函数误差与误差合成
- 格式:ppt
- 大小:749.50 KB
- 文档页数:71
标准文档误差理论与数据处理实验报告姓名:黄大洲学号:3111002350班级:11级计测1班指导老师:陈益民实验一 误差的基本性质与处理一、实验目的了解误差的基本性质以及处理方法二、实验原理(1)算术平均值对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。
1、算术平均值的意义:在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。
设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值121...nin i l l l l x n n=++==∑算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。
i v = i l -xi l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差)2、算术平均值的计算校核算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。
残余误差代数和为:11n niii i v l nx ===-∑∑当x 为未经凑整的准确数时,则有:1nii v==∑01)残余误差代数和应符合:当1n ii l =∑=nx ,求得的x 为非凑整的准确数时,1nii v =∑为零;当1nii l =∑>nx ,求得的x 为凑整的非准确数时,1nii v =∑为正;其大小为求x 时的余数。
当1n ii l =∑<nx ,求得的x 为凑整的非准确数时,1nii v =∑为负;其大小为求x 时的亏数。
2)残余误差代数和绝对值应符合: 当n 为偶数时,1ni i v =∑≤2n A; 当n 为奇数时,1nii v =∑≤0.52n A ⎛⎫- ⎪⎝⎭ 式中A 为实际求得的算术平均值x 末位数的一个单位。
(2)测量的标准差测量的标准偏差称为标准差,也可以称之为均方根误差。
1、测量列中单次测量的标准差2222121...nini nnδδδδσ=+++==∑式中 n —测量次数(应充分大)i δ —测得值与被测量值的真值之差211nii vn σ==-∑2、测量列算术平均值的标准差:x nσσ=三、实验内容:1.对某一轴径等精度测量8次,得到下表数据,求测量结果。
1.1.1 研究误差的意义为:1)正确认识误差的性质,分析误差产生的愿意,以消除或者减小误差2)正确处理测量和试验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据3)正确组织实验过程,合理设计仪器或者选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
1.2.1 误差的定义:误差是测得值与被测量的真值之间的差。
1.2.2 绝对误差:某量值的测得值之差。
1.2.3 相对误差:绝对误差与被测量的真值之比值。
1.2.4 引用误差:以仪器仪表某一刻度点的示值误差为份子,以测量范围上限值或者全量程为分母,所得比值为引用误差。
1.2.5 误差来源: 1)测量装置误差 2)环境误差 3)方法误差 4)人员误差1.2.6 误差分类:按照误差的特点,误差可分为系统误差、随机误差和粗大误差三类。
1.2.7 系统误差:在同一条件下,多次测量同一量值时,绝对值和符号保持不变,或者在条件改变时,按一定规律变化的误差为系统误差。
1.2.8 随机误差:在同一测量条件下,多次测量同一量值时,绝对值和符号以不可预定方式变化的误差称为随机误差。
1.2.9 粗大误差:超出在规定条件下预期的误差称为粗大误差。
1.3.1 精度:反映测量结果与真值接近程度的量,成为精度。
1.3.2 精度可分为:1)准确度:反映测量结果中系统误差的影响程度2)精密度:反映测量结果中随机误差的影响程度3) 精确度:反映测量结果中系统误差和随机误差综合的影响程度,其定量特征可用测量的不确定度来表示。
1.4.1 有效数字:含有误差的任何近似数,如果其绝对误差界是最末位数的半个单位,那末从这个近似数左方起的第一个非零的数字,称为第一位有效数字。
从第一位有效数字起到最末一位数字止的所有数字,不管是零或者非零的数字,都叫有效数字。
1.4.2 测量结果应保留的位数原则是:其最末一位数字是不可靠的,而倒数第二位数字应是可靠的。
1.4.3 数字舍入规则:保留的有效数字最末一位数字应按下面的舍入规则进行凑整:1)若舍去部份的数值,大于保留部份的末位的半个单位,则末位加一2)若舍去部份的数值,小于保留部份的末位的半个单位,则末位不变3)若舍去部份的数值,等于保留部份的末位的半个单位,则末位凑成偶数。
第一章1、熟悉误差、精度、有效数字的基本概念和相关计算方法。
答案:略2、用两种方法分别测量L1=50mm,L2=80mm。
测得值各为50.004mm,80.006mm。
试评定两种方法测量精度的高低。
解:两种测量方法进行的测量绝对误差分别为:δ1=50.004-50=0.004(mm);δ2=80.006-80=0.006(mm);两种测量方法的相对误差分别为:δ1/L1=0.004/50=0.008%;和δ2/L2=0.006/80=0.0075 %;显然,测量L2尺寸的方法测量精度高些。
3、若某一量值Q用乘积ab表示,而a与b是各自具有相对误差f a和f b的被测量,试求量值Q的相对误差。
解:∵相对误差=绝对误差/真值=(测得值-真值)/真值∴ a = a0(1+f a);b = b0(1+f b);式中a0、b0分别为a、b的真值。
则Q =ab = a0(1+f a) b0(1+f b)≈a0 b0(1+f a+ f b)因此,Q的相对误差约为(f a+ f b)第二章1、在立式测长仪上测量某校对量具,重复测量5次,测得数据(单位为mm)为20.0015,20.0016,20.0018,20.0015,20.0011。
若测量值服从正态分布,试以99%的置信概率确定测量结果。
解:①求算术平均值②求残余误差:各次测量的残余误差依次为 0,0.0001,0.0003,0,-0.0004。
③求测量列单次测量的标准差用贝塞尔公式计算:用别捷尔斯公式计算:④求算术平均值的标准差⑤求单次测量的极限误差和算术平均值的极限误差因假设测量值服从正态分布,并且置信概率P=2Φ(t)=99%,则Φ(t)=0.495,查附录表1 正态分布积分表,得置信系数t=2.6。
故:单次测量的极限误差:算术平均值的极限误差:⑥求得测量结果为:2、甲、乙两测试者用正弦尺对一锥体的锥角α个各重复测量 5 次,测得值如下:α甲:7°2’20”,7°3’0”,7°2’35”,7°2’20”,7°2’15”,α乙:7°2’25”,7°2’25”,7°2’20”,7°2’50”,7°2’45”;试求其测量结果。