高等几何讲义 第三章 射影变换____§1 一维射影变换
- 格式:ppt
- 大小:2.08 MB
- 文档页数:79
第三讲射影几何与射影空间一、射影几何的起源与确立射影几何是研究图形的射影性质,即经过射影变换后,依然保持图形性质不变的几何学分支。
射影几何也叫投影几何学,通过它可以把欧氏几何、仿射几何等联系起来。
射影几何的某些内容在公元前就已经出现了,基于绘图学和建筑学的需要,古希腊几何学家就开始研究透视法,也就是投影和截影。
早在公元前200年左右,阿波罗尼奥斯就曾把二次曲线作为正圆锥面的截线来研究。
在4世纪帕普斯的著作中,出现了帕普斯定理。
但射影几何直到十九世纪才形成独立体系,趋于完备。
1.达·芬奇(1452—1519)射影几何的最早起源是绘画。
达·芬奇是一位思想深邃,学识渊博,多才多艺的画家、发明家、哲学家、音乐家、医学家、建筑和军事工程师。
他广泛地研究与绘画有关的光学、数学、地质学、生物学等多种学科。
在《绘画专论》一书中,他对透视法作了详尽的论述。
他的代表作《最后的晚餐》是基督教传说中最重要的故事。
这幅画就是严格采用透视法的。
在数学方面,他巧妙地用圆柱滚动一周的方法解决了化圆为方的难题,另外他还研究过等腰梯形、圆内接多边形的作图,四面体的重心等。
此外,达·芬奇还发现了液体压力的概念,提出了连通器原理。
达·芬奇在生理解剖学上也取得了巨大的成就,被认为是近代生理解剖学的始祖。
他绘制了比较详细的人体解剖图。
在建筑方面,达·芬奇也表现出了卓越的才华。
他设计过桥梁、教堂、城市街道和城市建筑。
达·芬奇的研究和发明还涉及到了军事领域。
他发明了簧轮枪、子母弹、三管大炮、坦克车、浮动雪鞋、潜水服及潜水艇、双层船壳战舰、滑翔机、直升飞机和旋转浮桥等。
看过《达·芬奇密码》的人大概都知道达·芬奇密码筒。
达·芬奇设计的这种密码筒造型古典,内涵着文艺复兴特质,设计优雅。
要打开密码筒,必须解开一个5位数的密码,密码筒上有5个转盘,每个转盘上都有26个字母,可能作为密码的排列组合多达11881376种。
射影变换4.1 点列和线束点列和线束定义.两个矢量),,(321a a a 和),,(321b b b 表示不同的点当且仅当这两个矢量线性无关. 在两点A ),,(321a a a 与B ),,(321b b b 的连线上任意一点),,(321x x x X 满足0321321321=b b b a a a x x x即,三点A ),,(321a a a ,B ),,(321b b b 与),,(321x x x X 共线的充分必要条件是0321321321=b b b a a a x x x以B A ,为基点的点列中,任何一点X 都可以表示为B A X μλ+=,用齐次坐标可以表示为B A B A X λλμ'+=+=;以m l ,为基线的线束中,任何一直线p 都可以表示为m l p μλ+=,用齐次坐标可以表示为m l m l p λλμ'+=+=.练习4-11.已知A 和B 的齐次坐标分别为)1,1,5(和)1,0,1(-,求直线AB 上一点C ,使1)(-=ABC ,若B A C λ+=,求出λ.解利用非齐次坐标),(y x 与齐次坐标),,(321x x x 之间的关系31x x x =,32x xy =.这时,)1,5(),(=y x A ,)0,1(),(-=y x B ,再利用BC AC ABC =)(.115-=+-x x ,解得2=x,101-=--y y ,解得21=y .即)21,2(=C ,C 点的齐次坐标为)1,21,2(. 因为B A C 2121+=,所以 1=λ. 注意:以B A ,为基点的点列中,任何一点X 都可以表示为B A X μλ+=,用齐次坐标可以表示为B A B A X λλμ'+=+=. 2.试证明:三点),,(321x x x ,),,(321y y y ,),,(321z z z 共线的充分必要条件为0321321321=z z z y y y x x x 证明三点),,(321x x x ,),,(321y y y ,),,(321z z z 共线的充分必要条件为λ=--=--=--333322221111y z x z y z x z y z x z所以0332211321332211321321321=-------=y z y z y z y y y x z x z x z z z z y y y x x x4.