三年级奥数 速算与巧算
- 格式:ppt
- 大小:947.50 KB
- 文档页数:30
1、加减法巧算在进行加减法计算时,“先计算括号中的部分,再从左往右依次计算”是基本的运算法则,但除此之外,还有许多运算技巧,熟练掌握各种运算技巧可以使你算得更快更准。
“凑整法”是最常用的巧算方法,就是在计算时优先计算可以得到整十、整百、整千的部分,从而达到巧算的目的,要想凑出整十,两个数的末位相加应该得0,这样的情况除了0+0外,还有1+9,2+8,3+7,4+6,5+5,同学们在作题时要注意观察各加数的个位,看能不能找到合适的凑法,除了加法可以凑整以外,减法同样可以凑整,个位相同的两个数相减后便能得到整十的数。
在进行加减法混合运算时,经常会遇到能够巧算的数不在一起的情况,这时候就需要通过调整运算顺序,把能巧算的放在一起先算,但需要注意的是,在调整的过程中,每个数都必须带着自己左边的符号一起移动,这种调整可以形象地称作“带符号搬家”,如果搬家的是算式中的第一个数,前面没有符号,在这个数之前添上一个加号即可。
例题1(1)计算:73+45+17+55;(2)计算:73+119+231+69+381+17(3)计算:375-138+247-175+139-237。
分析(1)通过个位凑十来配对;(2)加法配对看末位,减法应该如何配对?练习1、(1)计算:45+67+33+55+84(2)计算:36+97+32+64+168+103;(3)计算:2468-192+532+392-224+1234。
除了“带符号搬家”可以调整运算次序外,“脱括号”与“添括号”也是改变运算顺序的常用手段,加减法算式中“脱括号”要遵循下面的规则:例题2(1)计算:4723-(723+189)(2)计算:162-(162-135)-35-19(3)计算:163-(50-18)-(153-76)+(124-18)分析:去掉括号会变成什么样?练习:(1)计算123-(23-45)-(45-67)(2)计算:437-(200-83)+(63-53)………………………………………………笑话………………………………………………从前,山东省有个大军阀,他横行霸道,却不学无术,经常闹笑话。
1.快速计算乘法口诀表在小学三年级,学生已经开始学习乘法口诀表。
熟练掌握乘法口诀表是进行速算和巧算的基础。
学生应该掌握1乘以任意数等于该数本身,以及0乘以任意数等于0的原则。
另外,在计算乘法的过程中,还可以利用一些巧妙的方法,如利用乘法交换律和结合律,简化计算的步骤。
2.快速计算除法在小学三年级,学生已经开始学习除法运算。
为了进行快速计算除法,学生需要熟悉乘法和除法之间的关系。
例如,学生可以通过将除法问题转化为乘法问题来进行计算。
另外,学生还需要熟悉常见的除法口诀,如9除以任意数的口诀。
3.快速计算加法与减法在小学三年级,学生已经开始学习加法和减法运算。
为了进行速算和巧算,学生可以借助一些技巧。
例如,学生可以利用补数进行计算,将加法问题转化为减法问题或将减法问题转化为加法问题。
另外,在计算的过程中,学生还可以利用进位和借位的方法简化计算的步骤。
4.快速计算小数在小学三年级,学生已经开始学习小数的运算。
为了进行快速计算小数,学生需要熟悉小数的基本概念,如小数点的意义和小数的大小比较。
另外,在计算小数的过程中,学生还可以利用近似计算和适当舍入的方法简化计算的步骤。
5.快速计算整数问题在小学三年级,学生已经开始学习整数的运算。
为了进行速算和巧算,学生需要熟悉整数的基本概念,如正数、负数和零的概念。
另外,在计算整数的过程中,学生还可以利用相反数的概念简化计算的步骤。
6.快速计算组合问题在小学三年级,学生已经开始学习组合的概念。
为了进行快速计算组合问题,学生需要熟悉排列组合的基本原理,如乘法原理和加法原理。
另外,在计算组合的过程中,学生还可以利用化简问题和分类讨论的方法简化计算的步骤。
7.快速计算面积和周长问题在小学三年级,学生已经开始学习面积和周长的计算。
为了进行速算和巧算,学生需要熟悉面积和周长的基本公式,如长方形的面积和周长的计算公式。
另外,在计算面积和周长的过程中,学生还可以利用化简问题和近似计算的方法简化计算的步骤。
三年级奥数速算巧算经典题目一、加法中的速算巧算1. 凑整法题目:计算199 + 298+397 + 496。
解析:把199看作200 1,298看作300 2,397看作400 3,496看作500 4。
原式=(200 1)+(300 2)+(400 3)+(500 4)去括号得:200 1+300 2 + 400 3+500 4重新组合:(200+300 + 400+500)-(1 + 2+3+4)先计算括号里的数,200+300+400 + 500 = 1400,1+2+3+4 = 10。
所以结果为1400 10 = 1390。
2. 带符号搬家题目:计算134 + 297 34。
解析:根据带符号搬家的原则,把+297和 34的位置交换。
原式=134 34+297先计算134 34 = 100,再计算100+297 = 397。
二、减法中的速算巧算1. 凑整法题目:计算472 97。
解析:把97看作100 3。
