北师大版七年级数学上册教案附教学反思:5.3 应用一元一次方程(水箱变高了)
- 格式:doc
- 大小:132.00 KB
- 文档页数:6
2023-2024学年北师大版七年级数学上册《第五章一元一次方程5.3应用一元一次方程——水箱变高了》教学设计一. 教材分析本节课的主要内容是第五章一元一次方程的应用——水箱变高了。
教材通过实际问题引出一元一次方程的应用,让学生体会数学与实际生活的联系,培养学生的数学应用能力。
本节课的内容是学生学习了水箱的体积计算和水箱的高度变化,通过问题引出一元一次方程的建立和解法,让学生理解一元一次方程在解决实际问题中的作用。
二. 学情分析学生在学习本节课之前,已经学习了一元一次方程的基本概念和解法,对解方程有一定的掌握。
但是学生对实际问题转化为数学问题的方法还不够熟练,对一元一次方程在实际问题中的应用还不够理解。
因此,在教学过程中,教师需要引导学生将实际问题转化为数学问题,让学生通过实际问题体验一元一次方程的应用。
三. 教学目标1.知识与技能:学生会将实际问题转化为数学问题,建立一元一次方程,并解方程求解实际问题。
2.过程与方法:学生通过解决实际问题,体会一元一次方程在实际问题中的应用,培养学生的数学应用能力。
3.情感态度与价值观:学生体会数学与实际生活的联系,增强学生学习数学的兴趣和信心。
四. 教学重难点1.教学重点:学生将实际问题转化为数学问题,建立一元一次方程,并解方程求解实际问题。
2.教学难点:学生对实际问题转化为数学问题的方法,一元一次方程在实际问题中的应用。
五. 教学方法1.情境教学法:教师通过创设实际问题的情境,引导学生将实际问题转化为数学问题。
2.案例教学法:教师通过分析实际问题的案例,让学生理解一元一次方程在实际问题中的应用。
3.引导发现法:教师引导学生发现实际问题中的数量关系,建立一元一次方程。
4.实践操作法:教师学生进行实际问题的操作,让学生通过实践体会一元一次方程的应用。
六. 教学准备1.教师准备实际问题的案例,制作课件。
2.学生准备笔记本,用于记录方程和解法。
七. 教学过程1.导入(5分钟)教师通过创设水箱变高的情境,引导学生思考实际问题转化为数学问题。
5.3 应用一元一次方程——水箱变高了一.学生起点分析本节课涉及到图形问题,关键是让学生抓住形变过程中不变量,对于基本图形体积.面积.周长等公式,学生已在小学系统学习,如果遗忘或混淆,可做适当复习.二.教学任务分析本节学习列方程解应用题,其关键还是寻找实际问题中等量关系.在实际生活中经常会遇到类似本节情境问题,最关键是抓住变化中不变量,从而设出未知数,根据等量关系列出方程.教学时,应鼓励学生独立思考,发现等量关系.特别是对例1,应让学生根据生活经验和原有基础分组独立完成,然后请各小组汇报:四个小问题解答情况,最后组织学生展开讨论:解这道题关键是什么?从解这道题中你有哪些收获和体验?因此,本节教材处理策略是:展现问题情境——提出问题——分析数量关系和等量关系——列出方程,解方程——检验解得合理性.三.教学目标1.借助立体及平面图形学会分析复杂问题中数量关系和等量关系,体会直接或间接设未知数解题思路,从而建立方程,解决实际问题.2.通过分析图形问题中数量关系体会方程模型作用,进一步提高学生分析问题.解决问题.敢于提出问题能力.3.通过对实际问题探讨,使学生在动手独立思考.方程意识过程中,进一步体会数学应用价值,鼓励学生大胆质疑,激发学生好奇心和主动学习欲望.四.教学过程设计本节课设计了六个教学环节:第一环节:创设情境,引入新课;第二环节:运用情境,解决问题;第三环节:操作实践,发现规律;第四环节:体验数学模型第五环节:课堂小结;第六环节:布置作业.环节一:创设情境,引入新课活动内容:情境1:成语“朝三暮四”故事(附内容:从前有个叫狙公人养了一群猴子.每一天他都拿足够栗子给猴子吃,猴子高兴他也快乐.有一天他发现如果再这样喂猴子话,等不到下一个栗子收获季节,他和猴子都会饿死,于是他想了一个办法,并且把这个办法说给猴子听,当猴子听到只能早上吃四个,晚上吃三个栗子时候很是生气,呲牙咧嘴.没办法狙公只好说早上三个,晚上四个,没想到猴子一听高兴得直打筋斗.)