3.1利用概率判断游戏的公平性(第2课时)同步练习(含答案)
- 格式:docx
- 大小:692.65 KB
- 文档页数:12
第2课时利用概率判断游戏的公平性关键问答①如何判断游戏的公平性?1.①甲、乙两人用2张红心扑克牌和1张黑桃扑克牌做游戏,规则是:甲、乙各抽取一张,若两张牌是同一花色,则甲胜;若两张牌花色不同,则乙胜.这个游戏公平吗?答:__________.2.把五张大小相同且分别写有1,2,3,4,5的卡片放在一个暗箱中,由甲随机从里面无放回地抽取两张,并记下两个数字之和,若两数字之和为偶数,则甲胜;若两数字之和为奇数,则乙胜.甲、乙获胜的概率分别为________.命题点事件公平性的判断[热度:90%]3.小明和小亮玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,若和为奇数,则小明胜;若和为偶数,则小亮胜.获胜概率大的是()A.小明B.小亮C.两人一样D.无法确定4.在不透明塑料袋里装有一个白色的乒乓球和两个黄色的乒乓球.小明一次从袋里摸出两个球;小刚左手从袋里摸出一个球,然后右手从袋里摸出一个球;小华则先从袋里摸出一个球看一下颜色,又放回袋里,再从袋里摸出一个球.摸出的两个球都是黄色的获胜.你认为这个游戏()A.不公平,对小明有利B.公平C.不公平,对小刚有利D.不公平,对小华有利5.②·营口如图3-1-2,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.图3-1-2(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形,则小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或画树状图法)说明理由(纸牌用A,B,C,D 表示).解题突破②题干中的“不放回”说明了什么?在分析时应注意什么?6.③·贺州在植树节期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平.”你认同他的说法吗?请说明理由.方法点拨③游戏是否公平,关键是看游戏双方获胜的概率是否相等.7.④小敏的爸爸买了一张某项体育比赛的门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,他拿了八张扑克牌,将数字分别为2,3,5,9的四张牌给了小敏,将数字分别为4,6,7,8的四张牌留给自己,并按如下规则做游戏:小敏和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌的数字相加,若和为偶数,则小敏去;若和为奇数,则哥哥去.(1)请用画树状图或列表的方法求小敏去看比赛的概率.(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.方法点拨④修改规则,使游戏变得公平的问题,对于概率不同的问题,可以通过修改事件来达到概率相同的目的,对于得分问题,既可以通过修改事件,又可以通过修改得分规则来达到目的.8.·山西模拟小明一家人春节期间参与了“支付宝集五福”活动,小明和姐姐都缺一个“敬业福”,恰巧爸爸有一个可以送给其中一个人,两个人各设计了一个游戏,获胜者可得到“敬业福”,请用适当的方法说明这两个游戏对小明和姐姐是否公平.在一个不透明盒子里放入标号分别为1,2,3,4,5,6的六个小球,这些小球除了标号数字不同外其余都相同,将小球摇匀.游戏1的规则是:从盒子中随机摸出一个小球,摸到标号数字为奇数的小球,则判小明获胜,否则,判姐姐获胜.游戏2的规则是:小明从盒子中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,姐姐再从盒子中随机摸出一个小球,并记下标号数字,若两次摸到小球的标号数字同为奇数或同为偶数,则判小明获胜,若两次摸到小球的标号数字为一奇一偶,则判姐姐获胜.9.⑤甲、乙两人所持口袋中均装有三张除所标数值不同外其他完全相同的卡片,甲袋中的三张卡片上所标数值分别为0,-1,3,乙袋中的三张卡片上所标数值分别为-5,2,7,甲、乙两人均从自己的口袋中任取一张卡片,并将它们的数值分别记为m,n.(1)请你用画树状图或列表的方法列出所有可能的结果;(2)现制定这样一个游戏规则:若选出的m,n能使得方程x2+mx+n=0有实数根,则称甲胜;否则称乙胜.请问这样的游戏规则公平吗?请你用概率知识解释.易错警示⑤(1)不要混淆m,n的取值;(2)当关于x的一元二次方程ax2+bx+c=0(a≠0)有实数根时,b2-4ac≥0.10.⑥在课外活动时间,小王、小丽、小华做“互相踢毽子”游戏,毽子从一人传到另一人就记为踢一次.(1)若从小丽开始,经过两次踢毽后,毽子踢到小华处的概率是多少(用画树状图或列表的方法说明)?(2)若经过三次踢毽后,毽子踢到小王处的可能性最小,请确定毽子是从谁开始踢的,并说明理由.图3-1-3解题突破⑥从小丽开始,第一次踢毽,毽子能踢给哪些人?第二次踢毽,毽子又能踢给哪些人?11.⑦“手心、手背”是在同学中广为流传的游戏.游戏时,甲、乙、丙三方每次出“手心”“手背”两种手势中的一种,规定:①出现三个相同的手势不分胜负,继续比赛;②出现一个“手心”和两个“手背”或者出现一个“手背”和两个“手心”时,则出一种手势者为胜,两种相同手势者为负.(1)假定甲、乙、丙三人每次都是等可能地出“手心”或“手背”,请用画树状图或列表的方法求甲、乙、丙三位同学获胜的概率.(2)若甲同学只出“手背”,乙、丙两位同学仍随机地出“手心”或“手背”,则甲同学获胜的可能性会减小吗?为什么?解题突破⑦第(1)小问和第(2)小问的限制条件有什么不一样?用画树状图法简单还是用列表法简单?详解详析【关键问答】①判断游戏的公平性就是要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.1.不公平 [解析] 列表如下:甲 乙 红1 红2 黑 红1 红1,红1 红1,红2 红1,黑 红2 红2,红1 红2,红2 红2,黑 黑黑,红1黑,红2黑,黑共有94种情况,∴甲获胜的概率为59,乙获胜的概率为49,59>49, 故甲获胜的概率大,即游戏不公平. 故答案为:不公平.2.25,35[解析] 根据题意,画树状图如下:由树状图可知,共有20种等可能的结果,其中两数字之和为偶数的结果有8种, ∴两数字之和为偶数的概率为820=25,两数字之和为奇数的概率为35.∴甲获胜的概率为25,乙获胜的概率为35.3.B [解析] 画树状图如下:共有9种等可能的情况,其中和为偶数的有5种,所以小亮胜的概率是59,那么小明胜的概率是49,所以获胜概率大的是小亮.4.D [解析] 小明一次从袋里摸出两个球,则摸出的两个球都是黄色的可能性是13;小刚左手从袋里摸出一个球,然后右手从袋里摸出一个球,两个球都是黄色的可能性为13; 小华先从袋里摸出一个球看一下颜色,又放回袋里,再从袋里摸出一个球,两个球都是黄色的可能性为49>13.所以小华获胜的可能性大,这个游戏不公平,对小华有利. 故选D.5.解:(1)因为共有4张牌,牌面图形是中心对称图形的情况有3种,所以摸出的牌面图形是中心对称图形的概率是34.(2)这个游戏公平.理由: 列表如下:小亮小明 ABCDA (A ,B)(A ,C) (A ,D) B (B ,A) (B ,C) (B ,D) C (C ,A) (C ,B) (C ,D)D(D ,A)(D ,B)(D ,C)有6种,∴P (两张牌面图形都是轴对称图形)=12,因此这个游戏公平. 6.解:(1)画树状图如图:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种, ∴P (小王去)=34.(2)认同.理由如下:∵P (小王去)=34,P (小李去)=14,34≠14,∴这种规则不公平.7.解:(1)根据题意,可以画出如下树状图:或者,根据题意也可以列出下表:小敏哥哥 23594 (4,2) (4,3) (4,5) (4,9) 6 (6,2) (6,3) (6,5) (6,9) 7 (7,2) (7,3) (7,5) (7,9) 8(8,2)(8,3)(8,5)(8,9)相等.而和为偶数的结果共有6个,所以小敏去看比赛的概率为616=38.(2)由(1)知小敏去看比赛的概率为38,哥哥去看比赛的概率为1-38=58.因为38<58,所以哥哥设计的游戏规则不公平.公平的游戏规则如下:若数字之和小于或等于10,则小敏(哥哥)去,若数字之和大于或等于11,则哥哥(小敏)去,这样两人去看比赛的概率都为12,那么游戏规则就是公平的.或者:如果将八张牌中的2,3,4,5四张牌给小敏,而余下的6,7,8,9四张牌给哥哥,则和为偶数或奇数的概率都为12,那么游戏规则也是公平的.(只要满足两人手中数字为偶数或奇数的牌的张数相等即可)8.解:游戏1:∵共有6种等可能的结果,一次摸到小球的标号数字为奇数或为偶数的情况各有3种,∴小明获胜的概率为36=12,姐姐获胜的概率为36=12,∴游戏1对小明和姐姐是公平的; 游戏2:画树状图如下:共有36种等可能的结果,其中两次摸到小球的标号数字同为奇数或同为偶数的结果有18种,两次摸到小球的标号数字为一奇一偶的结果也有18种,∴小明获胜的概率为1836=12,姐姐获胜的概率为1836=12,∴游戏2对小明和姐姐是公平的.9.