原式=472-(100 3)去括号得:472 100+3先计算472 100 = 372,再计算372+3 = 375。
2. 一个数连续减去几个数题目:计算568 123 77。
解析:根据一个数连续减去几个数等于这个数减去这几个数的和。
原式=568-(123 + 77)先计算123+77 = 200,再计算568 200 = 368。
三、乘法中的速算巧算1. 乘法分配律题目:计算25×(40 + 4)。
解析:根据乘法分配律a×(b + c)=a×b+a×c。
这里a = 25,b = 40,c = 4。
原式=25×40+25×425×40 = 1000,25×4 = 100。
所以结果为1000+100 = 1100。
2. 乘法结合律题目:计算25×125×4×8。
解析:根据乘法结合律(a×b)×(c×d)=(a×c)×(b×d)。
加、减法的速算与巧算知识要点:“凑整”先计算,认真审题,灵活分组。
两个数相加,若能恰好凑成整十、整百、整千、整万...则先计算。
如: 1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:12+88=100,35+65=100,21+79=100,44+56=100,55+45=100。
在上面算式中,1叫9的“补数”;79叫21的“补数”,44也叫56的“补数”,也就是说两个数互为“补数”。
对于不能直接凑整的数,可以把其中一个数拆分后再凑整。
找基准数几个相接近的数相加,可以用找基准数法,进行移多补少计算。
找基准数的方法:整十、整百、整千等等。
本节课需要掌握:移数凑整法,拆数凑整法,借数凑整法,分组凑整法。
例1:换位凑整,快速计算。
(提示:看个位凑整,巧用小括号)(1)34+53+66 (2)679+27+321 (3)63+294+37+54+9 =34+66+53 =679+321+27 =63+37+(294+6)+3+54 =100+53 =1000+27 =100+300+3+54=153 =1027 =457练习1:(1)491+273+209+27 (2)882+356+18+55+44 (3)49+38+51+62+162+38 =1000 =1355 =400拓展题:(提示:巧用小括号,移数凑整法)(1350+249+468)+(251+332+1650)=1350+1650+(249+251)+(468+332)=3000+500+800=4300(2549+385+739)+(61+15+451)=4200例2: 先观察,再速算。
199999+19999+1999+199+19法1:拆数凑整法=(200000-1)+(20000-1)+(2000-1)+(200-1)+(20-1)= 200000+20000+2000+200+20-(1+1+1+1+1)=222220-5=222215法2:借数凑整法=199999+19999+1999+199+15+1+1+1+1=200000+20000+2000+200+15=222215练习2:28+208+2008+20008+200008=28+200+8+2000+8+20000+8+200000+8=200000+20000+2000+200+20+(8+8+8+8+8)=222220+40=222260例3:先观察,再速算。
小学三年级上册数学奥数知识点讲解第1课《速算与巧算1》试题附答案一、加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”也就是说两个数互为“补数”。
对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如:87655f12345,46802—53198,87362—12638,…下面讲利用“补数”巧算加法,通常称为“凑整法”。
2.互补数先加。
例1巧算下面各题:①36+87+64②99+136+101③1361+972+639+283.拆出补数来先加。
例2①188+873②548+996③9898+2034.竖式运算中互补数先加。
6 8\ 2+12 3%91 622 9 8 3如:二、减法中的巧算1.把几个互为“补数”的减数先加起来,再从被减数中减去。
例3①300-73-27②1000-90-80-20-102.先减去那些与被减数有相同尾数的减数。
例4①4723-(723+189)②2356-159-2563.利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。
例5①506-397②323-189③467+9970987-178-222-390三、加减混合式的巧算1.去括号和添括号的法则在只有加减运算的算式里,如果括号前面是“十”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“/号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变变“+”,即:a+(b+c+d)=a+b+c+da-(b+a+d)=a-b-c-da-(b-c)=a-b+c例6①100+(10+20+30)②100-(10+20+30)③1()0-(30-10)例7计算下面各题:①100+10+20+30②100-10-20-30③100-30+102.带符号“搬家”例8计算325+46-125+543.两个数相同而符号相反的数可以直接“抵消”掉例9计算9+2-9+34.找“基准数”法几个比较接近于某一整数的数相加时,选这个整数为“基准数”。