问题1:猴子为什么高兴了?这其中有什么数学奥秘吗?情境2:教师从讲台下拿出了两瓶矿泉水(容量一样,A短而宽,B 长而窄).问题2:请问大家哪瓶矿泉水多?为什么?教师拿出两个相同量杯,让学生把两瓶矿泉水分别倒进两个量杯中,结果全体同学都说一样多,没有说对同学,不好意思笑了.教师:不要紧张,现在还有一个机会证明自己.情境3:先用一块橡皮泥捏出一个“瘦长”圆柱体,然后再让这个“瘦长”圆柱“变矮”,变成一个又矮又胖圆柱,请思考下列几个问题:●在你操作过程中,圆柱由“高”变“低”,圆柱底面直径变了没有?圆柱高呢?●在这个变化过程中,是否有不变量?是什么没变?活动目:让学生在愉快地玩过程中体会等体积变化现象中蕴涵不变量.同时分析出不变量与变量间等量关系.活动实际效果:学生能够感受到:两瓶形状不一样矿泉水体积是一样,手里橡皮泥在手压前和手压后发生了变化,变胖了,变矮了.即高度和底面半径发生了改变,但手压前后体积不变,重量不变.环节二:运用情景,解决问题活动内容:张师傅将一个底面直径为20厘米.高为9厘米“矮胖”形圆柱锻压成底面直径为10厘米“瘦长”形圆柱.假设在张师傅锻压过程中圆柱体积保持不变,那么圆柱高变成了多少?(在这个环节中可安排两组同桌分别上黑板合作完成.并把思路分析给大家.可给每个四人小组发一张表格,让学生试着通过填写表格寻找等量关系.)活动目的:将上述环节中体会到形之间变与不变关系,量之间等量关系抽象成数学问题,利用前几节解方程方法解决实际问题.活动实际效果:学生解答过程布列方程很顺利,很多学生使用了下面表格来帮助分析..解:设锻压后圆柱高为xcm,由题意π×2220)(×9=π×2210)(×x , 解之,得 x=36.黑板上两组学生中有一组学生将π值取3.14,带入方程,教师应在此给予指导,不要早说,现在恰到好处!(1) 此类题目中π值由等式基本性质就可以约去,无须带具体值;(2) 若题目中π值约不掉,也要看题目中对近似数有什么要求,再确定π值取到什么精确程度.环节三:操作实践,发现规律活动内容:学生用预先准备好40厘米长铁丝,以小组作出不同形状长方形,通过测量边长,近似求出长方形面积,比较小组内四个同学计算结果,你发现了什么?活动目的:我们知道:学生自己亲手经历操作后感受会更深刻.所以设置此环节,让学生手.眼.脑几个感官并用,在操作中体会,在计算中验证,在变化中发现.这样能培养学生经过观察.分析.归纳.总结等数学学习活动中发现数学思想与数学方法,也同时让学生感悟复杂问题中道理就在我们玩过程中,就在我们生活中.活动实际效果:学生:由操作过程,同学们作出长方形形状有“胖”有“瘦”,反映到表中数据为:当长方形周长一定,它长逐渐变短,宽随之逐渐变长,面积在逐渐变大.当长与宽一样长时面积最大.过程感悟:不要怕完不成进度,这个过程进行完成后,学生对课本设置相关内容就剩下规范解题过程了,学生理解远比直接先讲教材例题效果要好多.(此处教师可用几何画板来完成)环节四:练一练,体验数学模型活动内容:课本例题例1:一根长为10米铁丝围成一个长方形.1.若该长方形长比宽多1.4米.此时长方形长和宽各为多少米?2.若该长方形长比宽多0.8米,此时长方形长和宽各为多少米?它围成长方形面积与(1)中所围成长方形相比,面积有什么变化?3.若该长方形长与宽相等,即围成一个正方形,那么正方形边长是多少?它围成长方形面积与(2)中相比,又有什么变化?4.如果把这根长为10米铁丝围成一个圆,这个圆半径是多少?面积是多少?请思考:解此例题关键是什么?通过此题你有哪些收获和体验?你能试着设计表格解决这个问题吗?活动实际效果:因为有了环节三铺垫,有效地分解难点,学生掌握很好.完整解题过程留成课后作业.环节五:课堂小结1.通过对“我变高了”了解,我们知道“锻压前体积=锻压后体积”,“变形前周长等于变形后周长”是解决此类问题关键,其中也蕴涵了许多变与不变辩证思想.2.遇到较为复杂实际问题时,我们可以借助表格分析问题中等量关系,借此列出方程,并进行方程解检验.3.学习中要善于将复杂问题简单化.生活化,再由实际背景抽象出数学模型,从而解决实际问题.环节六:布置作业1.P184 随堂练习习题5.72.