水箱变高了-课后作业
- 格式:doc
- 大小:13.00 KB
- 文档页数:1
5.3 应用一元一次方程——水箱变高了一、选择题(每小题4分,共12分)1.小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出了这块矿石的体积.如果他量出玻璃杯的内直径是d,把矿石完全浸没在水中,测出杯中水面上升的高度为h,则小明的这块矿石体积是( )A.d2hB.d2hC.πd2hD.4πd2h2.小明用长250cm的铁丝围成一个长方形,并且长方形的长比宽多25cm,设这个长方形的长为x cm,则x等于( )A.75 cmB.50 cmC.137.5 cmD.112.5 cm3.请根据图中给出的信息,可得正确的方程是( )A.π·()2x=π·()2·(x+5)B.π·()2x=π·()2·(x-5)C.π·82x=π·62(x+5)D.π·82x=π·62×5二、填空题(每小题4分,共12分)4.一根内径为3cm的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8cm、高为1.8cm的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了cm.5.用直径为4cm的圆钢,铸造三个直径为2cm,高为16cm的圆柱形零件,则需要截取的圆钢长cm.6.用5个一样大小的小长方形恰好可以拼成如图所示的大长方形,若大长方形的周长是14,则小长方形的长是,宽是.答案解析1.【解析】选A.根据圆柱的体积公式可得这块矿石的体积为:d2h.2.【解析】选A.根据题意得:2(x+x-25)=250,解得:x=75.3.【解析】选 A.根据圆柱的体积公式求得大量筒中的水的体积为:π×()2x.小量筒中的水的体积为:π×()2×(x+5).根据等量关系列方程得:π×()2x=π×()2(x+5).4.【解析】设试管中的水的高度下降了xcm,根据题意得:π·1.52·x=π·42×1.8,解方程得:x=12.8.答案:12.85.【解析】设截取的圆钢长xcm.根据题意得:π×()2x=3×π×()2×16,解方程得:x=12.答案:126.【解析】设小长方形的宽为x,则长为2x,由题意得:(5x+2x)×2=14,解方程得x=1,即小长方形的宽为1,长为2. 答案:2 1。
七年级上《5.3应用一元一次方程——水箱变高了》课后作业
1.已知长方形的周长是30 cm,长比宽多3 cm,这个长方形的面积是________.
2.用一根铁丝围成一个长24 cm,宽12 cm的长方形,如果要制成一个正方形,那么这个正方形的面积是________cm2.
3.班级筹备运动会要做直角边分别为0.4 m和0.3 m的三角形小旗64面,则需要长1.6 m,宽1.2 m的长方形红纸________张.4.一个长方形的周长是26 cm,把它的长减少3 cm,而宽增加2 cm 后就得到一个正方形,则这个正方形的面积为________.
5.把一个半径为3的铁球融化后,能铸造________个半径为1的小铁球.(球体积公式为:V=πr3)
6.有一个底面半径为5 cm的圆柱形储油器,油液中浸有钢珠,若从中捞出546πg钢珠,问液面下降多少厘米(1 cm3钢珠为7.8 g)?
7.用一根长为10 m的铁丝围成一个长方形,
(1)使该长方形的长比宽多1.4 m,此时长方形的面积是多少?
(2)使该长方形的长与宽相等,此时正方形的面积是多少?