解:(1)画树状图如下:∴(m ,n )的可能结果有(0,-5),(0,2),(0,7),(-1,-5),(-1,2),(-1,7),(3,-5),(3,2),(3,7),∴(m ,n )的取值结果共有9种.(2)∵(m ,n )的可能结果有(0,-5),(0,2),(0,7),(-1,-5),(-1,2),(-1,7),(3,-5),(3,2),(3,7),∴当m =0,n =-5时,Δ=m 2-4n =20>0,此时方程x 2+mx +n =0有两个不相等的实数根;当m =0,n =2时,Δ=m 2-4n =-8<0,此时方程x 2+mx +n =0没有实数根; 当m =0,n =7时,Δ=m 2-4n =-28<0,此时方程x 2+mx +n =0没有实数根; 当m =-1,n =-5时,Δ=m 2-4n =21>0,此时方程x 2+mx +n =0有两个不相等的实数根;当m =-1,n =2时,Δ=m 2-4n =-7<0,此时方程x 2+mx +n =0没有实数根; 当m =-1,n =7时,Δ=m 2-4n =-27<0,此时方程x 2+mx +n =0没有实数根; 当m =3,n =-5时,Δ=m 2-4n =29>0,此时方程x 2+mx +n =0有两个不相等的实数根;当m =3,n =2时,Δ=m 2-4n =1>0,此时方程x 2+mx +n =0有两个不相等的实数根;当m =3,n =7时,Δ=m 2-4n =-19<0,此时方程x 2+mx +n =0没有实数根; ∴P (甲获胜)=49,P (乙获胜)=59,∴P (甲获胜)≠P (乙获胜), ∴这样的游戏规则不公平. 10.解:(1)画树状图如下:由树状图可知,经过两次踢毽后,毽子踢到小华处的概率是14.或列表如下:第二次第一次 小丽小王小华小王 (小王,小丽) (小王,小华)小华(小华,小丽)(小华,小王)由上表可知,毽子踢到小华处的概率是14.(2)毽子是从小王开始踢的. 理由:画树状图如下:11 / 11 若从小王开始踢,三次踢毽后,毽子踢到小王处的概率是14,踢到其他两人处的概率都是38,因此,毽子踢到小王处的可能性最小. 11.解:(1)画树状图如下: ∴一共有8种结果,每种结果出现的可能性相等,其中甲、乙、丙三位同学获胜的情况各有2种,∴P (甲获胜)=P (乙获胜)=P (丙获胜)=28=14. (2)甲同学获胜的可能性不会减小.理由:画树状图如下:一共有4种情况,每种情况出现的可能性相等,其中甲获胜的情况有1种,∴甲获胜的概率仍为14,可能性不会减小.。
第三章概率的进一步认识1用树状图或表格求概率第2课时游戏的公平性素材一新课导入设计情景导入置疑导入归纳导入复习导入类比导入悬念激趣情景导入图3-1-16如图3-1-16,小明、小亮和小凡做“石头、剪刀、布”的游戏,游戏规则如下:由小明和小亮玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小亮中的获胜者.假设小明和小亮每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?[说明与建议] 说明:通过做游戏激发了学生学习的兴趣,一方面是引导学生进一步巩固用树状图或表格求概率的知识,另一方面是为学习第二节(用频率估计概率)埋下伏笔.建议:让三位学生做游戏,尽量次数多一些,其他同学统计结果,然后小组讨论,再让学生仿照上节课所学的用树状图或表格求概率的方法尝试解决上面的问题,并让学生从概率的角度解释上面的问题.悬念激趣“石头、剪刀、布”,又称“猜丁壳”,是一种流传多年的猜拳游戏.起源于中国,然后传到日本、朝鲜等地,随着亚欧贸易的不断发展它传到了欧洲,到了近现代逐渐风靡世界.简单明了的规则,单次玩法比拼运气,多回合玩法比拼心理博弈,使得“石头、剪刀、布”这个古老的游戏同时拥有“意外”与“技术”两种特性,深受世界人民喜爱.那么同学们想一想“石头、剪刀、布”有没有规则漏洞可钻呢?[说明与建议] 说明:从“石头、剪刀、布”这个耳熟能详的游戏作为切入点,使学生产生学习新知的兴趣,使学生进一步掌握用列表法或树状图计算某事件发生的概率.建议:以讲故事的形式引出问题,自然衔接学生也便于接受,从而充分调动学生的求知欲和好奇心,为顺利完成判断游戏规则公平与否的依据做好铺垫.素材二教材母体挖掘教材母题——第62页例1小明、小颖和小凡做“石头、剪刀、布”游戏.游戏规则如下:由小明和小颖做“石头、剪刀、布”的游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.图3-1-17假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?【模型建立】“石头、剪刀、布”这个游戏是公平的,是没有漏洞可钻的,也就是说对于参与的各方获胜的概率是相同的.实际上,在真正玩“石头、剪刀、布”时,双方做这三种手势的可能性不一定相同,每个人都有自己的习惯和偏好,本例中我们假设小明和小颖每次做这三种手势的可能性相同,如果没有这种假设后面的解法就缺乏理论依据.事实上,我们在将一个实际问题数学化时,往往不仅仅是一个抽象化的过程,而且也是一个理想化的过程.【变式变形】1.[常州中考] 一个不透明的箱子里共有3个球,把它们分别编号为1,2,3,这些球除编号不同外其余都相同.(1)从箱子中随机摸出一个球,求摸出的球是编号为1的球的概率; (2)从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号,求两次摸出的球都是编号为3的球的概率.[答案:(1)13 (2)19]2.亲爱的同学们,下面我们来做一个猜颜色的游戏:一个不透明的小盒中,装有A ,B ,C 三张除颜色以外完全相同的卡片,卡片A 两面均为红色,卡片B 两面均为绿色,卡片C 一面为红色,一面为绿色.(1)从小盒中任意抽出一张卡片放到桌面上,朝上一面恰好是绿色,请你猜猜,抽出哪张卡片的概率为0?(2)若要你猜(1)中抽出的卡片朝下一面是什么颜色,则猜哪种颜色正确率可能高一些?请你列出表格,用概率的知识予以说明.[答案:(1)A(2)猜绿色正确率高一些.因为一定不会抽出卡片A ,只会抽出卡片B 或C ,且抽出的卡表格中1和2分别表示B 卡的两面.可见朝下一面的颜色有绿、绿、红三种可能,即P(绿色)=23,P(红色)=13,所以猜绿色的正确率高一些.]3.[遵义中考] 小明、小军两同学做游戏,游戏规则:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中各取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树状图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利?[答案:(1)略 (2)小明获胜的槪率为25,游戏不公平,对小军有利]素材三 考情考向分析[命题角度1] 用列表法或树状图求概率列表法和树状图法的优点是能把事件发生的每一种可能都具体表示出来,尤其是树状图法更能直观地表现出事物发生的每一种可能.利用表格可以有条理地排列试验结果,可以化抽象为直观,化复杂为简单,便于正确计算事件发生的概率,能提高计算的正确性,同时还可以丰富解决问题的策略.如习题3.2第4题,第6题.例 [武汉中考] 袋中装有大小相同的2个红球和2个绿球. (1)先从袋中摸出1个球后放回..,混合均匀后再摸出1个球. ①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率. (2)先从袋中摸出1个球后不放回...,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.[答案:(1)①14 ②12 (2)23][命题角度2] 概率与代数、几何问题的结合新课标实施以来,概率问题成为新增的一道亮丽的风景,在具体情景中体会概率意义的同时,增加了同其他数学知识的联系,展示了数学的整体性.例 [陇南中考] 在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x ,小敏从剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点P 的坐标(x ,y).(1)请你运用画树状图或列表的方法,写出点P 所有可能的坐标; (2)求点(x ,y)在函数y =-x +5图象上的概率.[答案:(1)(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3) (2)13]素材四 教材习题答案P64随堂练习有三张大小一样而画面不同的画片,先将每一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在第一个盒子中,把下半部分都放在第二个盒子中.分别摇匀后,从每个盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率.