思考:地面上钉着用一根彩绳围成直角三角形.如果将直角三角形锐角顶点一个钉子去掉,并将这条彩绳钉成一个长方形,则所钉长方形长,宽各是多少?面积是多少?五.教学反思1.创造性地使用教材.本节课引入新颖自然,通过两个实验(情景2为液态物体变化,情景3为固态物体变化),使学生对课题有了初步认识,并通过学生对实验观察,发现了在物体形状变化时不变量,从而为列方程找等量关系作了铺垫.环节2中表格发给每个小组,为增强小组讨论结果展示起到了较好作用.环节3中通过让学生自己设计表格为讨论得出起到辅助作用.2.相信学生并为学生提供充分展示自己机会本节课设计中,通过学生多次动手操作活动,引导学生进行探索,使学生确实是在旧知识基础上探求新内容,探索过程是没有难度任何学生都会动手操作,每个学生都有体会过程,都有感悟可能,这种形式让学生切身去体验问题情景,从而进一步帮助学生理解比较复杂问题,再把实际问题抽象成数学问题.3.注意改进方面本节课由于构题新颖有趣,所以一开始就抓住了学生求知欲望,课堂气氛活跃,讨论问题积极主动.但由于学生发表自己想法较多,使得教学时间不能很好把握,导致课堂练习时间紧张,今后予以改进.。
教学设计应用一元一次方程——水箱变高了【教学目标】让学生学会根据实际应用问题,找出等量关系,学会列一元一次方程并解答实际应用问题.【重点难点】●重点:根据实际问题列一元一次方程.●难点:寻找等量关系.【教法与学法】●教法:引导探究法.●学法:讨论交流.【教学过程】一、情境引入将一个底面直径是20 cm、高9 cm的“矮胖”形圆柱锻压成底面直径为10 cm 的“瘦长”形圆柱,假设在锻压过程中圆柱的体积保持不变,那么圆柱的高变成了多少厘米?二、互动新授1.教师活动:如果设锻压后圆柱的高为x cm,指导学生计算并填写教材P143表格.学生活动:按要求填写表格,并根据等量关系,列出方程求解出x,回答问题.2.教师活动:请同学们阅读教材P143例1的题目,你知道如何按要求围成长方形吗?在此题中有没有等量关系?在变化过程中什么量是不变量呢?如何列出方程?逐步引导学生列出方程并解答问题.学生活动:思考并讨论例1中的等量关系,如何设未知数,如何列方程.【设计意图】让学生学会分析题意,学会抓住题目中的等量关系列方程.3.教师活动:请同学们交流一下所设的未知数是否一致,有哪些设法?所得的方程一样吗?并根据所列的方程解出未知数,得到所求的长方形的长和宽交流是否一致?为什么?学生活动:根据自己所设的未知数,列出方程与同学交流,并解出方程,先回答问题再进行交流.【设计意图】根据所设的未知数不同,得到的方程可以不同,但结果应该一样.4.教师活动:请同学们分别计算所得三个长方形的面积,并比较它们的大小,思考长方形的长和宽怎样变化,所围成的长方形的面积会越大呢?请同学填出下列表格:长方形周长长宽面积第一个第二个第三个学生活动:计算三个长方形的面积,填写表格,并观察比较长方形的面积的大小,找出面积的大小与长和宽的关系.5.教师活动:组织学生练习教材P144随堂练习,并让学生板演交流,教师作好点评.学生活动:练习并交流.【设计意图】通过练习,达到巩固掌握,熟练运用所学的知识解答问题.例:一批宿舍,若每间住1人,则有10人无法安排;若每间住3人,则有10间无人住.这批宿舍的间数为( ).A.20B.15C.10D.12学生活动:讨论本题中所求量和等量关系分别是什么,再列方程求解.教师分析:首先设这批宿舍的间数为x,再找本题中的等量关系,每间的人数可以变化,但总人数不会变,所以可以用未知数x表示出变化前后的总人数相等就得到方程了.【设计意图】引导学生学会从变化中寻找不变量,找出实际应用问题中的等量关系,根据等量关系列出方程.三、例题讲解【例1】有一个底面直径为0.1 m的圆柱形储油器,油中浸有钢珠,若从中捞出546π克钢珠,问液面将下降多少厘米?(1 cm 3钢珠重7.8 g)解析:题中的等量关系为:钢珠的体积=液面下降后减少的体积.【例2】现有长为35米的竹篱笆,小王打算用它围成一个长方形的鸡场,且尽可能使鸡场面积最大,请你帮他设计并求出最大面积.解析:养鸡场的长、宽相等时,面积最大. 四、巩固练习1.