已知直线0143=++y x 与02=+y x ,求过两直线的交点与点)0,1,2(的直线方程.解两直线0143=++y x 与02=+y x 的交点为)5,1,3(112143321--=x x x 于是点)5,1,3(--与点)0,1,2(的直线方程为05105012513321321=+-=--x x x x x x即05105321=+-x x x .4.2 点列和线束的交比定义4.2设D C B A ,,,为点列上共线的四点,则这四点的交比为ADBC BDAC CD AB ⋅⋅=),(.定理 4.1取A 和B 为基点,将D C B A ,,,四点的坐标依次表示为a ,b ,b a 1λ+,b a 2λ+,则四点的交比为21),(λλ=CD AB . 定理4.2若D C B A ,,,四点的坐标为)4,3,2,1(21=+i P P i λ,21,P P 点列上两个基点,则),(),(432124142313λλλλλλλλλλλλ=----=CD AB定理4.3将某两点互换,同时互换其余两点,则交比不变.即),(),(),(),(BA DC AB CD DC BA CD AB ===定理4.4只在一对点中互换,交比转为其倒数.即),(1),(CD AB DC AB =,),(1),(CD AB CD BA =定理4.5交换中间两点,则交比为1与原值的差,即),(1),(CD AB BD AC -= 定义4.3当1),(-=CD AB 时,称D C ,调和分割线段AB .调和分割的关系是对等的.因为1),(),(-==CD AB AB CD ,所以,B A ,也调和分割线段CD ,有时也称D C B A ,,,为调和点列.定义4.4称21λλ为四直线d c b a ,,,的交比,记为),(cd ab .即 =),(cd ab 21λλ.注意:用齐次坐标之间的关系定义交比,点列的交比与线束的交比在形式上完全一致.定理4.6设四直线d c b a ,,,,若b a c 1λ+=,b a d 2λ+=,则=),(cd ab 21λλ. 定理4.7若四直线q p a 1μ+=,q p b 2μ+=,q p c 3μ+=,q p d 4μ+=,则 424132314321),(),(μμμμμμμμμμμμ----==cd ab .这个比值也称为数4321,μμμμ的交比.定理4.8两个点列经过中心投影,交比不变.练习4-21. 设E D C B A ,,,,是同一直线上的五点,求证1),)(,)(,(=EC AB DE AB CD AB .证明由交比定义ADBC BDAC CD AB ⋅⋅=),(,1),)(,)(,(=⋅⋅⋅⋅⋅⋅⋅⋅=ACBE BCAE AE BD BE AD AD BC BD AC EC AB DE AB CD AB .2.设C B A ,,三点的坐标分别为)1,1,1(,)1,1,1(-,)1,0,1(,且2),(=CD AB ,求点D 的坐标.解)1,1,1(=A ,)1,1,1(-=B ,则C B A ==+)1,0,1(2121,于是12=λ.设B A D 1λ+=,由2),(21==λλCD AB 可知,21=λ,所以)3,1,3(2-=+=B A D .注意:以B A ,为基点的点列中,任何一点X 都可以表示为B A X μλ+=,用齐次坐标可以表示为B A B A X λλμ'+=+=. 3.求四点)1,1,2(-A ,)1,1,1(-B ,)0,0,1(C ,)5,5,1(-D 的交比),(CD AB .解利用定理 4.1,取A 和B 为基点,将D C B A ,,,四点的坐标依次表示为a ,b ,b a 1λ+,b a 2λ+,则四点的交比为21),(λλ=CD AB . 这里B AC +=,于是11=λ, B AD 32-=,于是232-=λ,由21),(λλ=CD AB 可知,32),(21-==λλCD AB . 注意:以B A ,为基点的点列中,任何一点X 都可以表示为B A X μλ+=,用齐次坐标可以表示为B A B A X λλμ'+=+=. 7.试证:02321=+-x x x ,023321=-+x x x ,0721=-x x ,0531=-x x 所表示的四直线共点,并求这四直线的交比.解直线0721=-x x 与0531=-x x 的交点为)5,7,1(15017321=--x x x 点)5,7,1(满足四直线,所以,此四直线共点. 