解:13.P64习题3.21.准备两组相同的牌,每组三张且大小一样,三张牌的牌面数字分别是1,2,3.从每组牌中各摸出一张牌.(1)两张牌的牌面数字和等于1的概率是多少? (2)两张牌的牌面数字和等于2的概率是多少? (3)两张牌的牌面数字和为几的概率最大? (4)两张牌的牌面数字和大于3的概率是多少?解:(1)0;(2)19;(3)4;(4)23.2.经过某路口的行人,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两人经过该路口,求下列事件的概率:(1)两人都左拐;(2)恰好有一人直行,另一人左拐;(3)至少有一人直行.解:(1)19;(2)29;(3)59.3.掷两枚质地均匀的骰子,求下列事件的概率:(1)至少有一枚骰子的点数为1; (2)两枚骰子的点数和为奇数; (3)两枚骰子的点数和大于9;(4)第二枚骰子的点数整除第一枚骰子的点数. 解:(1)1136;(2)12;(3)16;(4)718.4.小明和小军做掷骰子游戏,两人各掷一枚质地均匀的骰子.(1)若两人掷得的点数之和为奇数,则小军获胜,否则小明获胜.这个游戏对双方公平吗?为什么?(2)若两人掷得的点数之积为奇数,则小军获胜,否则小明获胜.这个游戏对双方公平吗?为什么?解:(1)公平,两人获胜的可能性相同;(2)不公平,两人获胜的可能性不相同.5.如图,小明和小红正在做一个游戏:每人先掷骰子,骰子朝上的数字是几,就将棋子前进几格,并获得格子中的相应物品.现在轮到小明掷骰子,棋子在标有数字“1”的那一格,小明能一次就获得“汽车”吗?小红下一次掷骰子可能得到“汽车”吗?她下一次得到“汽车”的概率是多少?解:不能;可能,16.6.在本节课的“石头、剪刀、布”游戏中,小凡没有参与活动,有“任人宰割”的感觉,于是他们修改游戏规则如下:三人同时做“石头、剪刀、布”游戏,如果三人的手势都相同或三人的手势互不相同,那么三人不分胜负;如果有两个人的手势相同,那么按照“石头胜剪刀,剪刀胜布,布胜石头” 的规则决定胜负(有可能有两个胜者).这个游戏对三人公平吗?先算一算,再做一做.解:公平.素材五 图书增值练习素材六 数学素养提升赌博与概率论《重要的艺术》一书的作者、意大利医生兼数学家卡当,据说他曾进行过大量的赌博.他在赌博时研究不输的方法,实际是概率论的萌芽.据说卡当曾参加过这样的一种赌法:把两颗骰子掷出去,以每个骰子朝上的点数之和作两个骰子朝上的面共有36种可能,点数之和分别可为2~12共11种.从图中可知,7是最容易出现的和数,它出现的概率是=卡当曾预言说押7最好.现在看来这个想法是很简单的,可是在卡当的时代,应该说是很杰出的思想方法. 在那个时代,虽然概率论的萌芽有些进展,但还没有出现真正的概率论.十七世纪中叶,法国贵族德·美黑在骰子赌博中,由于有要急近处理的事情必须中途停止赌博,要靠对胜负的预测把赌资进行合理的分配,但不知用什么样的比例分配才算合理,于是就写信向当时法国的最高数学家帕斯卡请教.正是这封信使概率论向前迈出了第一步. 帕斯卡和当时第一流的数学家费尔玛一起,研究了德·美黑提出的关于骰子赌博的问题.于是,一个新的数学分支--概率论登上了历史舞台.概率论从赌博的游戏开始,完全是一种新的数学.现在它在许多领域发挥着越来越大,十分重要的作用.。
第2课时游戏公平吗知识点1利用概率判断游戏的公平性1.暑假快到了,父母打算带兄妹俩去某个景点旅游,哥哥坚持去黄山,妹妹坚持去泰山,争执不下,父母为了公平起见,决定设计一款游戏.若哥哥赢了就去黄山,若妹妹赢了就去泰山.下列游戏中,不能选用的是()A.抛掷一枚质地均匀的硬币,正面向上哥哥赢,反面向上妹妹赢B.同时抛掷两枚质地均匀的硬币,两枚都正面向上,哥哥赢,一枚正面向上一枚反面向上则妹妹赢C.掷一枚质地均匀的骰子,向上的一面的点数是奇数则哥哥赢,反之妹妹赢D.在一个不透明的袋子中装上除颜色外其余均相同的两个黑球和两个红球,随机摸出一个球是黑球则哥哥赢,是红球则妹妹赢2.一个不透明的口袋中有20个球(每个球除颜色外其余均相同),其中白球有x个,绿球有2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球,则甲胜.将甲摸出的球放回袋中搅匀,乙从袋中任意摸出一个球,若为黑球,则乙胜.若双方摸到白球或甲摸到绿球的同时乙摸到黑球,则需重摸.当x=时,游戏对甲、乙双方都公平.3.如图31-2-3,小明、小华用牌面数字分别为1,2,3,4的4张扑克牌玩游戏.他俩将扑克牌洗匀后,背面朝上放置在桌面上.若一次从中随机抽出两张牌的牌面数字之和为奇数,则小明获胜;反之,则小华获胜.这个游戏公平吗?请说明理由.图31-2-3知识点2有关面积型的概率的计算4.[2019·天水]如图31-2-4,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为()A.B.C.D.图31-2-4 图31-2-55.[2018·镇江]小明将如图31-2-5所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标注连续偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是(若指针落在边界则重转),则n的取值为()A.36B.30C.24D.186.小明与小华在玩一个掷飞镖游戏,图31-2-6①是一个把两个同心圆平均分成8份的靶,当飞镖掷中阴影部分时,小明胜,否则,小华胜(没有掷中靶或掷到边界线时重掷).(1)不考虑其他因素,你认为这个游戏公平吗?说明理由;(2)请你在图②中,设计一个不同于图①的方案,使游戏对双方都公平.图31-2-67.[教材练习第2题变式]图31-2-7是两个大小相同的转盘A,B,A盘被平均分为12份,颜色顺次为红、蓝、绿.B盘被平均分为红、蓝、绿3份.分别自由转动A盘和B盘,则A盘停止时指针指向红色区域的概率B盘停止时指针指向红色区域的概率(指针指向两扇形的交线时当作指向右边的扇形).(用“>”“<”或“=”填空)图31-2-78.在一个不透明的袋子里装有10个除号码外其余都相同的小球,每个小球的号码分别是1,2,3,4,5,6,7,8,9,10.将它们充分摇匀,并从中任意摸出一个小球.规定若摸出的小球号码能被3整除,则甲获胜;若摸出的小球号码能被5整除,则乙获胜;这个游戏对甲乙双方公平吗?请说明理由.如果不公平,应该如何修改游戏规则才能对双方公平?(游戏对双方公平的原则是双方获胜的概率相等)9.小明家里的阳台地面,水平铺设着仅灰白颜色不同的18块方砖(如图31-2-8),他从房间里向阳台抛小皮球,小皮球最终随机停留在阳台的某块方砖上.(1)分别求小皮球停留在灰色方砖与白色方砖上的概率;(2)小皮球停留在哪种颜色的方砖上的概率较大?要使这两个概率相等且方砖的排列呈一定的规律性,应改变第几行第几列的方砖的颜色?怎样改变?图31-2-810.某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图31-2-9所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠(指针指向两扇形的交线时当作指向右边的扇形).已知小张在该商场消费300元.(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)对小张来说,选择转动哪个转盘更合算?请通过计算加以说明.图31-2-9教师详解详析【详解详析】1.B[解析] A项,掷一枚质地均匀的硬币,正面向上的概率为,反面向上的概率为,概率相等,故此选项不符合题意;B项,同时掷两枚质地均匀的硬币,两枚都正面向上的概率为,一正一反向上的概率为,概率不相等,故此选项符合题意;C项,掷一枚质地均匀的骰子,向上的一面的点数是奇数和向上的一面的点数是偶数的概率都为,概率相等,故此选项不符合题意;D项,在不透明的袋子中装上两个黑球和两个红球,除颜色外,其余均相同,随机摸出一个球是黑球的概率为,是红球的概率为,概率相等,故此选项不符合题意.故选B.2.4[解析] 根据题意,得=--,即2x=20-x-2x,解得x=4.3.解:这个游戏不公平.理由:因为一次抽出两张牌的牌面数字组合有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共六种情况,其中有4组中的两数和是奇数.所以P(小明获胜)==,P(小华获胜)==,≠.因此,这个游戏不公平.4.C[解析] 设正方形ABCD的边长为2a,则针尖落在黑色区域内的概率为=.5.C[解析] ∵“指针所落区域标注的数字大于8”的概率是,∴-=,解得n=24.6.解:(1)这个游戏公平.理由:∵根据题图①的对称性,阴影部分的面积等于总面积的一半,∴这个游戏公平.(2)把题图②中的同心圆平均分成偶数等份(不等于8份),再把其中的一半作为阴影部分即可(图略).(答案不唯一)7.=[解析] A盘停止时指针指向红色区域的概率为=,B盘停止时指针指向红色区域的概率也为.故A盘停止时指针指向红色区域的概率与B盘停止时指针指向红色区域的概率一样大.因此应填“=”.8.解:不公平.理由,甲获胜的概率为,乙获胜的概率为=.∵≠,∴此游戏不公平.修改规则不唯一,如:摸出小球号码是偶数时甲获胜,摸出小球号码是奇数时乙获胜.9.解:(1)小皮球停留在灰色方砖上的概率是,小皮球停留在白色方砖上的概率是.(2)因为>,所以小皮球停留在灰色方砖上的概率较大.要使这两个概率相等且方砖的排列呈一定的规律性,应改变第2行从左数第4列的方砖的颜色,应将灰色方砖改为白色方砖.10.解:(1)∵整个转盘被等分成了12个扇形,其中有6个扇形能享受折扣,∴P(得到优惠)==.(2)选择转动转盘更合算.∵=25(元),40×=20(元),25>20,∴选择转动转盘1更合算.。