第二讲速算与巧算(一)学习内容:加减法的巧算与速算学习目标:(1)学会“化零为整”的思想(2)灵活运用简便方法,提高做作业的计算速度以及准确率速算与巧算是在运算过程中,根据数的特点与数之间的特殊关系,恰当、准确、灵活的运用定律、性质及和、差、积、商的变化规律,进行一种简便、迅速的计算。
一、凑十法同学们已经知道,下面的五组成对的数相加之和都等于10:1+9=10 2+8=10 3+7=10 4+6=10 5+5=10巧用这些结果,可以使计算又快又准。
例1 计算:1+2+3+4+5+6+7+8+9+10这种逐步相加的方法,好处是可以得到每一步的结果,但缺点就是麻烦、容易出错;而且一步出错,以后步步错。
若是利用凑十法,就能克服这种缺点。
练一练:8+5+6+7+3+4+2二、凑整法同学还知道,有些书相加之和是整十、整百的数,如:1+19=20 11+9=20 2+18=20 12+18=30 12+28=40 13+37=50 14+46=60 15+55=70 16+64=80 13+73=90又如:15+85=100 14+86=100 25+75=100 24+76=100 35+65=100 34+66=100 45+55=100 44+56=100 等等巧用这些结果,可以使那些较大的数相加又快又准、像10、20、30、40、50、60、70、80、90、100等等这些整十、整百的数就是凑整的目标。
例2 计算 1+3+5+7+9+11+13+15+17+19练一练:计算21+22+23+24+25+26+27+28+29的和等于多少?例3 计算 2+4+6+8+10+12+14+16+18+20练一练:计算22+24+26+28+30+32+34+16+18+20例4 计算 2+13+25+44+18+37+56+75练一练:计算17+26+82+59+13+24+18+21三、用已知求未知利用已经获得较简单的知识来解决面临的更复杂的难题这是人们认识事物的一般过程,凑十法、凑整法的实质就是这个道理,可见把这种认识规律用于计算方面,可使计算更快更准。
小学三年级奥数经典题——速算与巧算1.速算计算1+2+3+4+5+6+7+8+9+10解答:在这个算式中,共有10个数,将和为11的两个数一一配对,可配成5对。
求这10个数的和就可以将它们先配成5对(每对的和是11),再求5个11的和。
计算方法是:1+2+3+4+5+6+7+8+9+10运用这种方法可以求所有等差数列的和。
解答:在这个算式中,共有10个数,将和为11的两个数一一配对,可配成5对。
求这10个数的和就可以将它们先配成5对(每对的和是11),再求5个11的和。
计算方法是:1+2+3+4+5+6+7+8+9+10=(1+10)×10÷2=11×5=55运用这种方法可以求所有等差数列的和。
2.速算计算1000-1-2-3-4- (20)原式=1000-(1+2+3+4+5+ (20)=1000- (1+20)×20÷2=1000-210=790.三年级奥数题及答案:追及问题1.在一条笔直的公路上,有两个骑车人从相差500米的A、B两地同时出发。
甲从A地出发,每分钟行使600米,乙从B地出发,每分钟行使500米。
A追B,经过几分钟两人Z追上?解答:500/(600-500)=5(分钟)2.小张从家到公园,原打算每分种走50米.为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远?解答:假设另有一人,比小张早10分钟出发.考虑小张以75米/分钟速度去追赶,追上所需时间是50×10÷(75-50)=20(分钟)·因此,小张走的距离是75×20=1500(米).答:从家到公园的距离是1500米.还有一种不少人采用的方法.三年级下册奥数:从数的二进制谈起练习题三年级下册奥数:从数的二进制谈起练习题答案1、三年级奥数题及答案:长度问题南京长江大桥共分两层,上层是公路桥,下层是铁路桥。
铁路桥和公路桥共长11270米,铁路桥比公路桥长2270米,问南京长江大桥的公路和铁路桥各长多少米?分析:和差基本问题,和1127米,差2270米,大数=(和+差)/2,小数=(和-差)/2。