(3)比较(1)与(2)的大小,请说出用这根铁丝围成什么样的图形面积最大?。
5.3 应用一元一次方程——水箱变高了1.小英的爸爸买回家两块地毯,他告诉小英,小地毯的面积正好是大地毯面积的13,且两块地毯的面积和为20平方米,小英很快算出了大、小地毯的面积分别为(单位:平方米)( ) A .403,203B .30,10C .15,5D .12,82.要锻造直径为2厘米,高为16厘米的圆柱形机器零件10件,则需直径为4厘米的圆钢柱长( )A .10厘米B .20厘米C .30厘米D .40厘米3.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的15,水中部分是淤泥中部分的2倍多1米,露出水面的竹竿长1米.设竹竿的长度为x 米,则可列出方程( )A .15x +25x +1=xB .15x +25x +1+1=xC .15x +25x +1-1=xD .15x +25x =14.已知长方形的周长是30 cm ,长比宽多3 cm ,这个长方形的面积是________.5.用一根铁丝围成一个长24 cm ,宽12 cm 的长方形,如果要制成一个正方形,那么这个正方形的面积是________cm 2.6.班级筹备运动会要做直角边分别为0.4 m 和0.3 m 的三角形小旗64面,则需要长1.6 m ,宽1.2 m 的长方形红纸________张.7.一个长方形的周长是26 cm ,把它的长减少3 cm ,而宽增加2 cm 后就得到一个正方形,则这个正方形的面积为________.8.把一个半径为3的铁球融化后,能铸造________个半径为1的小铁球.(球体积公式为:V =43πr 3) 9.有一个底面半径为5 cm 的圆柱形储油器,油液中浸有钢珠,若从中捞出546π g 钢珠,问液面下降多少厘米(1 cm 3钢珠为7.8 g )?10.用一根长为10 m的铁丝围成一个长方形,(1)使该长方形的长比宽多1.4 m,此时长方形的面积是多少?(2)使该长方形的长与宽相等,此时正方形的面积是多少?(3)比较(1)与(2)的大小,请说出用这根铁丝围成什么样的图形面积最大?11、图①是边长为30 cm的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是________cm3.。
《水箱变高了》教案《《水箱变高了》教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!教学目标:1.能找到图形问题中的基本等量关系,并由此关系列方程解相关的应用题.2.进一步体会运用方程解决问题的关键是抓住等量关系,认识方程模型的重要性.教学重点:1.寻找图形问题中的等量关系,建立方程.2.根据具体问题列出的方程,掌握其简单的解方程的方法.教学难点:寻找图形问题中的等量关系,建立一元一次方程,使实际问题数学化.教学方法:直观——自主探索的方法在教师的引导下,通过学生亲自动手制作模型,自主探索在模型变化过程中的等量关系,建立方程,从而将图形问题代数化.课时安排:1课时教学过程:一、创新问题情境,引入新课在我们的现代社会里,人们不经意地就会听到或看到一些“减肥”的广告.一听别人说自己最近胖了,就考虑怎样减去多余的脂肪.我们今天就来研究“减肥”——水箱变高了二、引导操作,探索新知1.做一做现在拿出你们准备好的橡皮泥,先用这块橡皮泥捏出一个“矮胖”的圆柱体;然后再让这个“矮胖”的圆柱“变瘦”,变成一个又高又瘦的圆柱,随后思考两个问题:(1)在你操作的过程中,圆柱由“瘦”变“胖”的过程中,圆柱的底面直径变了没有?圆柱的高度呢?(2)在这个变化过程,是否有不变的量?是什么没变?(让学生亲自动手操作,在动手操作的过程中,体会哪些量发生了变化,哪些量没有变化?教师对基础差的同学可适当引导) 学生自由讨论两分钟,举手回答问题:这个问题的等量关系:旧水箱的体积=新水箱的体积.下面我们如果设新水箱的高为x米,通过填写下表来看一下锻压前的体积和锻压后的体积.(请一位同学填写)旧水箱新水箱底面半径高体积由等量关系我们便可得到方程:π×22×4=π×1.62×x.列出方程我们只是走完“万里长征”的重要的第一步,如何解这个方程呢?