1 用树状图或表格求概率课时1用树状图或表格求概率过基础知识点 1 用列表法求概率1“敬老爱老”是中华民族的优秀传统美德. 小刚、小强计划利用暑期从A ,B ,C 三处养老服务中心中,随机选择一处参加志愿服务活动,则两人恰好选到同一处的概率是( )A 12B 13C 16D 292某校即将举行田径运动会,“体育达人”小明从“跳高”“跳远”“100 米”“400米”四个项目中,随机选择两项,则他选择“100米”与“400米”两个项目的概率是( )A 12B 14C 16D 1123 投掷两枚骰子,朝上一面的点数之和为7 的概率是 .4某校七年级举行了国庆手抄报比赛,七(1)班要从获得一等奖的4名学生作品中随机抽取2 份进行展览,已知这4 名学生中,男生和女生各2 名,求所抽2 份作品恰好是来自1 名男生和1 名女生的概率.知识点2用画树状图法求概率5山西省有三处世界文化遗产:①平遥古城;②云冈石窟;③五台山.哥哥和妹妹从中分别随机选取一个在五一期间参观,则正好选五台山和云冈石窟的概率为 ( )A 13B 29C 49D 236在6,7,8,9 四个数字中任意选取两个数字,则这两个数字之和为奇数的概率是 ( ) A 13 B 12 C 23 D 147将一副扑克牌中的两张牌红桃 A 和黑桃2 都从中间剪开,分成四块,这四块背面完全一样,将它们背面朝上,洗匀后,任取两块,恰好能拼成一张完整的牌的概率是 .8某校组织学生去敬老院表演节目,表演形式有舞蹈、情景剧和唱歌3 种类型.小明、小丽2 人积极报名参加,从3 种类型中随机挑选一种类型.求小明、小丽选择不同类型的概率.过能力1 从甲、乙、丙、丁4 名同学中随机抽取2 名同学参加图书节志愿服务活动,其中甲同学是女生,乙、丙、丁同学都是男生,被抽到的2 名同学都是男生的概率为 ( )A 13B 12C 23D 342随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成. 现对由三个小正方形组成的“□□”进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为 ( )A 13B 38C 12D 233在一个不透明的口袋中装有3个完全一样的小球,小球上分别标有数字1,2,3.先摸出一个小球,上面的数字记为a ,放回袋子中摇匀后再摸出一个小球,上面的数字记为c ,则使得关于x 的一元二次方程 ax²+4x +c =0有实数解的概率为 ( )A 16B 13C 12D 23 4 如图所示的电路图,同时闭合两个开关能形成闭合电路的概率是 ( )A 13B 23C 12 D.15端午节早上,小颖为全家人蒸了2个蛋黄粽,3个鲜肉粽,她从中随机挑选了两个孝敬爷爷奶奶,请问爷爷奶奶吃到同类粽子的概率是 .6有同型号的A ,B 两把锁和同型号的a ,b ,c 三把钥匙,其中a 钥匙只能打开A 锁,b 钥匙只能打开 B 锁,c 钥匙不能打开这两把锁.(1)从三把钥匙中随机取出一把钥匙,取出c 钥匙的概率等于 ;(2)从两把锁中随机取出一把锁,从三把钥匙中随机取出一把钥匙,求取出的钥匙恰好能打开取出的锁的概率.7 骰子六个面上的点数分别是1,2,3,4,5,6.如图,正六边形ABCDEF 顶点处各有一个圈,跳圈游戏的规则为:游戏者掷一次骰子,骰子向上一面的点数是几,就沿正六边形的边按顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得的点数为3,就顺时针连续跳3个边长,落到圈D;若第二次掷得的点数为2,就从圈 D 开始顺时针连续跳2个边长,落到圈F……设游戏者从圈A 起跳.(1)小明随机掷一次骰子,求落回到圈A 的概率P₁;(2)小亮随机掷两次骰子,用列表法或画树状图法求最后落回到圈 A 的概率P₂,并指出他与小明落回到圈A 的可能性一样吗?课时2 利用概率判断游戏的公平性过能力1 如图是两个可以自由转动的质地均匀的转盘A,B,每个转盘被分成3个相同的扇形,游戏规定:小美与小丽分别转动转盘 A,B,指针指向的数字较大者获胜. 你认为这个规则 ( )A.公平B.对小美有利C.对小丽有利D.无法确定对谁有利2甲,乙两名同学玩“石头、剪子、布”的游戏,随机出手一次,甲获胜的概率是 .3小明和小刚一起做游戏,先制定游戏规则:每人事先从1,2,…,12这12个数中任意选一个数,然后两人各掷一枚质地均匀的骰子,谁事先选择的数恰好等于二人掷出的点数之和,谁就获胜.如果两人选择的数都不等于所掷点数之和,就再做一次上述游戏,直到决出胜负.小明根据所学习的概率知识知道一定不能选择1,那他应该选择哪个数更合适呢? 请说明理由.4甲、乙两位同学相约打乒乓球.(1)有款式完全相同的4 个乒乓球拍(分别记为A,B,C,D),若甲先从中随机选取1个,乙再从余下的球拍中随机选取1 个,求乙选中球拍C的概率.(2)双方约定:两人各投掷一枚质地均匀的硬币,如果两枚硬币全部正面向上或全部反面向上,那么甲先发球,否则乙先发球.这个约定是否公平? 为什么?课时3 利用概率玩“配紫色”游戏过能力1小明要用如图所示的两个转盘做“配紫色(红色和蓝色在一起能配成紫色)”游戏,每个转盘均被等分成若干个扇形,他同时转动两个转盘,停止时指针所指的颜色恰好能配成紫色的概率为( )A16 B14C13D 122用如图所示的两个可以自由转动的转盘做“配紫色”游戏,分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,则可配成紫色的概率是 ( )A12 B14C512D723 小明和小亮用如图所示的两个可以自由转动的转盘做“配紫色”游戏,同时随机转动两个转盘,若配成紫色,则小明胜,否则小亮胜,这个游戏对双方公平吗? 请用列表法或画树状图法说明理由.4如图,三个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.小强和小亮用转盘 A 和转盘 B 做一个转盘游戏:同时转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,则小强获胜;若两个转盘转出的颜色相同,则小亮获胜;在其他情况下,小强和小亮不分胜负.(1)用画树状图或列表的方法表示此游戏所有可能出现的结果;(2)小强认为此游戏不公平,请你帮他说明理由;(3)请你在转盘C 的空白处,涂上适当颜色,使得用转盘C 替换转盘 B 后,游戏对小强和小亮是公平的(在空白处填写表示颜色的文字即可,不要求说明理由,只需给出一种结果即可).。
课时作业(四十五)、选择题1.袋中有3个红球、4个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出1个球,则摸出白球的概率是()1 3 4A. 7B. 7C. 7D.2•小明准备用6个球设计一个摸球游戏,下列四个方案中,你认为不能成功的是()1 1a. P(摸到白球)=2,R摸到黑球)=21 1 1b. P(摸到白球)=2,摸到黑球)=3,P(摸到红球)=62 1C. P摸到白球)=-,P(摸到黑球)=P摸到红球)=-3 31D. 摸到白球、黑球、红球的概率都是-33. 小明和小亮做游戏,先是各自背对对方在纸上写一个正整数,然后都拿给对方看. 他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏()A.对小明有利B .对小亮有利C.公平D .无法确定对谁有利二、填空题4. 甲、乙两人玩抽扑克牌游戏,游戏的规则是从一副去掉大、小王的扑克牌中,随机抽取一张,若所抽的牌面数字为奇数,则甲获胜;若所抽取的牌面数字为偶数,则乙获胜.J , Q K分别代表11, 12, 13)这个游戏__________ .(填“公平”或“不公平”)5. 某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则获胜,将甲摸出的球放回袋中搅匀,乙从袋中摸出一个球,若为黑球则获胜.则当x = ___________ 时,游戏对甲、乙双方公平.6. 七年级(1)班要派一名学生参加学校学生座谈会,经投票小明和小红得票一样. 为了使选派工作公正合理,班委会设计了如下方案:方案①:以抓阄的方式决定谁去参加座谈会;方案②:以抛硬币的方式决定谁去参加座谈会;方案③:出一道题让两人做,做对的参加座谈会.你认为合理的方案是 ________ (填序号),不合理的方案是_______ (填序号),不合理的理由:____________________ .