四直线与x 轴的交点分别为211-=x ,322=x ,03=x ,514=x ,所以,21),(4321=l l l l .4.3 完全四点形和完全四线形完全四点形和完全四线形定义.定理4.6完全四点形通过每一个对角点有一组调和线束,即通过这个对角点的两边和对角三角形的两边.定理4.10完全四线形的每一条对角线上有一组调和点列,即这条直线上的两个顶点及对角三角形的两个顶点.练习4-32.设XYZ 是完全四点形ABCD 的对边三点形,XY 分别交BD AC ,于M L ,,不用笛沙格定理,证明CM BL YZ ,,共点.证明由四点形ABCD ,根据定理可知,在AC 边上的四点L Y C A ,,,调和共轭, 即1),(-=YL AC .在四点形YBZL 中,LB 与YZ 交于N ,MN 与YL 交于C ',由定理可得),(-='YL CA 所以,点C 应与点C '重合,即CM BL YZ ,,共点.4.4 一维基本图形的射影对应两个点列成射影对应的定义. 两个线束成射影对应的定义. 点列与线束成射影对应的定义.定理4.11 设两个一维基本图形成射影对应,则对应四元素的交比相等. 定理4.12 若两个一维基本图形对应四个元素的交比相等,则必成射影对应. 定理 4.13 如果已知两个一维图形的任意三对对应元素,那么可以确定唯一一个射影对应.练习4-45. 若三角形ABC 的三边AB 、BC 、C A 分别通过共线的三点P ,Q ,R ,二顶点B 与C 各在定直线上,求证顶点A 也在一条直线上.证明根据图形(见第4题图)可知,题图)(第2Λ),,,(21ΛB B B ),,,(21ΛC C C ,则Λ),,,(21ΛB B B P ),,,(21ΛC C C R在这两个射影线束中,PR是自对应元素,所 以Λ),,,(21ΛB B B P ),,,(21ΛC C C R两透视对应的线束对应直线的交点Λ,,,21A A A 共线. 4.5 透视对应定义4.8点列和线束成射影对应,如果对应直线过对应点,这种特殊的射影对应称为透视对应,这时也这两个一维图形处于透视状态.定义4.9两个点列和同一个线束成透视对应,也就是说两个点列成中心射影对应,则称这两个点列成透视对应.定义4.10两个线束和同一个点列成透视对应,则称这两个线束成透视对应. 定理4.14两个射影对应的点列成透视的充要条件是:两个点列的公共点自对应. 定理4.15两个射影对应的线束成透视的充要条件是:两个线束的公共点自对应. 定理4.16(巴卜斯定理)设C B A ,,是直线l 上互异的三点,C B A ''',,是l '上互异的三点,那么三个交点C B C B L '⨯'=,B A B A N '⨯'=,A C A C M '⨯'=共线.定理4.17对于两个不共底的且不成透视对应的射影对应点列,用两次透视对应,可把第一个点列变成第二个点列.也就是说,射影对应是两个透视对应的复合.定理4.18设一个点列与一个线束成射影对应而不成透视对应,那么用三次透视就可以彼此转换.即,这时的射影对应是三个透视对应的复合.题图)(第5A1.如图四边形ABCD 被EF 分成两个四边形AFED 和FBCE ,求证三个四边形ABCD ,AFED ,FBCE 的对角线交点H G K ,,共线.证明因为D ,E ,C 直线l 上互异的三点,A ,F ,B 是直线m 上互异 的三点,由定理4.16(巴卜斯定理),三个交点AE DF G⨯=,AC DB K ⨯=, FC EB H ⨯=共线.4.6 对合对应对合对应定义.定理4.19两个重叠的一维图形(点列、线束)q p μ+,q p μ'+成为对合对应的充分必要条件是:对应元素的参数μ和μ'满足0)(=+'++'d b a μμμμ其中02≠-b ad .定理4.20不重合的两对对应元素,确定唯一一个对合对应.1.求参数为21→,20→的两对对应元素所确定的对合对应. 解利用定理 4.19,这里两对对应元素的参数μ和μ'分别为21,1='=μμ和2,0='=μμ,设0)(=+'++'d b a μμμμ为所求的对合对应,把两对对应参数值代入得)题图(第1DAFBCEGKHlm⎪⎩⎪⎨⎧=+=++0202321d b d b a 解得2:1:1::-=d b a ,因此,这两对对应元素所确定的对合对应为02=-'++'μμμμ.。