一个长方形的周长是40 cm,若将长减少8 cm,宽增加2 cm,长方形就变成了正方形,则正方形的边长为( )A.6 cmB.7 cmC.8 cmD.9 cm2.现有一个长方体水箱,从水箱里面量得它的深是30 cm,底面的长是25 cm,宽是20 cm.水箱里盛有深为 a cm(0<a≤8)的水,若往水箱里放入棱长为10 cm 的立方体铁块,则此时水深为( )A.43a cmB.54a cmC.(a+2) cmD.5a+106cm五、课堂小结1.如何根据实际问题列方程?2.解答实际应用问题需要哪些步骤? 【布置作业】教材习题5.6第1、2题. 【板书设计】3 应用一元一次方程——水箱变高了一、等量关系:变化前后的体积不变 二、列方程先要根据所求设出未知数,用未知数表示出其他量,再用未知数表示出等量关系. 【教学反思】本节课是运用方程解答实际问题的起始课,学生对方程的应用意识没有建立起来,如何把实际问题转化为方程这一环节的处理就尤为重要,这就要求教师做好表率,要先引导学生把所求的量设成字母x,这样就有了方程中的未知数,如何仔细阅读题目,找出题目中的不变量,此处不太好理解,建议教师可以让同学们用橡皮泥做实验,把橡皮泥捏成不同的形状,让学生观察变化中的不变量中什么,有了这二直观的认识就好理解本节内容,从而引导学生顺理成章地用方程解答问题了.。
北师大版数学七年级上册5.3《应用一元一次方程——水箱变高了》教学设计一. 教材分析北师大版数学七年级上册5.3《应用一元一次方程——水箱变高了》这一节主要让学生学会运用一元一次方程解决实际问题。
通过水箱变高的例子,让学生理解一元一次方程在现实生活中的应用,培养学生的数学应用能力。
二. 学情分析学生在学习这一节内容前,已经学过一元一次方程的理论知识,对解方程有一定的掌握。
但运用一元一次方程解决实际问题还是第一次,因此需要老师在教学中引导学生将理论知识与实际问题相结合。
三. 教学目标1.知识与技能目标:学生会运用一元一次方程解决实际问题,如水箱变高问题。
2.过程与方法目标:学生通过自主探究、合作交流,培养解决问题的能力。
3.情感态度与价值观目标:学生体会数学在生活中的应用,提高学习数学的兴趣。
四. 教学重难点1.重点:学生会运用一元一次方程解决实际问题。
2.难点:如何引导学生将实际问题转化为数学模型,并用一元一次方程解决。
五. 教学方法1.情境教学法:通过设置水箱变高的情境,激发学生兴趣,引导学生主动参与。
2.启发式教学法:在教学中,老师提问引导学生思考,培养学生解决问题的能力。
3.合作学习法:学生分组讨论,共同解决问题,培养学生的团队协作能力。
六. 教学准备1.课件:制作课件,展示水箱变高的情境。
2.教学素材:准备一些实际问题,让学生练习解决。
3.板书设计:设计板书,突出一元一次方程的解题步骤。
七. 教学过程1.导入(5分钟)老师出示一个水箱变高的情境,引导学生思考如何用数学方法解决这个问题。
2.呈现(10分钟)老师呈现一个关于水箱变高的问题,让学生尝试用一元一次方程解决。
引导学生列出方程,并解释方程的来源。
3.操练(10分钟)学生分组讨论,尝试解决其他关于水箱变高的问题。
老师巡回指导,解答学生的疑问。
4.巩固(10分钟)老师挑选几组学生的答案,进行讲解和评价。
让学生明确一元一次方程在解决实际问题中的作用。
应用一元一次方程——水箱变高了【教学目标】知识与技能:引导学生感受一元一次方程在解决实际问题中的应用.过程与方法:借助表格,分析复杂问题中的数量关系,建立方程解决实际问题.情感、态度与价值观:总结运用方程解决实际问题的一般步骤,明确列方程解决实际问题的关键是找等量关系.【教学重难点】重点:1.体验借助方程解决实际问题的过程.2.列一元一次方程解具有简单等量关系的应用题.难点:从复杂问题中挖掘条件,由“未知”向“已知”转化,寻找等量关系.【教学过程】一、创设情境引入新知教师演示操作1:爸爸把杯子中高度为5cm的水倒入量筒中(已知:杯子底面半径为,量筒底面半径为2cm)(1)仔细观察,认真思考,你发现哪些量发生了变化,哪些量没有改变?(2)量筒中水的高度是多少?操作2:小院有一个底面直径和高均为4m的圆柱形水箱.