三、解答题7. 一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)小明和小红玩摸球游戏,规定每人摸球后再将摸到的球放回去为一次游戏.若摸到黑球小明获胜,摸到黄球小红获胜,则这个游戏对双方公平吗?请说明你的理由;(2)现在裁判想从袋中取出若干个黑球,并放入相同数量的黄球,使得这个游戏对双方公平,问要取出多少个黑球?素养提升恩堆拓展用12个球设计一个摸球游戏:1(1) 使得摸到白球的概率为二,摸到红球的概率为41(2) 使得摸到白球的概率为匚,摸到红球的概率为4能力提科34;1 12,摸到黄球的概率为-.详解详析[课堂达标]1. [解析]C因为袋中有3个红球、4个白球,这些球的形状、大小、质地等完全相同,红球和白球的总数为 3 + 4= 7(个),所以随机地从袋中摸出1个球,摸出白球的概率是47'故选c.2. C3. C4 •不公平5. [答案]42x 20 一x —2x[解析]根据题意,得赛= 20,即2x= 20- x 一2x,解得x= 4.6. ①②③ 两同学做对的可能性不一样7. 解:⑴不公平.理由如下:因为不透明的袋中装有5个黄球,13个黑球和22个红球,摸到黑球小明获胜,摸到黄13 5 1 13 1球小红获胜,所以小明获胜的概率为,小红获胜的概率为=-.肓工:,所以这个游戏对40 40 8 40 8双方不公平.(2)设取出x个黑球,由题意可得13—x= 5+ x,解得x = 4.答:取出4个黑球.[素养提升]解:⑴由概率的定义可知'P(摸到白球)=摸所有可能能现现结结果数,所以摸到白1球可能出现的结果数=所有可能出现的结果数X P(摸到白球)=12X4 = 3,摸到红球可能出3现的结果数=所有可能出现的结果数X P(摸到红球)=12X-= 9,所以只要使得白球的数目为3个,红球的数目为9个,就能满足题目要求.(2)由⑴可知,只要使得白球的数目为3个,红球的数目为6个,黄球的数目为3个,就能满足题目要求.。
3.1 用树状图或表格求概率第1课时 用树状图或表格求简单事件的概率利用__树状图__或__表格__,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.知识点:用树状图或表格求概率1.一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( C )A.116B.316C.14D.5162.(2014·玉林)一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( C )A.12B.14C.16D.1123.一枚质地均匀的正方体骰子,连续抛掷两次,两次点数相同的概率是( D ) A.12 B.13 C.14 D.164.暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动.那么两人选到同一社区参加实践活动的概率是( B )A.12B.13C.16D.195.现有四张完全相同的卡片,上面分别标有数字-1、-2、3、4,将卡片背面朝上洗匀,然后从中随机地抽取两张,则这两张卡片上数字之积为负数的概率是__23__.6.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄,若从中一次随机抽取两个,则这两个粽子都没有蛋黄的概率是__12__.7.(2014·齐齐哈尔)从2、3、4这三个数中任取两个数字组成一个两位数,其中能被3整除的两位数的概率是__13__.8.有双白手套和一双黑手套(不分左右),小明夜里出门,因天气寒冷要戴手套,可恰好停电,则小明左手戴白手套,右手戴黑手套的概率是__13__.9.小明与甲、乙两人一起玩“手心手背”的游戏.他们约定:如果三人中仅有一人出“手心”或“手背”,则这个人获胜;如果三人都出“手心”或“手背”,则不分胜负,那么在一个回合中,如果小明出“手心”,则他获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)解:画树状图:∵小明出的是手心,甲、乙两人出手心、手背的所有可能有4种,其中都是手背的情况只有1种,∴P (小明获胜)=1410.在盒子里放有三张分别写有整式a +1,a +2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( B )A.13B.23C.16D.3411.中考体育男生抽测项目是:从立定跳远、实心球、引体向上中随机抽取一项;从50米、50米×2米、100米中随机抽取一项.恰好抽中实心球和50米的概率是( D )A.13B.16C.23D.1912.有三张正面分别标有数字-2,3,4的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片中的数字之积为正偶数的概率是( C )A.49B.112C.13D.1613.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a 的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b 的值,则点(a ,b )在第二象限的概率为( B )A.16B.13C.12D.2314.某校举行以“保护环境,从我做起”为主题的比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是__16__.15.在重阳节敬老爱老活动中,某校计划组织志愿者服务小组到“夕阳红”敬老院为老人服务,准备从九(1)班中的3名男生小亮、小明、小伟和2名女生小丽、小敏中选取一名男生和一名女生参加学校志愿者服务小组.(1)若随机选取一名男生和一名女生参加志愿者服务小组,请用树状图或列表法写出所有可能出现的结果;(2)求出恰好选中男生小明与女生小丽的概率.解:(1)即出现了6种结果:小亮、小丽,小亮、小敏,小明、小丽,小明、小敏,小伟、小丽,小伟、小敏 (2)P (小明、小丽)=1616.在一个不透明的布袋里装有4个大小、质地都相同的乒乓球,球面上分别标有数字1,-2,3,-4,小明先从中随机摸出一个乒乓球(不放回),再从剩下的三个球中随机摸出第二个乒乓球.(1)共有__12__种可能的结果;(2)请求出两次摸出乒乓球数字之积为奇数的概率. 解:(2)画树状图得P (两次摸出球之积为奇数)=212=1617.田忌赛马为我们所熟知,小亮与小明学习了概率初步知识后,设计了如下的游戏:小亮手中有方块10,8,6三张牌,小明手中有方块9,7,5三张牌,每人从各自的手中取一张牌比较,数字大的为“本局”获胜,每次取的牌不放回.(1)若每人随机取手中的一张牌进行比赛,求小明“本局”获胜的概率;(2)若比赛采用三局两胜制,即胜2局或3局者胜.当小亮的出牌顺序为6,8,10时,小明随机出牌应对,求小明比赛获胜的概率.解:(1)画树状图得P (小明胜)=39=13(2)画树状图得:P (小明胜)=16第2课时 判断游戏是否公平若某游戏不计得分情况,当双方获胜的概率__相等__,则游戏公平;当双方获胜的概率__不相等__,则游戏不公平.知识点一:求较复杂事件的概率1.若从长度是3,5,6,9的四条线段中任取三条,则能构成三角形的概率是( A ) A.12 B.34 C.13 D.142.在x 2□4x □4的空格中,任意填上“+”或“-”,在所得到的整式中,恰好是完全平方式的概率是( B )A .1 B.12 C.13 D.143.假定鸟蛋孵化后,雏鸟为雌与雄时概率相同,如果三枚蛋全部成功孵化,则三只雏鸟中恰有两只雄鸟的概率是( B )A.16B.38C.58D.234.我市辖区内景点较多,李老师和刚高中毕业的儿子准备从A ,B ,C 列三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站,那么他们都选择B 景点的概率是__19__.5.从甲地到乙地有A 1,A 2两条路线,从乙地到丙地有B 1,B 2,B 3三条路线,从丙地到丁地有C 1,C 2两条路线,一个人任意选了一条从甲地经乙地、丙地到丁地的路线,求他选到B 2路线的概率.解:画树状图得:∴P (恰好选到B 2路线)=412=13知识点二:判断游戏的公平性6.甲、乙两人用两个骰子做游戏,将两个骰子同时抛出,如果出现两个5点,那么甲赢;如果出现一个4点和一个6点,那么乙赢;如果出现其他情况,那么重新抛掷.你对这个游戏公平性的评价是__对乙有利__.(填“公平”“对甲有利”或“对乙有利”)7.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙胜.这个游戏__不公平__.(填“公平”或不公平)8.(2014·云南)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.解:(1)画树状图:(2)P (和为奇数)=816=12,P (和为偶数)=816=12,P (小明)=P (小亮),故这个游戏对双方是公平9.