常见的概念,它们在数学分析、微积分等领域有着广泛的应用。
在研究数列与级数时,我们常常需要判断它们是否收敛,即是否存在有限的极限值。
本文将介绍几种经典的数列与级数的收敛判别法。
一、数列的收敛判别法1. 有界性判别法对于数列{an},如果存在一个实数M,使得对于所有的n,都有|an|≤M成立,那么数列{an}是有界的。
根据实数的确界原理,有界的数列必定存在收敛子列,因此可以推断该数列也是收敛的。
2. 单调性判别法对于数列{an},如果对于所有的n,都有an≤an+1或an≥an+1成立,即数列{an}单调递增或单调递减,那么该数列收敛的充分必要条件是{an}单调有界。
3. 夹逼定理夹逼定理是判别数列收敛性的重要工具。
设数列{an}、{bn}和{cn}满足an≤bn≤cn,并且lim(an)=lim(cn)=a。
如果数列{bn}收敛,那么它的极限必定是a。
二、级数的收敛判别法1. 正项级数判别法若级数Σan收敛,且对于任意的n,都有an≥0成立,则该级数是正项级数。
正项级数的收敛判别法有以下几个重要的定理:(1)比较判别法:若对于所有的n,都有0≤an≤bn成立,且级数Σbn收敛,则级数Σan也收敛;若级数Σan发散,则级数Σbn也发散。
(2)极限判别法:若存在正数c,使得lim(an/bn)=c,则有以下几种情况:当0<c<∞时,若级数Σbn收敛,则级数Σan也收敛;若级数Σan发散,则级数Σbn也发散。
当c=0时,若级数Σbn收敛,则级数Σan也收敛。
当c=∞时,若级数Σan收敛,则级数Σbn发散;若级数Σan发散,则级数Σbn收敛。
(3)比值判别法:若lim(|an+1/an|)=r,其中r为非负实数,那么有以下几种情况:当r<1时,级数Σan收敛。
当r>1时,级数Σan发散。
当r=1时,级数的敛散性不确定。
2. 交错级数判别法交错级数是指级数Σ(-1)^n*an,其中an为正数。
数项级数收敛性的判别一、基本概念数项级数是由一列实数构成的无限级数,形式化表示为:$$\sum_{n=1}^{\infty}a_n=a_1+a_2+...+a_n+...$$其中$a_n$为级数中第$n$个数。
对于数项级数$\sum_{n=1}^{\infty}a_n$,我们关心的问题是其收敛性或发散性。
设数列$\{S_n\}$表示数项级数的前$n$项和,则有:二、基本判别法1.正项级数判别法正项级数指所有项都是非负数的级数。
对于正项级数$\sum_{n=1}^{\infty}a_n$,若存在正整数$p$,使得对于任意$n\ge p$,都有$a_n\ge a_{n+1}$,则数项级数收敛。
该判别法常被称为级数单调有界准则,或称作单调有界原理,其思路为:单调有界必收敛。
当级数中第$p$项后,级数的每一项都小于等于$a_p$,同时又因为级数的每一项都为非负数,所以$\{S_n\}$必单调不降;又由于$a_n$单调减少,$\{S_n\}$最终必定收敛。
2.比较判别法(1)当级数$\sum_{n=1}^{\infty}b_n$收敛时,级数$\sum_{n=1}^{\infty}a_n$也收敛。
比较判别法常被称为比较原理,其思路为:级数$\sum_{n=1}^{\infty}a_n$的上界为级数$\sum_{n=1}^{\infty}b_n$的上界,则当$\sum_{n=1}^{\infty}b_n$收敛时,$\sum_{n=1}^{\infty}a_n$必定收敛;反之,当$\sum_{n=1}^{\infty}a_n$发散时,$\sum_{n=1}^{\infty}b_n$必定发散。
设极限$L=\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$存在,则:若$L=1$,则比值判别法无法断定级数的收敛性。
在比值判别法中,我们通常都称级数$\sum_{n=1}^{\infty}\frac{a_{n+1}}{a_n}$为原级数的比值级数。