现该楼进行维修改造,为减少楼顶原有储水箱的占地面积,需要将它的底面直径由4m减少为3.2m.那么在容积不变的前提下,水箱的高度由原先的4m增高为多少米?在这个问题中,有如下的等量关系:旧水箱的容积=新水箱的容积.设水箱的高度为m,填写下表:底面半径/(m)旧水箱新水箱高/(m)容积/(m3)根据等量关系,列出方程:.解得=.因此,水箱的高变成了m.(1)看一看:让学生观察水箱由“矮”变“高”的变化过程;(2)列一列:根据问题中的等量关系列出方程,并解方程,使问题(一)得到解决.1.引导学生分析问题中的已知量与未知量.2.用实物模拟演示水箱由“矮”变“高”的变化过程.3.引导学生探究问题中的等量关系,列方程并解方程.学生独立思考,找出解决问题的方法和思路,列方程,解决问题(一).通过观察、演示、分析问题中各个量之间的关系使学生初步体验把实际问题转化为数学问题的“化归”过程.二、合作探究深化新知用一根长为10米的栅栏围成一个长方形鸡舍.(1)使得该长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?(2)使得该长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围成的长方形相比,面积有什么变化?(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少?它所围成的图形的面积与(2)中相比又有什么变化?1.学生分四人小组讨论解决问题,并根据计算的结果作出各自的长方形(或正方形).2.抽派小组代表阐述解题的步骤以及思路,并展示自己所在的小组所作的长方形(或正方形).3.通过猜测、验证说明三个长方形面积变化的规律.分析:由题意可知,长方形的周长始终是不变的,即长与宽的和为:.在解决这个问题的过程中,要抓住这个等量关系.解:(1)设此时长方形的宽为m,则它的长为m.根据题意,得.解这个方程,得..此时长方形的长为m,宽为m.(2)设此时长方形的宽为m,则它的长为m.根据题意,得.解这个方程,得..此时长方形的长为m,宽为m,面积为,(1)中长方形的面积为.此时长方形的面积比(1)中长方形的面积增大.(3)设正方形的边长为m.根据题意,得.解这个方程,得.正方形的边长为m,正方形的面积为,比(2)中面积增大.周长长宽之差长宽面积长方形1长方形2长方形3多媒体几何画板直观演示长宽变化时面积变化的规律.三、学以致用即时反馈1、墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?2、把一块长、宽、高分别为5cm、3cm、3cm的长方体铁块,浸入半径为4cm的圆柱形玻璃杯中(盛有水),水面将增高多少?(不外溢)四、课堂小结内化新知学习了本节课你有那些收获?应用一元一次方程解决实际问题(水箱变高了).1、步骤:审、找、设、列、解、检、答.2、关键:借助不变量,寻找等量关系.(形状变了,体积不变;面积变了,周长不变)3、规律:长方形的周长一定,正方形的面积最大.4、思想:转化、方程、从特殊到一般.5、感悟:热爱数学、热爱生活、努力追求幸福的生活.五、布置作业巩固落实见导学案。
5.3《一元一次方程的应用》教学设计教材分析本节课是北师大版( 2024)七年级上册的第五章第三节(《一元一次方程的应用》教学内容,它是学生学习完一元一次方程的概念和解法后的第一个模型应用内容,目的是让学生感受一元一次方程是刻画现实世界常见的数学模型之一。
本节课内容与学生现实生活结合紧密,这样可以让学生更容易根据问题中的数量关系建立方程模型。
与此同时,由于本节课是学生首次经历建立数学模型并求解的全过程,所以对于本课的教学,需引导学生真正经历从实际问题中获得等量关系、建立和求解一元一次方程模型的全过程,感悟模型思想,为以后学习研究其他数学模型奠定基础。
因此,本节课无论是在知识上还是思想方法及能力上都起着举足轻重的作用。
本节课的重点是通过对实际问题所涉及的数学关系的理解,找到图形问题中的等量关系,建立一元一次方程,使实际问题数学化。
难点是审清题意,关键让学生抓住图形问题中的不变量。