(2014·泰安)在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是( C )A.38B.12C.58D.3410.小明和小亮做游戏,先是各自背着对方在纸上写一个正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏( C )A .对小明有利B .对小亮有利C .游戏公平D .无法确定对谁有利11.(2014·舟山)有三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐3号车的概率为__19__.12.(2014·南宁)第45届世界体操锦标赛于2014年10月3日至12日在南宁市隆重举行,某校从小记者团内负责体育赛事报道的3名同学(2男1女)中任选2名前往采访,那么选出的2名同学恰好是一男一女的概率是__23__.13.(2014·南京)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率; (1)抽取1名,恰好是甲; (2)抽取2名,甲在其中.解:(1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率为13 (2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为2314.(2014·徐州)某学习小组由3名男生和1名女生组成,在一次合作学习后,开始进行成果展示.(1)如果随机抽取1名同学单独展示,那么女生展示的概率为__14__;(2)如果随机抽取2名同学共同展示,求同为男生的概率. 解:(2)列表如下:男 男 男 女 男 —— (男,男) (男,男) (女,男) 男 (男,男) —— (男,男) (女,男) 男 (男,男) (男,男) —— (女,男) 女(男,女)(男,女)(男,女)——所有等可能的情况有12种,其中同为男生的情况有6种,则P =612=1215.若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.(1)请画出树状图并写出所有可能得到的三位数;(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.解:(1)树状图如下:所有得到的三位数有24个,分别为:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,413,421,423,431,432 (2)这个游戏不公平.理由:组成的三位数中有“伞数”的有:132,142,143,231,241,243,341,342,其有8个,所以,甲胜的概率为824=13,而乙胜的概率为1624=23.所以这个游戏不公平第3课时 利用概率玩“配紫色”游戏用树状图或列表的方法求概率时应注意各种结果出现的可能性务必__相同__.“配紫色”游戏体现了概率模型的思想,它启示我们:__概率__是对随机现象的一种数学,它可以帮助我们更好地认识随机现象,并对生活中的一些不确定情况作出自己的决策.知识点:用树状图或列表的方法求“配紫色”的概率1.用如图的两个转盘(均匀分成五等份)进行“配紫色”游戏,配成紫色(也就是两个转盘分别转出的一个是红,一个是蓝)的概率是( A )A.1325B.625C.3625D.652.如图,随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯泡同时发光的概率为( B ) A.16 B.13 C.12 D.23,第2题图) ,第3题图)3.如图,是一个可以自由转动的转盘,它被分成三个面积相等的扇形,任意转动转盘两次,当转盘停止后,指针所指颜色相同的概率为( A )A.13B.23C.19D.164.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为( C )A.13B.23C.19D.125.定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”,如“947”就是一个“V 数”.若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V 数”的概率是( C )A.14B.310C.12D.346.(2014·襄阳)从长度分别为2,4,6,7的四条线段中随机抽取三条,能构成三角形的概率是__12__.7.如图是两个可以自由转动的转盘,每个转盘被分成了三个相等的扇形,小明和小亮用它们做配紫色(红色与蓝色能配成紫色)游戏,你认为配成紫色与配不成紫色的概率相同吗?解:画树状图如下:结果:(红,红)(红,蓝)(红,蓝)(红,红)(红,蓝)(红,蓝)(蓝,红)(蓝,蓝)(蓝,蓝),所以P (配成紫色)=59,P (配不成紫色)=49,所以配成紫色与配不成紫色的概率不相同8.(2014·枣庄)一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,2.随机摸出一个小球(不放回),其数字记为P ,再随机摸出另一个小球其数字记为q ,则满足关于x 的方程x 2+px +q =0有实数根的概率是( A )A.12B.13C.23D.569.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x ,乙立方体朝上一面上的数字为y ,这样就确定点P 的一个坐标(x ,y ),那么点P 落在双曲线y =6x上的概率为( C )A.118B.112C.19D.1610.形状大小一样、背面相同的四张卡片,其中三张卡片正面分别标有数字“2”“3”“4”,小明和小亮各抽一张,前一个人随机抽一张记下数字后放回,混合均匀,后一个人再随机抽一张记下数字算一次,如果两人抽一次的数字之和是8的概率为316,则第四张卡片正面标的数字是__5或6__.11.(2014·扬州)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是__14__;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.解:(2)画树状图得:∵共有12种等可能的结果,他恰好买到雪碧和奶汁的有2种情况,∴他恰好买到雪碧和奶汁的概率为:212=1 612.小英和小丽用两个转盘玩“配紫色”的游戏,配成紫色小英赢,否则小丽赢,这个游戏对双方公平吗?请说明理由.(注:红色+蓝色=紫色)解:列表如下:转盘2转盘1红红黄蓝红(红,红)(红,红)(红,黄)(红,蓝)黄(黄,红)(黄,红)(黄,黄)(黄,蓝)蓝(蓝,红)(蓝,红)(蓝,黄)(蓝,蓝)∵P(小英)=312=14,P(小丽)=912=34,∴P(小英)≠P(小丽),∴这个游戏对双方是不公平的13.在一个不透明的口袋里装有白、红、黑三种颜色的小球,其中白球2只,红球1只,黑球1只,它们除了颜色之外没有其他区别.从袋中随机地摸出1只球,记录下颜色后放回搅匀,再摸出第二个球并记录颜色.求两次都摸出白球的概率.解:画树状图如下:∵共有16种等可能情况,两次都摸出白球的情况有4种,∴两次都摸出白球的概率为416=1414.某校九年级举行毕业典礼,需要从九(1)班的2名男生1名女生、九(2)的1名男生1名女生共5人中选出2名主持人.(1)用树状图或列表法列出所有可能情形; (2)求2名主持人来自不同班级的概率; (3)求2名主持人恰好1男1女的概率.解:(1)九(1)班的男生用a 11,a 12表示,九(1)班的女生用b 1表示,九(2)班的男生用a 2表示,九(2)班的女生用b 2表示,画树状图如下:(2)总共有20种等可能的结果,2名主持人来自不同班级的结果数有12个,P (2名主持人来自不同班级)=1220=35 (3)总共有20种等可能的结果,2名主持人恰好1男1女的结果数有12个,P (2名主持人恰好1男1女)=1220=35专题(七) 概率与放回、不放回问题1.(2014·昆明)九年级某班同学在毕业晚会中进行抽奖活动.在一个不透明的口袋中有三个完全相同的小球,把它们分别标号1,2,3.随机摸出一个小球记下标号后,放回摇匀,再从中随机摸出一个小球记下标号.(1)请用列表或画树状图的方法(只选其中一种),表示两次摸出小球上的标号的所有结果;(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率. 解:(1)画树状图:(2)可能出现的结果共有9种,两次摸出标号相同的有(1,1)(2,2)(3,3)3种,∴P (中奖)=39=132.(2014·陕西)小英与她的父亲、母亲计划外出旅游,初步选择了延安、西安、汉中、安康四个城市.由于时间仓促,他们只能去其中一个城市,到底去哪个城市三个人意见不统一.在这种情况下,小英父亲建议,用小英学过的摸球游戏来决定,规则如下:①在一个不透明的袋子中装一个红球(延安)、一个白球(西安)、一个黄球(汉中)和一个黑球(安康),这四个球除颜色不同外,其余完全相同;②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;③若两人所摸出球的颜色相同,则去该球所表示的城市旅游,否则前面的记录作废,按规则②重新摸球,直到两人所摸出球的颜色相同为止.