第一讲、速算与巧算例1、25+53+75+78+47 例2、91+90+88+92+93+84+85+95+97例3、9999+4+97+998+95+7 例4、1200-856-144例5、7869-(234+869)例6、1943-(132-57)例7、459+78-259+22 例8、936+(296-636)-596例9、3333330000-5769 例10、1-2+3-4+5-6+7-8+9-10+11-12+13-14+15 例11、(125×78)×8 例12、(125+78)×8例13、250×64×125×9 例14、950÷25例15、8442÷(21×67)例16、7600÷(38÷25)例17、291÷50+9÷50 例18、999×222+333×334例19、765×963×1001-765×1001×963 例20、2239+239×999例21、760÷(38÷125)×80 例22、(2001+2000×2002)÷(2001×2002-1) 例23、(1234+2341+3412+4123)÷5水平测试1A卷一、填空题1、773+368+227=2、10000-8927=3、582-(82-14)=4、4941-268+28=5、125×19×8=6、11500÷2300=7、(20+8)×125= 8、22500÷(100÷4)=9、在加法算式中,两个加法都增加26,则和增加10、在减法算式中,被减数与减数都增加6,则差二、解答题1、999+99+9+32、(24-15+37)+(26+63-35)3、3572-675-325-4724、56241×8÷245、125×16×256、375×823+177×3757、1624÷29-1334÷29一、填空题1、34+47+53+66 =2、300-99-9-999=3、111000-(99998+9997)-996=4、1028-(233-72)-67=5、在加法算式中,一个加数增加53,另一个加数减少27,则和是6、161÷23+92÷23+115÷23=7、40408×25=8、在乘法算式中,一个因数扩大20倍,另一个因数缩小4倍,则积是9、在除法算式中,被除数缩小2倍,除数缩小10倍,则商是二、解答题1、69230÷1152、500-1-4-7-10-……-283、493+502+498+495+501+506+502+496+505+4994、(99+999+9999)×95、(111×58-148×16)÷376、在减法算式中,被减数减少10,减数减少25,那么差如何变化?一、填空题1、2000+2003+2006+2009+2012+2015=2、(1+2+3+4+5+……+2003)-(1+6+11+……+31+36)=3、100+99-98-97+……+4+3-2-1=4、25243+83214-8457=5、22222222220000000000-2222222222=6、3333×6666=7、91×97=8、60606÷273=9、123456789×36×5=10、两个数相加后,乘以其中一个加数,减去这个数,除以这个数,其结果仍是这个数,那么另一个加数为二、解答题1、三个不相同的正整数的平均数是80,其中一个数是90,且它是最大的数,那么这个数中最小的数可以是多少?2、写出计算:99+99+99+99+99+99+6的三种简便计算式3、算式(221+222+……+370)-(31+32+……+98)的结果是奇数还是偶数?4、小明在做一道乘法题时,将一个因数的十位数字6看作9,个位数字7看作1,那么计算结果与正确答案相差696,求另一个因数。
速算与巧算一、基本概念与原理:1.补数:如果两个数相加,和为10、100、1000、10000等,我们就称这两个数互补,其中的一个为另一个的补数,比如:2+8=10, 我们称2是8的补数,8也是2的补数。
2.如何寻找补数:前位凑九,末(个)位凑十。
比如:找67的补数,末位为:10-7=3,十位为:9-6=3,所以67的补数是33。
3.加法交换律、结合律:加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)3、去括号法则:括号前为“+”,去括号后,原括号内符号不变;括号前为“-”,去括号后,原括号内符号相反。
二、加法运算技巧:1.直接寻找补数:仔细观察题目中的每个数,寻找存在“互补”关系的两个数,利用加法交换律、结合律进行计算。
例:2+7+8=2+8+7=(2+8)+7=17练习:15+73+8572+67+28116+625+84125+428+875+5722.将一个数“拆”成几个数之和,制造补数:在大多数加法计算中,我们并不能像前面那样轻松地直接寻找到存在“互补”关系的两个数。
这个时候,我们可以将其中的一个加数“拆开”,把它变成几个数之和,再用拆开后产生的这些数和原题中其他加数凑成“补数”。
例:4+9+7=9+7+4=9+7+(1+3)=9+1+7+3=(9+1)+(7+3)=20练习:75+35+9075+40+9019+199+1999三、减法运算技巧:1.带符号“搬家”。
例:325+46-125+54=325-125+46+54=200+100=300练习:558+75-158+332.把几个互为“补数”的减数先加起来,再从被减数中减去。
例:25-2-9-8-1=25-(2+9+8+1)=25-(2+8+9+1)=25-20=5练习:300-73-273.将一个减数“拆开”,“拆开”后的数之一应与被减数有相同的“尾数”。
例:75-49=75-(25+24)=75-25-24=50-24=26练习:159-88473-125四、加减法混合运算时的一些特殊技巧:1.在草纸上将带有“+”号的和带有“-”号的分别列成一列,然后将不同列中“末位”相同的数优先运算。