核心素养目标:思维品质、能正确分析应用题的题意,找出题中的不变量——等量关系,设未知数、列方程、求解并检验解的合理性。
数学建模、通过分析图形问题中的数量关系体会方程模型的作用,进一步提高学生分析问题、解决问题、敢于提出问题的能力。
情感态度与价值观、通过对实际问题的探讨,使学生在动手独立思考、方程意识的过程中,进一步体会数学应用的价值,鼓励学生大胆质疑,激发学生的好奇心和主动学习的欲望。
教学重点与难点:重点:能正确分析应用题的题意,找出题中的不变量——等量关系,设未知数、列方程、求解并检验解的合理性。
难点:通过分析图形问题中的数量关系体会方程模型的作用,进一步提高学生分析问题、解决问题、敢于提出问题的能力。
课前准备:多媒体课件、细绳、小球、水杯。
教学过程:一、创新情境,引入新课活动内容:情境1:成语( 朝三暮四”的故事( 附内容:从前有个人养了一群猴子.每天早晨和晚上都喂每只猴子四个橡子,可是他家里越来越穷了,已经买不起这么多橡子了,这可怎么办,于是他想了一个办法,第二天他对猴子们说,从今天开始,每天早上给你们三个橡子,晚上给四个,猴子们一听,早上的比晚上的少,气的大叫起来,那个人灵机一动,连忙改口说,要不我每天早上给你们四个橡子,晚上三个橡子,这样总可以了吧,猴子们一听,早上比晚上多,都高兴的跳了起来。
3应用一元一次方程——水箱变高了教课目的:【知识与技术】经过剖析图形问题中的数目关系,成立方程解决问题.【过程与方法】经历由实质问题抽象为方程模型的过程,进一步领会用方程解实质问题的一般思路和步骤 .【感情态度】联合本课教课特色,教育学生热爱学习,热爱生活,激发学生学习的兴趣 .教课重难点:【教课要点】剖析图形问题中的数目关系,娴熟地列方程解应用题.【教课难点】从实质问题中抽象出数学模型教课过程.教课过程:一、情境导入,初步认识用同一根铁丝围成不一样的图形,如三角形长方形、正方形、梯形、平行四边形等在这些图形中,什么发生了变化?什么不发生变化?【教课说明】学生很简单得出这些图形的变化,初步感觉图形问题中的数目关系 .二、思虑研究,获得新知1.运用一元一次方程解决等体积变形问题问题 1 教材第141页例题以上的内容.【教课说明】学生经过思虑、剖析,与伙伴进行沟通,达成表格,列出方程解决问题 .领会列表法的重要作用 .【概括结论】列方程解应用题要点是找出问题中的等量关系.2.运用一元一次方程解决等周长变形问题问题 2 教材第141页下方的例题.【教课说明】学生经过思虑、剖析与伙伴进行沟通,列出方程求解.【概括结论】在问题 2 中,长方形的周长一直是不变的,即长与宽的和为:10×1/2=5(m).因此在解决问题的过程中,重要紧抓住这个等量关系.3.运用一元一次方程解决等面积变形问题.问题 3 已知一梯形的高为8cm,上底长为 14cm,下底长比上底长的 2 倍少6cm,若把这个梯形改成与其面积相等的长方形,且长方形的长为24cm,求长方形的宽 .【教课说明】学生思虑、剖析,与伙伴沟通,设未知数列出方程求解.【概括结论】运用一元一次方程解决实质问题的一般步骤(1)设未知数,(2)找等量关系式,(3)列方程,(4)解方程,(5)查验,(6)写出答案 .三、运用新知,深入理解1.已知内径为120mm的圆柱玻璃杯和内径为300mm,内高为 32mm 的圆柱形玻璃盆能够盛相同多的水,则玻璃杯的内高为().2.一根绳索恰好能够围成一个边长为6cm 的正方形,假如用这根绳索围成一个长 8cm 的长方形,这个长方形的宽为_______cm,面积是 _______cm2.3.如下图,将一个底面直径为10cm,高为36cm的“瘦长”形圆柱锻压成底面直径为20cm 的“矮胖”形圆柱 .假定在锻压过程中圆柱的体积保持不变,那么高变为了多少?第3题图第4题图4.墙上钉着一根彩绳围成的梯形形状的饰物,如右图实线所示(单位:cm). 小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如右图虚线所示,小颖所钉长方形的长、宽各为多少厘米?【教课说明】学生自主达成,加深对新学知识的理解,检测对运用一元一次方程解决等积变形问题的掌握状况?对学生的迷惑教师应实时加以指导.