请回答下面的问题:(1)已知小英的理想旅游城市是西安,小英和母亲随机各摸球一次,均摸出白球的概率是多少?(2)已知小英母亲的理想旅游城市是汉中,小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是多少?解:(1)由题意共有16种等可能的结果,其中母女都摸出白球的结果有1种,∴P (都是白球)=116(2)画树状图得:∴P(至少有一人摸出黄球)=7 163.(2014·武汉)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.解:(1)分别用R1,R2表示2个红球,G1,G2表示两个绿球,列表如下:第一次第二次R1R2G1G2R1R1R1R2R1G1R1G2R1R2R1R2R2R2G1R2G2R2G1R1G1R2G1G1G1G2G1G2R1G2R2G2G1G2G2G2摸到红球)=416=14,②P(一个绿球,一个红球)=816=12(2)23专题(八) 概率与方程、不等式、函数一、概率与方程1.(2014·黄石)已知甲同学手中藏有三张分别标有数字12,14,1的卡片,乙同学手中藏有三张分别标有数字1,2,3的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a ,b.(1)请你用树状图或列表法列出所有可能的结果;(2)现制定这样一个游戏规则:若所选出的a ,b 能使得ax 2+bx +1=0有两个不相等的实数根,则称甲获胜;否则称乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.解:(1)画树状图如图所示,故所有可能的结果为(12,1),(12,3),(12,2),(14,1),(14,3),(14,2),(1,1),(1,3),(1,2) (2)这样的游戏规则不公平.∵P (甲获胜)=59,P (乙获胜)=49,∴P (甲获胜)>P (乙获胜),∴这样的游戏规则不公平二、概率与不等式2.(2014·重庆)从-1,1,2这三个数字中随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形面积为14,且使关于x 的不等式组⎩⎪⎨⎪⎧x +2≤a ,1-x≤2a 有解的概率为__13__.3.小华和小丽两人玩数字游戏,先由小丽心中任意想一个数字记为x ,再由小华猜小丽刚才想的数字,把小华猜的数字记为y ,且他们想和猜的数字只能在1,2,3,4这四个数中选择.(1)请用树状图或列表法表示了他们想和猜所有的情况;(2)如果他们想和猜的数相同,则称他们“心有灵通”,求他们“心有灵通”的概率; (3)如果他们想和猜的数字满足|x -y |≤1,则称他们“心有灵犀”,求他们“心有灵犀”的概率.解:(1)画树状图得:(2)由图知共有16种等可能的结果,其中相同的有4种,∴P (心有灵通)=416=14(3)P (心有灵犀)=1016=58三、概率与函数4.一个不透明的袋子里装有编号分别为1,2,3的球(除编号以外,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为13.(1)求袋子里2号球的个数;(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x ,乙摸出球的编号记为y ,用列表法求点A (x ,y )在直线y =x 下方的概率.解:(1)设袋中2号球有x 个,则x 1+3+x =13,x =2,经检验x =2是原方程的解,即2号球有2个 (2)列表:下方)=1130。
第2课时利用概率判断游戏的公平性基础题知识点判断游戏的公平性1.甲、乙两人玩游戏,判定游戏公平的标准是( )A.游戏的规则由甲方确定B.游戏的规则由乙方确定C.游戏的规则由甲乙双方商定D.游戏双方要各有50%赢的机会2.小玲与小丽两人各掷一个正方体骰子,规定两人掷的点数和为偶数,则小玲胜;点数和为奇数,则小丽胜,下列说法正确的是( )A.此规则有利于小玲B.此规则有利于小丽C.此规则对两人是公平的D.无法判断3.甲、乙、丙三位同学玩抛掷A、B两枚硬币的游戏,游戏规则是:抛出A币正面和B币正面,甲赢;抛出A币反面和B币反面,乙赢;抛出A币正面和B币反面,丙赢.在这个游戏中,谁赢的机会最大( )A.甲B.甲和乙C.丙D.甲、乙、丙三人赢的机会均等4.小明与小刚一起玩抛掷两枚硬币的游戏,游戏规则:抛出两个正面——小明赢1分;抛出其他结果——小刚赢1分;谁先到10分,谁就获胜.这是个不公平的游戏规则,要把它修改成公平的游戏,下列做法中错误的是( ) A.把“抛出两个正面”改为“抛出两个同面”B.把“抛出其他结果”改为“抛出两个反面”C.把“小明赢1分”改为“小明赢3分”D.把“小刚赢1分”改为“小刚赢3分”5.甲、乙两人用两个骰子做游戏,两个骰子同时抛出,如果出现两个5点,那么甲赢;如果出现一个4点和一个6点,那么乙赢;如果出现其他情况,那么重新抛掷.你对这个游戏公平性的评价是____________(填“公平的”“对甲有利”或“对乙有利”).6.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游戏________(填“公平”或“不公平”).7.(盐城中考改编)如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.中档题8.李红与王英用两颗骰子玩游戏,但是她们别出心裁,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.游戏规则如下:掷一次骰子,两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为5红1蓝,如果要使两人获胜机会相等,那么第2颗骰子上蓝色的面数是( )A.6 B.5 C.4 D.39.(成都中考)第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.综合题10.阅读对话,解答问题.(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)小冬抽出(a,b)中使关于x的一元二次方程x2-ax+2b=0根为有理数时小丽赢,方程的根为无理数时小兵赢,你觉得游戏是否公平?若公平,请说明理由;若不公平,请修改游戏方案.参考答案1.D 2.C 3.D 4.D 5.对乙有利 6.不公平 7.列表得:1 2 3 1 (1,1) (2,1) (3,1) 2 (1,2) (2,2) (3,2) 3(1,3)(2,3)(3,3)所有等可能的情况有9种,其中两数之积为偶数的情况有5种,之积为奇数的情况有4种,∴P(小明获胜)=59,P(小华获胜)=49.∵59>49, ∴该游戏不公平. 8.D9.(1)∵现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人, ∴从这20人中随机选取一人作为联络员,选到女生的概率为1220=35.(2)如图所示:牌面数字之和为:5,6,7,5,7,8,6,7,9,7,8,9, ∴偶数为4个,得到偶数的概率为412=13.∴得到奇数的概率为23.∴甲参加的概率<乙参加的概率. ∴这个游戏不公平.10.(1)用列表格表示(a ,b)对应的值为:b a 1 2 3 1 (1,1) (1,2) (1,3) 2 (2,1) (2,2) (2,3) 3 (3,1) (3,2) (3,3) 4(4,1)(4,2)(4,3)(2)游戏不公平.∵符合有理数根的有2种,而符合无理数根的只有1种, ∴P(小丽赢)=16,P(小兵赢)=112.∴P(小丽赢)≠P(小兵赢).∴这个游戏不公平.设计方案:小冬抽出(a ,b)中使关于x 的一元二次方程x 2-ax +2b =0根为等根时小丽赢,方程的根为无理数时小兵赢.。
拔高题《第2课时 用概率判断游戏的公平性》
1.若一个袋子中装有形状与大小均完全相同的4张卡片,4张卡片上分别标有数字﹣2,﹣1,2,3,现从中任意抽出两张卡片分别记为,x y ,并以此确定点P (,x y ),那么点P 落在直线1y x =-+上的概率是( )
A .12
B .13
C .14
D .16
2.一家公司招考员工,每位考生要在A ,B ,C ,D ,E 这5道试题中随机抽出2道题回答,规定答对其中1题即为合格,已知某位考生会答A ,B 两题,则这位考生合格的概率为 .
3.如图,有四张背面完全相同的纸牌A ,B ,C ,D ,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀
(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率.
(2)小明和小亮约定做一个游戏,其规则如下:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形,则小明获胜,否则小亮获胜,这个游戏公平吗?请用列表或画树状图的方法说明.
参考答案
1.B
2.
