背包问题习题
- 格式:doc
- 大小:24.50 KB
- 文档页数:1
背包问题01背包问题题⽬有N件物品和⼀个容量为M的背包,每种物品只可以取⼀件。
第i件物品的费⽤是c[i],价值是v[i]。
求解将哪些物品装⼊背包可使价值总和最⼤。
分析这是最基础的背包问题,特点是:每种物品仅有⼀件,可以选择放或不放。
⽤⼦问题定义状态:即f[i][j]表⽰前i件物品恰放⼊⼀个容量为j的背包可以获得的最⼤价值。
则其状态转移⽅程便是:f[i][j]=max{f[i-1][j],f[i-1][j-c[i]]+v[i]}优化空间复杂度即改⽤⼀维数组f[j]存储第i个物品时剩余空间为j时的背包的最⼤价值。
注意到j-c[i]<j这个关系,当j=0……M顺序推f[j],则后⾯的到的f[j]将会使⽤到当前i状态下新⽣成的f[j-c[i]],⽽不是我们所需的i-1状态时的f[j-c[i]]。
因此,在每次主循环中我们以j=M……0顺序推f[j],这样才能保证推f[j]时f[j-c[i]]保存的是状态f[i-1][j-c[i]]的值。
参考代码完全背包问题题⽬有N件物品和⼀个容量为M的背包,每种物品都有⽆限件可⽤。
第i件物品的费⽤是c[i],价值是v[i]。
求解将哪些物品装⼊背包可使价值总和最⼤。
分析类似01背包问题,但与它相关的策略已并⾮取或不取两种,⽽是有取0件、取1件、取2件……。
如果仍然按照解01背包时的思路,令f[i][j]表⽰前i种物品恰放⼊⼀个容量为j的背包的最⼤权值。
仍然可以按照每种物品不同的策略写出状态转移⽅程:f[i][j]=max{ f[i-1][j-k*c[i]]+k*v[i] | 0<=k*c[i]<=M }优化时间复杂度若两件物品i、j满⾜c[i]<=c[j]且w[i]>=w[j],则将物品j去掉,不⽤考虑。
将费⽤⼤于M的物品去掉,然后使⽤类似计数排序的做法,计算出费⽤相同的物品中价值最⾼的是哪个。
转化为01背包问题求解最简单的想法是:考虑到第i种物品最多选M/c[i]件,于是可以把第i种物品转化为M/c[i]件费⽤及价值均不变的物品,然后求解这个01背包问题。
贪⼼算法-01背包问题1、问题描述:给定n种物品和⼀背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问:应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找⼀n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最⼤.即⼀个特殊的整数规划问题。
2、最优性原理:设(y1,y2,…,yn)是 (3.4.1)的⼀个最优解.则(y2,…,yn)是下⾯相应⼦问题的⼀个最优解:证明:使⽤反证法。
若不然,设(z2,z3,…,zn)是上述⼦问题的⼀个最优解,⽽(y2,y3,…,yn)不是它的最优解。
显然有∑vizi > ∑viyi (i=2,…,n)且 w1y1+ ∑wizi<= c因此 v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n)说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的⼀个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,⽭盾。
3、递推关系:设所给0-1背包问题的⼦问题的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。
由0-1背包问题的最优⼦结构性质,可以建⽴计算m(i,j)的递归式:注:(3.4.3)式此时背包容量为j,可选择物品为i。
此时在对xi作出决策之后,问题处于两种状态之⼀:(1)背包剩余容量是j,没产⽣任何效益;(2)剩余容量j-wi,效益值增长了vi ;使⽤递归C++代码如下:#include<iostream>using namespace std;const int N=3;const int W=50;int weights[N+1]={0,10,20,30};int values[N+1]={0,60,100,120};int V[N+1][W+1]={0};int knapsack(int i,int j){int value;if(V[i][j]<0){if(j<weights[i]){value=knapsack(i-1,j);}else{value=max(knapsack(i-1,j),values[i]+knapsack(i-1,j-weights[i]));}V[i][j]=value;}return V[i][j];}int main(){int i,j;for(i=1;i<=N;i++)for(j=1;j<=W;j++)V[i][j]=-1;cout<<knapsack(3,50)<<endl;cout<<endl;}不使⽤递归的C++代码:简单⼀点的修改//3d10-1 动态规划背包问题#include <iostream>using namespace std;const int N = 4;void Knapsack(int v[],int w[],int c,int n,int m[][10]);void Traceback(int m[][10],int w[],int c,int n,int x[]);int main(){int c=8;int v[]={0,2,1,4,3},w[]={0,1,4,2,3};//下标从1开始int x[N+1];int m[10][10];cout<<"待装物品重量分别为:"<<endl;for(int i=1; i<=N; i++){cout<<w[i]<<" ";}cout<<endl;cout<<"待装物品价值分别为:"<<endl;for(int i=1; i<=N; i++){cout<<v[i]<<" ";}cout<<endl;Knapsack(v,w,c,N,m);cout<<"背包能装的最⼤价值为:"<<m[1][c]<<endl;Traceback(m,w,c,N,x);cout<<"背包装下的物品编号为:"<<endl;for(int i=1; i<=N; i++){if(x[i]==1){cout<<i<<" ";}}cout<<endl;return 0;}void Knapsack(int v[],int w[],int c,int n,int m[][10]){int jMax = min(w[n]-1,c);//背包剩余容量上限范围[0~w[n]-1] for(int j=0; j<=jMax;j++){m[n][j]=0;}for(int j=w[n]; j<=c; j++)//限制范围[w[n]~c]{m[n][j] = v[n];}for(int i=n-1; i>1; i--){jMax = min(w[i]-1,c);for(int j=0; j<=jMax; j++)//背包不同剩余容量j<=jMax<c{m[i][j] = m[i+1][j];//没产⽣任何效益}for(int