达成上述题目后,教师指引学生达成练习册中本课时练习的讲堂作业部分.【答案】1.B2.4323.设高度为xcm,由题意得:2 2π× 5 × 36=π×x10解得 x=9因此高变为了 9cm.4.设长方形的长为xcm,由题意得:2(x+10)=10 ×4+6×2解得 x=16因此长方形的长为16cm,宽为 10cm.四、师生互动,讲堂小结1.师生共同回首运用一元一次方程解决等体积、等周长、等面积问题.2.经过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教课说明】教师指引学生回首知识点,让学生勇敢讲话,踊跃与伙伴交流,加深对新学知识的理解与运用.课后作业:1.部署作业:从教材“习题 5.6”中选用 .2.达成练习册中本课时的相应作业.教课反省:本节课从学生运用一元一次方程解决等体积,等周长等面积问题,到掌握运用一元一次方程解决实质问题的一般步骤,培育学生着手动脑习惯,提升学生用所学知识解决实质问题的能力,激发学生的学习兴趣.。
北师大版七年级上册5.3应用一元一次方程——水箱变高了课程设计1. 课程目标本课程的目标是通过学习应用一元一次方程解决实际问题的方法,使学生能够掌握解一元一次方程的基本方法,并能够运用所学知识解决关于水箱变高的问题。
2. 教学重点本节课的教学重点是让学生掌握应用一元一次方程解决实际问题的方法,并能够灵活地运用所学知识解决问题。
3. 教学难点本节课的教学难点是如何运用所学知识解决关于水箱变高的问题,并能够灵活运用所学知识求解答案。
4. 教学准备•准备一份课件,包括学习目标、知识点、实例演示和练习等内容。
•准备一些实际问题,例如水箱变高等。
•准备一些解一元一次方程的题目。
5. 教学过程5.1. 导入老师通过实际问题的引入,让学生了解本课学习的实际用途,并概述本课程内容和目标。
5.2. 讲解老师结合课件,详细讲解一元一次方程的定义、解法和应用,帮助学生建立解决实际问题的基本思路。
5.3. 实例演示老师通过实际问题的演示,让学生亲身体验解决实际问题的方法,并引导学生灵活运用所学知识解决问题。
例如:问题:高度为2m,长为4m,宽为3m的水箱,水面上升了h米,求此时水箱装了多少水。
解法:设水箱内装有x立方米的水,根据水箱的形状可以得到下列方程:x/(4*3)=(2+h)/1将方程化简得:12(2+h)=4*3*x化简后得6h+24=12x从而求出x=2h+4。
5.4. 练习老师出示一些解一元一次方程的题目,让学生在课堂上积极完成,巩固所学知识。
例如:1.解方程 2x + 3 = 7x - 11。
2.解方程 4(x + 3) - 3(2x - 1) = 2(3x - 5)。
3.解方程 5(x + 1) - 2(2x - 3) = 3(4 - x)。
5.5. 总结老师对本节课所学内容进行总结,让学生对所学知识有充分的理解和掌握。
6. 教学反思本课程通过实际问题的引入,让学生掌握了应用一元一次方程解决实际问题的方法。
5.3 应用一元一次方程——水箱变高了
一、学生起点分析
本节课涉及到图形问题,关键是让学生抓住形变过程中的不变量,对于基本图形的体积、面积、周长等公式,学生已在小学系统学习,如果遗忘或混淆,可做适当复习.
二、教学任务分析
本节学习列方程解应用题,其关键还是寻找实际问题中的等量关系.在实际生活中经常会遇到类似本节情境的问题,最关键的是抓住变化中的不变量,从而设出未知数,根据等量关系列出方程.教学时,应鼓励学生独立思考,发现等量关系.特别是对例1,应让学生根据生活经验和原有基础分组独立完成,然后请各小组汇报:四个小问题的解答情况,最后组织学生展开讨论:解这道题的关键是什么?从解这道题中你有哪些收获和体验?因此,本节教材的处理策略是:展现问题情境——提出问题——分析数量关系和等量关系——列出方程,解方程——检验解得合理性.
三、教学目标
1.借助立体及平面图形学会分析复杂问题中的数量关系和等量关系,体会直接或间接设未知数的解题思路,从而建立方程,解决实际问题.
2.通过分析图形问题中的数量关系体会方程模型的作用,进一步提高学生分析问题、解决问题、敢于提出问题的能力.
