工程力学:第2章 力系的简化
- 格式:ppt
- 大小:4.06 MB
- 文档页数:75
第2章 力系的等效与简化 作用在实际物体上的力系各式各样,但是,都可用归纳为两大类:一类是力系中的所有力的作用线都位于同一平面内,这类力系称为平面力系;另一类是力系中的所有力的作用线位于不同的平面内,称为空间力系。
这两类力系对物体所产生的运动效应是不同的。
同一类力系,虽然其中所包含的力不会相同,却可能对同一物体产生相同的作用效应。
在就是前一章中提到的力系等效的概念。
本章将在物理学的基础上,对力系的基本特征量加以扩展,引入力系主矢与主矩的概念;以此为基础,导出力系等效定理;进而应用力向一点平移定理以及力偶的概念对力系进行简化。
力系简化理论与方法将作为分析所有静力学和动力学问题的基础。
§2-1 力系等效定理 2-1-1 力系的主矢和主矩 2-1-2 力系等效定理 §2-2 力偶与力偶系 2-2-1 力偶与力偶系 2-2-2 力偶的性质 2-2-3 力偶系的合成 §2-3 力系的简化 2-3-1 力向一点平移定理 2-3-2 空间一般力系的简化 2-3-3 力系简化在固定端约束力分析中的应用 §2-4 结论和讨论 2-4-1 关于力矢、主矢、力矩矢、力偶矩矢以及 主矩矢的矢量性质 2-4-2 关于合力之矩定理及其应用 2-4-3 关于力系简化的最后结果 2-4-4 关于实际约束的简化模型 2-4-5 关于力偶性质推论的应用限制 习 题 本章正文 返回总目录第2章 力系的等效与简化 §2-1 力系等效定理 物理学中,关于质点系运动特征量已有明确论述,这就是:质点系的线动量和对某一点的角动量。
物理学中还指明线动量对时间的变化率等于作用在质点系上的合外力;角动量对时间的变化率等于作用在质点系上外力对同一点的合力矩。
这里的合外力,实际上只有大小和方向,并未涉及作用点或作用线。
因而,需要将其中的合外力与外力的合力矩扩展为力系的主矢和主矩。
2-1-1 力系的主矢和主矩 主矢:一般力系(F 1,F 2,…,F n )中所有力的矢量和(图2—1),称为力系的主矢量,简称为主矢(principal vector ),即∑=ni i1R FF =(2-1)图2-1力系的主矢其中F R 为力系主矢;F i 为力系中的各个力。
工程力学(静力学与材料力学)习题详细解答(第2章)习题2-2图第2章 力系的简化2-1 由作用线处于同一平面内的两个力F 和2F 所组成平行力系如图所示。
二力作用线之间的距离为d 。
试问:这一力系向哪一点简化,所得结果只有合力,而没有合力偶;确定这一合力的大小和方向;说明这一合力矢量属于哪一类矢量。
解:由习题2-1解图,假设力系向C 点简化所得结果只有合力,而没有合力偶,于是,有∑=0)(F C M ,02)(=⋅++−x F x d F ,dx =∴,F F F F =−=∴2R ,方向如图示。
合力矢量属于滑动矢量。
2-2 已知一平面力系对A (3,0),B (0,4)和C (-4.5,2)三点的主矩分别为:M A 、M B 和M C 。
若已知:M A =20 kN·m 、M B =0和M C =-10kN·m ,求:这一力系最后简化所得合力的大小、方向和作用线。
解:由已知M B = 0知合力F R 过B 点;由M A = 20kN ·m ,M C = -10kN ·m 知F R 位于A 、C 间,且CD AG 2=(习题2-2解图)在图中设OF = d ,则θcot 4=dCD AG d 2)sin 3(==+θ (1) θθsin )25.4(sin d CE CD −== (2)即θθsin )25.4(2sin )3(dd −=+ d d −=+93 3=d习题2-1图习题2-1解图R∴ F 点的坐标为(-3, 0)合力方向如图所示,作用线过B 、F 点; 34tan =θ 8.4546sin 6=×==θAG 8.4R R ×=×=F AG F M A kN 6258.420R ==F 即 )kN 310,25(R=F 作用线方程:434+=x y 讨论:本题由于已知数值的特殊性,实际G 点与E 点重合。
2-3三个小拖船拖着一条大船,如图所示。
第2章 力系的简化2-1 三力作用在正方形上,各力的大小、方向及位置如图示,试求合力的大小、方向及位置。
分别以O 点和A 点为简化中心,讨论选不同的简化中心对结果是否有影响。
答: 45,N 66.5N 24===x R θ︒,合力作用线过A 点。
题2-1图 题2-2图 2-2 图示等边三角形ABC ,边长为l ,现在其三顶点沿三边作用三个大小相等的力F ,试求此力系的简化结果。
答:力偶,Fl m 23=,逆时针。
2-3 沿着直棱边作用五个力,如图示。
已知F 1=F 3=F 4=F 5=F ,F 2=2P ,OA =OC =a ,OB =2a 。
试将此力系简化。
答:力偶,191),cos(,193),(cos ),cos(,19-=-===k M j M i M P a M 。
题2-3图 题2-4图2-4 图示力系中,已知F 1=F 4=100N ,F 2=F 3=1002N ,F 5=200N ,a =2m ,试将此力系简化。
答:力,R =200 N ,与y 轴平行。
2-5 图示力系中F 1=100N ,F 2=F 3=1002N ,F 4=300N ,a =2m ,试求此力系简化结果。
答:力螺旋,R =200 N ,平行于 z 轴向下,M =200 N ⋅m题2-5图 题2-7图 2-6 化简力系F 1(P ,2P ,3P )、F 1(3P ,2P ,P ),此二力分别作用在点A 1(a ,0,0)、A 2(0,a ,0)。
答: 力螺旋,3,34aP M P R ==。
2-7 求图示平行力系合力的大小和方向,并求平行力系中心。
图中每格代表1m 。
答:力,R =25 kN ,向下,平行力系中心(4.2, 5.4, 0)。
2-8 将题2-8中15kN 的力改为 40kN ,其余条件不变。
力系合成结果及平行力系中心将如何变化?答:力偶。
无平行力系中心。
2-9 用积分法求图示正圆锥曲面的重心。
答:h z y x C C C 31,0===。