此时要注意提醒学生:(1)π的取值相关细节问题,此类题目中的π值由等式的基本性质就已约去,无须带具体值;(2)若是题目中的π值约不掉,也要看题目中对近似数有什么要求,再确定π值取到什么精确程度.下面我们共同把这个题的过程写一下.解:设锻压后圆柱的高为x米,根据题意,列出方程:π×22×4=π×1.62×x.解得x=6.25答:高变成了6.25米.我们再来看一个例子.(课本P141例1)〔例1〕用一根长为10米的铁丝围成一个长方体.(1)使得该长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?(2)使得该长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它围成的长方形与(1)中所围成的长方形相比,面积有何变化?(3)使得该长方形的长与宽相等,围成一个正方形,此时,正方形的边长是多少米?它所围成的面积与(2)中相比有何变化?〔分组讨论〕(1)用你手里的铁丝亲自动手操作,根据你的生活经验和操作过程以及用一元一次方程解决实际问题的基础,分组独立完成例1中的(1)(2)(3)三个问题.(2)请每一小组派一个代表汇报三个小问题的解答过程.(3)反思各组的解答过程讨论:解决这道题的关键是什么?从解这道题中你有何收获和体验.我们解答这个题的关键是我们在改变长方形的长和宽的同时,长方形的周长不变,始终是铁丝的长度10米.由此便可建立“等量关系”.但是我们可以发现,虽然长方形的周长不变,改变长方形的长和宽,长方形的面积却在发生变化,而且围成正方形的时候面积达到最大.想一想:是不是用10米长的铁丝围成的正方形的面积最大.同学们不妨下去继续讨论这个问题练一练:一个长方形的养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米.你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?分析:是否符合实际关键看和墙相对的一边不能超过14米,所以我们就需要根据小王和小赵的设计求出这一边的长度和14米比较.而此时就需找到“等量关系”建立方程.解:根据小王的设计可以设宽为x米,长为(x+5)米,2x+(x+5)=35x=10因此小王设计的长为x+5=10+5=15(米),而墙的长度只有14米,小王的设计是不符合实际的.再来看小赵的设计可以设宽为x米,长为(x+2)米,根据题意,得2x+(x+2)=35x=11因此小赵的设计的长为x+2=11+2=13(米).而墙的长度是14米,显然小赵的设计符合要求.此时,鸡场的面积为11×13=143(米2).三、课堂练习课本P142第一题四、课时小结本节课通过分析一些图形如圆柱、长方形等的数量关系,建立方程解决问题.进一步体会到运用方程解决问题的关键是抓住等量关系,认识方程模型的重要性.五、课后作业1.课本习题5.6,2.预习下一节《打折销售》并作市场调查.板书设计§5.3水箱变高了一、1.水箱变化中的等量关系:旧水箱的体积=新水箱的体积2.根据等量关系列方程3.解方程二、例1.(课本P141)《水箱变高了》教案这篇文章共6161字。
课后练习:
1、用直径为40mm 、长为1m 的圆钢,能拉成直径为4mm 、长为_______m 的钢丝。
2、用一根铁丝可围成一个长24厘米、宽12厘米的长方形。
若将它围成一个正方形,则这个 正方形的面积是( )
A 、81cm ²
B 、18cm ²
C 、324cm ²
D 、326cm ²
3、将底面直径为12厘米,高为30厘米的圆柱水桶装满水,倒人一个长方体水箱中,水只占水箱容积的3
2,设水箱容积为x 立方厘米,则可列方程_________________. 4、将一个底面直径是10厘米,高为40厘米的圆柱锻压成底面直径为l5厘米的圆柱,求它的高?若设高为x 厘米,则所列的方程为_____________.
5、把一块长、宽、高分别为5cm 、3cm 、3cm 的长方体铁块,浸入半径为4cm 的圆柱形水杯中(盛有水),水面将增高多少?(不外溢)
6.填空:
长方形的周长=_________. 面积=__________ .