3.通过对实际问题的探讨,使学生在动手独立思考、方程意识的过程中,进一步体会数学应用的价值,鼓励学生大胆质疑,激发学生的好奇心和主动学习的欲望.
四、教学过程设计
本节课设计了六个教学环节:
第一环节:创设情境,引入新课;第二环节:运用情境,解决问题;第三环节:操作实践,发现规律;第四环节:体验数学模型第五环节:课堂小结;第六环节:布置作业.
环节一:创设情境,引入新课
活动内容:
情境1:成语“朝三暮四”的故事
(附内容:从前有个叫狙公的人养了一群猴子.每一天他都拿足够的栗子给猴子吃,猴子高兴他也快乐.有一天他发现如果再这样喂猴子的话,等不到下一个栗子的收获季
节,他和猴子都会饿死,于是他想了一个办法,并且把这个办法说给猴子听,当猴子听到只能早上吃四个,晚上吃三个栗子的时候很是生气,呲牙咧嘴的.没办法狙公只好说早上三个,晚上四个,没想到猴子一听高兴得直打筋斗.)
问题1:猴子为什么高兴了?这其中有什么数学奥秘吗?
情境2:教师从讲台下拿出了两瓶矿泉水(容量一样,A短而宽,B长而窄).
问题2:请问大家哪瓶矿泉水多?为什么?
教师拿出两个相同的量杯,让学生把两瓶矿泉水分别倒进两个量杯中,结果全体同学都说一样多,没有说对的同学,不好意思的笑了.
教师:不要紧张,现在还有一个机会证明自己.
情境3:先用一块橡皮泥捏出一个“瘦长”的圆柱体,然后再让这个“瘦长”的圆柱“变矮”,变成一个又矮又胖的圆柱,请思考下列几个问题:
●在你操作的过程中,圆柱由“高”变“低”,圆柱的底面直径变了没有?圆柱的高呢?
●在这个变化过程中,是否有不变的量?是什么没变?
活动目的:
让学生在愉快地玩的过程中体会等体积变化的现象中蕴涵的不变量.同时分析出不变量与变量间的等量关系.
活动的实际效果:
学生能够感受到:两瓶形状不一样的矿泉水体积是一样的,手里的橡皮泥在手压前和手压后发生了变化,变胖了,变矮了.即高度和底面半径发生了改变,但手压前后体积不变,重量不变.
环节二:运用情景,解决问题
活动内容:
张师傅将一个底面直径为20厘米、高为9厘米的“矮胖”形圆柱锻压成底面直径为10厘米的“瘦长”形圆柱.假设在张师傅锻压过程中圆柱的体积保持不变,那么圆柱的高变成了多少?
(在这个环节中可安排两组同桌分别上黑板合作完成.并把思路分析给大家.可给每个四人小组发一张表格,让学生试着通过填写表格寻找等量关系.)
活动目的:
将上述环节中体会到的形之间的变与不变的关系,量之间的等量关系抽象成数学问题,利用前几节的解方程方法解决实际问题.
活动的实际效果:
学生解答过程布列方程很顺利,很多学生使用了下面的表格来帮助分析.
锻压前 锻压后 底面半径
220cm 210cm 高 9cm xcm 体积 π×2220)( ×9 π×22
10)( ×x 由实验操作环节知“锻压前的体积=锻压后的体积”,从而得出方程.
解:设锻压后的圆柱的高为xcm ,由题意的
π×2220)(×9=π×2210)(×x,
解之,得 x=36. 黑板上两组学生中有一组学生将π的值取3.14,带入方程,教师应在此给予指导,不要早说,现在恰到好处!
(1) 此类题目中的π值由等式的基本性质就可以约去,无须带具体值;
(2) 若题目中的π值约不掉,也要看题目中对近似数有什么要求,再确定π值取
到什么精确程度.
环节三:操作实践,发现规律
活动内容:
学生用预先准备好的40厘米长的铁丝,以小组作出不同形状的长方形,通过测量边长,近似求出长方形的面积,比较小组内四个同学的计算结果,你发现了什么? 活动目的:
我们知道:学生自己亲手经历操作后的感受会更深刻.所以设置此环节,让学生手、眼、脑几个感官并用,在操作中体会,在计算中验证,在变化中发现.这样能培养学生经过观察、分析、归纳、总结等数学学习活动中发现数学思想与数学方法,也同时让学生感悟复杂的问题中的道理就在我们玩的过程中,就在我们的生活中.
活动的实际效果:
长(c m ) 宽(cm ) 面积(cm ²)。