01第1章质点运动学
- 格式:pdf
- 大小:979.93 KB
- 文档页数:55
第一章质点运动学一选择题1.以下说法中,正确的选项是:()A.一物体若拥有恒定的速率,则没有变化的速度;B.一物体拥有恒定的速度,但仍有变化的速率;C.一物体拥有恒定的加快度,则其速度不行能为零;D. 一物体拥有沿x 轴正方向的加快度而有沿x 轴负方向的速度。
解:答案是 D。
2.长度不变的杆 AB,其端点 A 以 v0匀速沿 y 轴向下滑动, B 点沿 x 轴挪动,则 B 点的速率为:()A . v0 sinB .v0 cos C.v0 tan D.v0 / cos解:答案是 C。
简要提示:设 B 点的坐标为 x, A 点的坐标为 y,杆的长度为l,则x2y2l 2对上式两边关于时间求导:dx dy0,因dxv,dyv0,所以2 x 2 ydtdt dt dt2xv2yv0 = 0即v=v0 y/x =v0tan所以答案是 C。
3.如图示,路灯距地面高为 H,行人身高为 h,若人以匀速 v 背向路灯行走,灯y人头A H vv0hθvx影sB选择题 3图选择题 2图则人头影子挪动的速度u 为()H h Hv h HA.vB.H H h H h 解:答案是 B 。
简要提示:设人头影子到灯杆的距离为 x ,则x s h , x Hs , x H H hdx H ds HvuH h dt Hdt h所以答案是 B 。
4. 某质点作直线运动的运动学方程为x = 3t-5t 3 + 6 (SI),则该质点作A. 匀加快直线运动,加快度沿 x 轴正方向.B. 匀加快直线运动,加快度沿 x 轴负方向.C. 变加快直线运动,加快度沿 x 轴正方向.D. 变加快直线运动,加快度沿x 轴负方向.()解: 答案是 D5. 一物体从某一确立高度以v 0 的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是: ()v t - v 0v t v 0v t2 22v v 0 v t A.B.C.gD.2 gg2 g解:答案是 C 。
第一章 质点运动学研究物体(质点)的位置随时间而变化的规律 §1. 1质点运动的描述 一 参考系 质点 1 参考系为描述物体的运动而选择的标准物叫做参考系.选取的参考系不同,对物体运动情况的描述不同,这就是运动描述的相对性. 2 质点如果我们研究某一物体的运动,而可以忽略其大小和形状对物体运动的影响,若不涉及物体的转动和形变,我们就可以把物体当作是一个具有质量的点(即质点)来处理 .质点是经过科学抽象而形成的理想化的物理模型 . 目的是为了突出研究对象的主要性质 , 暂不考虑一些次要的因素 . 二 位置矢量 运动方程 位移 1 位置矢量确定质点P 某一时刻在坐标系里的位置的物理量称位置矢量, 简称位矢。
j y i x r+=位矢的值为位矢 的方向余弦2 运动方程k t z j t y i t x t r)()()()(++=消去参数t 得轨迹方程 f(x,y,z)=03 位移讨论:(1)位移的大小与位矢长度的变化(2)位移与路程:r r == r r r x =αcos r y =βcos rz =γcos A B r r r -=∆∴kz z j y y i x x r A B A B A B)()()(-+-+-=∆rr ∆≠∆ 222z y x r ∆+∆+∆=∆212121z y x ++-222222z y x ++=∆r一般情况, 位移大小不等于路程 当Δt →0时,ds r d r =⇒∆三 速度 1 平均速度Δt 时间内,质点从P 1到P 22 瞬时速度当Δt →0时平均速度的极限值叫做瞬时速度, 简称速度即 大小:方向:沿质点运动轨迹的切线方向或讨论:(1)速度与速率: 瞬时速度速度与速率 平均速率与平均速度 平均速率四 加速度(反映速度变化快慢的物理量) 1) 平均加速度与 同方向 2)(瞬时)加速度(1)直角坐标系加速度加速度大小 加速度方向(2)自然坐标系在运动轨迹上任取一点o, 在某时刻t ,质点位于P 处, 沿轨迹某一方向量得的曲线长度r s∆≠∆kt z j t y i t x∆∆+∆∆+∆∆=∆∆=t r v t r t r t d d lim 0=∆∆=→∆v kt z j t y i t x d d d d d d ++=kv j i zy x ++=v v v 222zy x v v v v ++=v v x=αCOS v vy=βCOS v v z=γCOS t d d et s =v == v v d d st=v ts∆∆=v a t ∆=∆v∆ v a0d lim d t a t t∆→∆==∆v v 22d d d d r a t t == v k dt z dv j dt y dv i dt x dv++=y z a j a k + a =222222d d d d d d d d d d d d x x y y x at t y a t t a t t ======z z v v v z a a x=αCOS aay =βCOS a a z=γCOSS=S(t)即为以自然坐标系表示的质点运动方程切线坐标:沿轨迹上任一点的切线方向,切向单位矢量 法线坐标:沿轨迹上任一点的法线方向,法向单位矢量 *注意:ne t e , 随质点移动ttttee dtd d dse e dt dsρωθθ====v v其中ρ=ds/d θ 曲率半径加速度:切向加速度(速度大小变化引起)t a d d t v=切向单位矢量的时间变化率法向加速度(速度方向变化引起)ρρωω22nv v ===a即nnttnte a e a e v e dt dv a+=+=ρ2加速度大小:22nt a a a += ,方向:tna a =ϕtg 讨论:(1)一般情况下,dtdva ≠例 匀速率圆周运动 0,0=≠dtdv a(2)在讨论圆周运动和曲线运动时常采用自然坐标系,即nnttnte a e a e rv e dt dv a+=+=2§1. 2 圆周运动圆周运动一般采用自然坐标系加速度:nnttnte a e a e rv e dt dv a+=+=2t e e t d d d d tt v v +=t a d d v =n d d et θ=∆∆→∆t e t t 0lim =t e d d t加速度大小:22n t a a a += ,方向:tn aa =ϕtgta d d t v =rr a 22nvv ===ωωdtd dtd ωαθω==(1)匀速率圆周运动:速率v 和角速度ω 都为常量 .n2n n e r e a a ω==(2)匀变速率圆周运动α=常量,当t=0时,θ=θ0,ω=ω0。