长方体的体积=_________. 正方体的体积=__________. 圆的周长=___________. 面积=_______________. 圆柱的体积=_______________. 解决以下问题:
(1).将一个底面直径是20厘米、高为9厘米的“矮胖”形圆柱锻压成底面直径为l0厘米的“瘦长”形圆柱,高变成了多少?。
北师大版七年级数学上册第五章《3.应用一元一次方程—水箱变高了》课时练习题(含答案)一、单选题1.某阶梯教室开会,设座位有x 排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是( )A .30x ﹣8=31x ﹣26B .30x+8=31x+26C .30x+8=31x ﹣26D .30x ﹣8=31x+262.有一所寄宿制学校,开学安排宿舍时,如果每间宿舍安排4人,将会空出5间宿舍;如果每间宿舍安排3人,就有100人没床位,那么在学校住宿的学生有多少人?若设在学校住宿的学生有x 人,那么根据题意,可列出的方程为( )A .100543x x -+=B .510043x x +-= C .453100x x -=+ D .100543x x +-= 3.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电量15万度.如果设上半年每月平均用电x 度,则所列方程正确的是( )A .6x +6(x -2000)=150000B .6x +6(x +2000)=150000C .6x +6(x -2000)=15D .6x +6(x +2000)=154.某学校组织师生去衢州市中小学素质教育实践学校研学.已知此次共有n 名师生乘坐m 辆客车前往目的地,若每辆客车坐40人,则还有15人没有上车;若每辆客车坐45人,则刚好空出一辆客车.以下四个方程:①()4015451m m +=-;②()4015451m m -=-;③1514045n n -=-;④1514045n n -=+.其中正确的是( ) A .①③B .①④C .②③D .②④ 5.一个底面半径为10cm 、高为30cm 的圆柱形大杯中存满了水,把水倒入底面直径为10cm 的圆柱形小杯中,刚好倒满12杯,则小杯的高为( )A .6cmB .8cmC .10cmD .12 cm6.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A .27B .51C .69D .727.小明用长16cm 的铁丝围成一个长方形,并且长方形的长比宽多2cm ,设这个长方形的长为xcm ,则x 的值为()A .9B .5C .7D .108.闽北某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%,设把x 公顷旱地改造为林地,则可列方程为( )A .60-x =20%(120+x)B .60+x =20%×120C .180-x =20%(60+x)D .60-x =20%×120二、填空题9.一个蓄水池可蓄水240吨,现有一个进水管和一个排水管,单独打开进水管8小时可以把水池注满,单独打开排水管6小时可以把满池水排空.若原有满池水,设两管齐开,x 小时可把满池水排空,则可列方程________.10.某小学女生占全体学生52%,比男生多a 人,这个学校一共有______人学生. 11.已知一个两位数,其十位上的数字是个位上数字的3倍还少1,且它们的和是11,那么这个两位数是________.12.如图,一个尺寸为3604(⨯⨯单位:)dm 密封的铁箱中,有3dm 高的液体.当此铁箱竖起来(以34⨯为底面)时,箱中液体的高度是________dm .13.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x 人,可列方程为_______________.14.一个圆锥与一个圆柱的底面积相等,已知圆锥与圆柱的体积比是1:4,圆锥的高是4.8厘米,则圆柱的高是___厘米.三、解答题15.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?16.10位同学在植树节这天共种了26棵树苗,其中男生每人种3棵,女生每人种2棵,则男生和女生分别有多少人?17.在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树的人数的2倍.问支援拔草和植树的分别有多少人?(只列出方程即可)18.足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?19.有一个两位数,它的十位上的数字比个位上的数字大5,且这个两位数比它的两个数位上的数字之和的8倍还要多5,求这个两位数.20.