j=w[i]; j<=c; j++) //背包不同剩余容量j-wi >c{m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);//效益值增长vi }}m[1][c] = m[2][c];if(c>=w[1]){m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);}}//x[]数组存储对应物品0-1向量,0不装⼊背包,1表⽰装⼊背包void Traceback(int m[][10],int w[],int c,int n,int x[]){for(int i=1; i<n; i++){if(m[i][c] == m[i+1][c]){x[i]=0;}else{x[i]=1;c-=w[i];}}x[n]=(m[n][c])?1:0;}运⾏结果:算法执⾏过程对m[][]填表及Traceback回溯过程如图所⽰:从m(i,j)的递归式容易看出,算法Knapsack需要O(nc)计算时间; Traceback需O(n)计算时间;算法总体需要O(nc)计算时间。
P01: 01背包问题题目有N件物品和一个容量为V的背包。
第i件物品的费用是c[i],价值是w[i]。
求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
基本思路这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。
则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}。
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。
所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。
如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”;如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。
注意f[i][v]有意义当且仅当存在一个前i件物品的子集,其费用总和为v。
所以按照这个方程递推完毕后,最终的答案并不一定是f[N][V],而是f[N][0..V]的最大值。
如果将状态的定义中的“恰”字去掉,在转移方程中就要再加入一项f[i][v-1],这样就可以保证f[N][V]就是最后的答案。
至于为什么这样就可以,由你自己来体会了。
优化空间复杂度以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。
那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。
一、问题描述0/1背包问题:现有n 种物品,对1<=i<=n,已知第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数W,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过W 且总价值尽量大。
(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)二、算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:)2(max )1()1}(1,0{11∑∑==⎪⎩⎪⎨⎧≤≤∈≤ni i i ini i i x v n i x W x w 于是,问题就归结为寻找一个满足约束条件(1),并使目标函数式(2)达到最大的解向量),......,,,(321n x x x x X =。
首先说明一下0-1背包问题拥有最优解。
假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解:∑∑==⎪⎩⎪⎨⎧≤≤∈-≤n i i i in i i i x v n i x x w W x w 2211max )2}(1,0{。
如果不是的话,设),......,,(32n y y y 是这个问题的一个最优解,则∑∑==>n i n i i i i i xv y v 22,且∑=≤+n i i i W yw x w 211。
因此,∑∑∑====+>+ni i i n i n i i i i i x v x v x v y v x v 1221111,这说明),........,,,(321n y y y x 是所给的0-1背包问题比),........,,,(321n x x x x 更优的解,从而与假设矛盾。
穷举法:用穷举法解决0-1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集),计算每个子集的总重量,然后在他们中找到价值最大的子集。
一、01背包问题1、题目:有N件物品和一个容量为V的背包。
第i件物品的费用是c[i],价值是w[i]。
求解将哪些物品装入背包可使价值总和最大。
2、基本思路:这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。
则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。
所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。
如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i 件物品获得的价值w[i]。
3、优化空间复杂度:以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。
那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。
1、0/1背包
【问题描述】
一个旅行者有一个最多能装m公斤物品的背包,现在有n件物品,它们的重量分别是w1,w2,…,wn,它们的价值分别为c1,c2,…cn。
若每种物品只有一件,求旅行者能获得的最大总价值。
【输入格式】
第一行:两个整数m(背包容量,m≤200)和n(物品数量,n≤30);
第二~n+1行:每行两个整数wi,ci,表示每个物品的重量和价值。
【输出格式】
一个数据,表示最大总价值。
【输入样例】
10 4
2 1
3 3
4 5
7 9
【输出样例】
12
2、完全背包问题
【问题描述】
设有n中物品,每种物品有一个重量及一个价值。
但每种物品的数量是无限的,同时有一个背包,最大载重量为m,今从n种物品中选取若干件(同一物品可以多次选取),使其重量的和小于等于m,而价值的和为最大。
【输入格式】
第一行:两个整数,m(背包容量,m≤200)和(物品数量,n≤30);
第二~n+1行:每行两个整数wi,ui,表示每个物品的重量和价值。
【输出格式】
仅一行,一个数,表示最大总价值。
【输入样例】
10 4
2 1
3 3
4 5
7 9
【输出样例】
max=12。