7 10
3.解:(1)P(牌面图形是中心对称图形)=1 2
(2)列表略. ∴P(两张都是轴对称图形)=1
2
,因此这个游戏公平.。
第2课时利用概率判断游戏的公平性关键问答①如何判断游戏的公平性?1.①甲、乙两人用2张红心扑克牌和1张黑桃扑克牌做游戏,规则是:甲、乙各抽取一张,若两张牌是同一花色,则甲胜;若两张牌花色不同,则乙胜.这个游戏公平吗?答:__________.2.把五张大小相同且分别写有1,2,3,4,5的卡片放在一个暗箱中,由甲随机从里面无放回地抽取两张,并记下两个数字之和,若两数字之和为偶数,则甲胜;若两数字之和为奇数,则乙胜.甲、乙获胜的概率分别为________.命题点事件公平性的判断[热度:90%]3.小明和小亮玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,若和为奇数,则小明胜;若和为偶数,则小亮胜.获胜概率大的是( )A.小明B.小亮C.两人一样D.无法确定4.在不透明塑料袋里装有一个白色的乒乓球和两个黄色的乒乓球.小明一次从袋里摸出两个球;小刚左手从袋里摸出一个球,然后右手从袋里摸出一个球;小华则先从袋里摸出一个球看一下颜色,又放回袋里,再从袋里摸出一个球.摸出的两个球都是黄色的获胜.你认为这个游戏( )A.不公平,对小明有利B.公平C.不公平,对小刚有利D.不公平,对小华有利5.②2017·营口如图3-1-2,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.图3-1-2(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形,则小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或画树状图法)说明理由(纸牌用A,B,C,D 表示).解题突破②题干中的“不放回”说明了什么?在分析时应注意什么?6.③2017·贺州在植树节期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平.”你认同他的说法吗?请说明理由.方法点拨③游戏是否公平,关键是看游戏双方获胜的概率是否相等.7.④小敏的爸爸买了一张某项体育比赛的门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,他拿了八张扑克牌,将数字分别为2,3,5,9的四张牌给了小敏,将数字分别为4,6,7,8的四张牌留给自己,并按如下规则做游戏:小敏和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌的数字相加,若和为偶数,则小敏去;若和为奇数,则哥哥去.(1)请用画树状图或列表的方法求小敏去看比赛的概率.(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.方法点拨④修改规则,使游戏变得公平的问题,对于概率不同的问题,可以通过修改事件来达到概率相同的目的,对于得分问题,既可以通过修改事件,又可以通过修改得分规则来达到目的.8.2017·山西模拟小明一家人春节期间参与了“支付宝集五福”活动,小明和姐姐都缺一个“敬业福”,恰巧爸爸有一个可以送给其中一个人,两个人各设计了一个游戏,获胜者可得到“敬业福”,请用适当的方法说明这两个游戏对小明和姐姐是否公平.在一个不透明盒子里放入标号分别为1,2,3,4,5,6的六个小球,这些小球除了标号数字不同外其余都相同,将小球摇匀.游戏1的规则是:从盒子中随机摸出一个小球,摸到标号数字为奇数的小球,则判小明获胜,否则,判姐姐获胜.游戏2的规则是:小明从盒子中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,姐姐再从盒子中随机摸出一个小球,并记下标号数字,若两次摸到小球的标号数字同为奇数或同为偶数,则判小明获胜,若两次摸到小球的标号数字为一奇一偶,则判姐姐获胜.9.⑤甲、乙两人所持口袋中均装有三张除所标数值不同外其他完全相同的卡片,甲袋中的三张卡片上所标数值分别为0,-1,3,乙袋中的三张卡片上所标数值分别为-5,2,7,甲、乙两人均从自己的口袋中任取一张卡片,并将它们的数值分别记为m,n.(1)请你用画树状图或列表的方法列出所有可能的结果;(2)现制定这样一个游戏规则:若选出的m,n能使得方程x2+mx+n=0有实数根,则称甲胜;否则称乙胜.请问这样的游戏规则公平吗?请你用概率知识解释.易错警示⑤(1)不要混淆m,n的取值;(2)当关于x的一元二次方程ax2+bx+c=0(a≠0)有实数根时,b2-4ac≥0.10.⑥在课外活动时间,小王、小丽、小华做“互相踢毽子”游戏,毽子从一人传到另一人就记为踢一次.(1)若从小丽开始,经过两次踢毽后,毽子踢到小华处的概率是多少(用画树状图或列表的方法说明)?(2)若经过三次踢毽后,毽子踢到小王处的可能性最小,请确定毽子是从谁开始踢的,并说明理由.图3-1-3解题突破⑥从小丽开始,第一次踢毽,毽子能踢给哪些人?第二次踢毽,毽子又能踢给哪些人?11.⑦“手心、手背”是在同学中广为流传的游戏.游戏时,甲、乙、丙三方每次出“手心”“手背”两种手势中的一种,规定:①出现三个相同的手势不分胜负,继续比赛;②出现一个“手心”和两个“手背”或者出现一个“手背”和两个“手心”时,则出一种手势者为胜,两种相同手势者为负.(1)假定甲、乙、丙三人每次都是等可能地出“手心”或“手背”,请用画树状图或列表的方法求甲、乙、丙三位同学获胜的概率.(2)若甲同学只出“手背”,乙、丙两位同学仍随机地出“手心”或“手背”,则甲同学获胜的可能性会减小吗?为什么?解题突破⑦第(1)小问和第(2)小问的限制条件有什么不一样?用画树状图法简单还是用列表法简单?详解详析【关键问答】①判断游戏的公平性就是要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.1.不公平 [解析] 列表如下:共有94种情况,∴甲获胜的概率为59,乙获胜的概率为49,59>49, 故甲获胜的概率大,即游戏不公平. 故答案为:不公平.2.25,35[解析] 根据题意,画树状图如下:由树状图可知,共有20种等可能的结果,其中两数字之和为偶数的结果有8种, ∴两数字之和为偶数的概率为820=25,两数字之和为奇数的概率为35.∴甲获胜的概率为25,乙获胜的概率为35.3.B [解析] 画树状图如下:共有9种等可能的情况,其中和为偶数的有5种,所以小亮胜的概率是59,那么小明胜的概率是49,所以获胜概率大的是小亮.4.D [解析] 小明一次从袋里摸出两个球,则摸出的两个球都是黄色的可能性是13;小刚左手从袋里摸出一个球,然后右手从袋里摸出一个球,两个球都是黄色的可能性为13; 小华先从袋里摸出一个球看一下颜色,又放回袋里,再从袋里摸出一个球,两个球都是黄色的可能性为49>13.所以小华获胜的可能性大,这个游戏不公平,对小华有利. 故选D.5.解:(1)因为共有4张牌,牌面图形是中心对称图形的情况有3种,所以摸出的牌面图形是中心对称图形的概率是34.(2)这个游戏公平.理由: 列表如下:有6种,∴P (两张牌面图形都是轴对称图形)=12,因此这个游戏公平. 6.解:(1)画树状图如图:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种, ∴P (小王去)=34.(2)认同.理由如下:∵P (小王去)=34,P (小李去)=14,34≠14,∴这种规则不公平.7.解:(1)根据题意,可以画出如下树状图:或者,根据题意也可以列出下表:等.而和为偶数的结果共有6个,所以小敏去看比赛的概率为616=38.(2)由(1)知小敏去看比赛的概率为38,哥哥去看比赛的概率为1-38=58.因为38<58,所以哥哥设计的游戏规则不公平.公平的游戏规则如下:若数字之和小于或等于10,则小敏(哥哥)去,若数字之和大于或等于11,则哥哥(小敏)去,这样两人去看比赛的概率都为1,那么游戏规则就是公平的.或者:如果将八张牌中的2,3,4,5四张牌给小敏,而余下的6,7,8,9四张牌给哥哥,则和为偶数或奇数的概率都为12,那么游戏规则也是公平的.(只要满足两人手中数字为偶数或奇数的牌的张数相等即可)8.解:游戏1:∵共有6种等可能的结果,一次摸到小球的标号数字为奇数或为偶数的情况各有3种,∴小明获胜的概率为36=12,姐姐获胜的概率为36=12,∴游戏1对小明和姐姐是公平的; 游戏2:画树状图如下:共有36种等可能的结果,其中两次摸到小球的标号数字同为奇数或同为偶数的结果有18种,两次摸到小球的标号数字为一奇一偶的结果也有18种,∴小明获胜的概率为1836=12,姐姐获胜的概率为1836=12,∴游戏2对小明和姐姐是公平的.9.解:(1)画树状图如下:∴(m ,n )的可能结果有(0,-5),(0,2),(0,7),(-1,-5),(-1,2),(-1,7),(3,-5),(3,2),(3,7),∴(m ,n )的取值结果共有9种.(2)∵(m ,n )的可能结果有(0,-5),(0,2),(0,7),(-1,-5),(-1,2),(-1,7),(3,-5),(3,2),(3,7),∴当m =0,n =-5时,Δ=m 2-4n =20>0,此时方程x 2+mx +n =0有两个不相等的实数根;当m =0,n =2时,Δ=m 2-4n =-8<0,此时方程x 2+mx +n =0没有实数根; 当m =0,n =7时,Δ=m 2-4n =-28<0,此时方程x 2+mx +n =0没有实数根; 当m =-1,n =-5时,Δ=m 2-4n =21>0,此时方程x 2+mx +n =0有两个不相等的实数根;当m =-1,n =2时,Δ=m 2-4n =-7<0,此时方程x 2+mx +n =0没有实数根; 当m =-1,n =7时,Δ=m 2-4n =-27<0,此时方程x 2+mx +n =0没有实数根; 当m =3,n =-5时,Δ=m 2-4n =29>0,此时方程x 2+mx +n =0有两个不相等的实数根;当m =3,n =2时,Δ=m 2-4n =1>0,此时方程x 2+mx +n =0有两个不相等的实数根; 当m =3,n =7时,Δ=m 2-4n =-19<0,此时方程x 2+mx +n =0没有实数根; ∴P (甲获胜)=49,P (乙获胜)=59,∴P (甲获胜)≠P (乙获胜), ∴这样的游戏规则不公平. 10.解:(1)画树状图如下:由树状图可知,经过两次踢毽后,毽子踢到小华处的概率是14.或列表如下:由上表可知,毽子踢到小华处的概率是4. (2)毽子是从小王开始踢的.理由:画树状图如下:若从小王开始踢,三次踢毽后,毽子踢到小王处的概率是14,踢到其他两人处的概率都是38,因此,毽子踢到小王处的可能性最小. 11.解:(1)画树状图如下:∴一共有8种结果,每种结果出现的可能性相等,其中甲、乙、丙三位同学获胜的情况各有2种,∴P (甲获胜)=P (乙获胜)=P (丙获胜)=28=14. (2)甲同学获胜的可能性不会减小.理由:画树状图如下:一共有4种情况,每种情况出现的可能性相等,其中甲获胜的情况有1种,∴甲获胜的概率仍为14,可能性不会减小.。