冰墩墩是2022年北京冬季奥运会的吉祥物,将熊猫形象与富有超能量的冰晶外壳相结合,体现了追求卓越、引领时代,以及面向未来的无限可能.某学校购进了一批冰墩墩吉祥物分配给各班,若每班分4个,则剩余2个;若每班分5个,则还缺16个.求这个学校有几个班级?参考答案1.C2.A3.A4.B5.C6.D7.B8.A9.240240240 68x⎛⎫-=⎪⎝⎭10.25a11.8312.45.13.2x+56=589-x14.6.415.解:设长方形的长为cmx,根据题意,得2(10)10462x+=⨯+⨯.25220,x∴=-解得:16,x=所以长方形的长为16cm,宽为10cm.16.解:设男生x人,则女生(10-x)人,根据题意,得3x+2(10-x)=26,解得:x=6,10-x=10-6=4(人),答:男生6人,女生4人.17.解:设支援拔草的有x人,由题意得:31+x=2[18+(20-x)].18.解:设黑色皮块有3x个,则白色皮块有5x个,根据题意列方程:3x+5x=32,解得:x=4,则黑色皮块有:3x=12个,白色皮块有:5x=20个.答:黑色皮块有12个,白色皮块有20个.19.解:设个位上的数字为x,则十位上的数字为(x+5),那么这个两位数为10(x+5)+x,依题意,可列方程10(x+5)+x=8[ (x+5)+x ]+5.解方程可得:x=1代入可得这个两位数为61.答:这个两位数为61.20.解:设这个学校有x个班级,则+=-,x x42516x=.解得18答:这个学校有18个班级。
《应用一元一次方程——水箱变高了》作业设计方案(第一课时)一、作业目标本作业设计旨在通过《应用一元一次方程——水箱变高了》的课程内容,使学生能够:1. 掌握一元一次方程的基本概念及其在生活中的应用;2. 理解水箱问题中的变化规律,并能利用方程进行描述与解决;3. 培养学生的逻辑思维能力和解决实际问题的能力。
二、作业内容本课时的作业内容主要包括以下方面:1. 基础概念:让学生回顾一元一次方程的定义、基本形式和求解方法。
2. 情景模拟:创设水箱高度变化的问题情境,例如一个正在加水的鱼缸,其水位变化情况,用图形表示出变化规律。
3. 建模练习:引导学生将实际问题抽象为数学模型,即一元一次方程。
例如,通过水箱水位变化规律,建立关于时间t和水位h的方程。
4. 实践应用:让学生通过具体案例,运用所学知识解决实际问题。
如通过给定的初始条件(水速、水箱高度等),预测经过一段时间后的水位变化情况。
5. 反思总结:要求学生就作业过程中遇到的问题和收获进行反思和总结,并准备下一次课的讨论。
三、作业要求针对上述作业内容,特提出以下要求:1. 基础概念部分:学生需准确理解并掌握一元一次方程的基本概念和求解方法。
2. 情景模拟部分:学生需根据所给情境,正确理解并描述水箱水位的变化规律。
3. 建模练习部分:学生应根据实际问题的变化情况,将实际问题转化为一元一次方程模型。
需注重等式关系的把握,正确设定变量并建立等式关系。
4. 实践应用部分:学生需独立思考解决问题,学会根据时间变化预测水位变化情况,并给出相应的解释和理由。
5. 反思总结部分:学生应认真总结本次作业的收获和不足,为下一课时的学习做好准备。
四、作业评价本作业的评价标准包括:1. 正确性:是否准确理解和掌握了本课知识点;2. 创新性:在实践应用部分是否能够创造性地解决问题;3. 完整性:答案是否完整,思路是否清晰;4. 规范性:书写是否规范,格式是否正确。
五、作业反馈在完成作业后,教师应及时进行作业反馈,针对学生的完成情况进行点评和指导。
课后练习:
1、用直径为40mm 、长为1m 的圆钢,能拉成直径为4mm 、长为_______m 的钢丝。
2、用一根铁丝可围成一个长24厘米、宽12厘米的长方形。
若将它围成一个正方形,则这个 正方形的面积是( )
A 、81cm ²
B 、18cm ²
C 、324cm ²
D 、326cm ²
3、将底面直径为12厘米,高为30厘米的圆柱水桶装满水,倒人一个长方体水箱中,水只占水箱容积的3
2,设水箱容积为x 立方厘米,则可列方程_________________. 4、将一个底面直径是10厘米,高为40厘米的圆柱锻压成底面直径为l5厘米的圆柱,求它的高?若设高为x 厘米,则所列的方程为_____________.
5、把一块长、宽、高分别为5cm 、3cm 、3cm 的长方体铁块,浸入半径为4cm 的圆柱形水杯中(盛有水),水面将增高多少?(不外溢)
6.填空:
长方形的周长=_________. 面积=__________ .
长方体的体积=_________. 正方体的体积=__________. 圆的周长=___________. 面积=_______________. 圆柱的体积=_______________. 解决以下问题:
(1).将一个底面直径是20厘米、高为9厘米的“矮胖”形圆柱锻压成底面直径为l0厘米的“瘦长”形圆柱,高变成了多少?。