材料力学 第二章拉伸、压缩与剪切分析
- 格式:ppt
- 大小:5.52 MB
- 文档页数:80
第2章拉伸压缩与剪切教学目的:了解材料的力学性质;掌握轴向拉伸、压缩、剪切和挤压的概念;掌握轴向拉压时构件的内力、应力、变形的计算;熟练掌握剪切应力及挤压应力的计算方法并进行强度校核;掌握拉压杆的超静定问题。
教学重点:建立弹性杆件横截面上内力、内力分量的概念;运用截面法画轴力图;掌握低碳钢的力学性质;掌握轴向拉伸和压缩时横截面上正应力计算公式及其适用条件;掌握拉压杆的强度计算;熟练掌握剪切和挤压的实用计算。
教学难点:低碳钢类塑性材料在拉伸过程中反映出的性质;许用应力的确定和使用安全系数的原因;强度计算问题;剪切面和挤压面的确定;剪切和挤压的实用计算;拉压杆超的静定计算。
教具:多媒体。
教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。
举例掌握轴向拉伸、压缩和剪切变形概念,通过例题、作业,加强辅导熟练运用截面法,掌握轴力图的画法;建立变形、弹性变形、应变、胡克定律和抗拉压刚度的概念;教学内容:轴向拉伸和压缩的概念;强度计算;材料的力学性能及应力应变图;许用应力与安全系数;超静定的计算;剪切概念;剪切实用计算;挤压实用计算。
教学学时:8学时。
教学提纲:2.1 轴向拉伸与压缩的概念和实例1.实例(1)液压传动中的活塞杆(2)内燃机的连杆(3)起吊重物用的钢索(4)千斤顶的螺杆(5)桁架的杆件2.概念及简图这些杆件虽然外形各异,受力方式不同,但是它们有共同的特点:(1)受力特点:作用在杆件上的外力合力的作用线与杆件轴线重合,杆件变形是沿轴线方向的伸长或缩短。
(如果两个F 力是一对离开端截面的力,则将使杆发生纵向伸长,这样的力称为轴向拉力; 如果是一对指向端截面的力,则将使杆发生纵向缩短,称为轴向压力)。
(2)变形特点:主要变形是纵向伸长或缩短。
(3)拉(压)杆的受力简图:(4)说明:本章所讲的变形是指受压杆没有被压弯的情况下,不涉及稳定性问题。
2.2 轴向拉伸或压缩时横截面上的内力和应力1.截面法求内力(1)假想沿m-m 横截面将杆切开(2)留下左半段或右半段(3)将弃去部分对留下部分的作用用内力代替(4)对留下部分写平衡方程,求出内力(即轴力)的值。
材料力学拉伸压缩与剪切材料力学是研究材料在外力作用下的力学性能和变形规律的学科。
在材料力学中,拉伸、压缩和剪切是三种常见的受力方式。
本文将对这三种受力方式进行详细的讨论。
一、拉伸拉伸是将材料的两个端点向相反方向施加力,使材料产生变形和应力的一种受力方式。
在拉伸过程中,应力沿受力方向逐渐递增,直到材料达到其抗拉极限,引起断裂。
拉伸强度是指材料在拉伸过程中所能承受的最大伸长应力,常用于评价材料的抗拉性能。
材料在拉伸过程中会发生塑性变形和弹性变形。
当应力较小时,材料发生弹性变形,即材料在去除应力后能恢复原状。
当应力较大时,材料发生塑性变形,即材料变形后无法完全恢复原状。
材料的塑性变形通常伴随着颈缩现象,即材料在拉伸过程中发生细颈,最终引起断裂。
在拉伸过程中,材料的变形主要通过断裂面的拉伸和滑移来实现。
断裂面的拉伸是指材料在拉伸过程中,沿断裂面发生直接断裂的现象。
滑移是指材料分子、原子或晶粒之间发生相对滑动的行为。
材料的拉伸性能主要由断裂面的塑性变形和滑移行为共同决定。
二、压缩压缩是将材料的两个端点向相同方向施加力,使材料产生变形和应力的一种受力方式。
在压缩过程中,材料的体积减小,应力沿受力方向逐渐递增,直到材料达到其抗压极限,引起破坏。
抗压强度是指材料在压缩过程中所能承受的最大应力,常用于评价材料的抗压性能。
与拉伸不同,材料在正常应力下的压缩变形主要是弹性变形。
材料在压缩过程中会呈现出不同的弹性阶段,即初期弹性阶段、线弹性阶段和屈服弹性阶段。
初期弹性阶段材料呈现出线性弹性变形;线弹性阶段材料呈现出弹性变形,但变形量不再是线性增加;屈服弹性阶段材料呈现出应力和应变之间非线性关系。
三、剪切剪切是指材料在外力作用下,造成平行于断裂面的错切运动和应力的一种受力方式。
在剪切过程中,材料发生剪切变形,即材料平行于受力方向发生错开运动。
剪切强度是指材料在剪切过程中所能承受的最大剪应力,常用于评价材料的剪切性能。
材料的剪切变形属于塑性变形,主要发生在晶体或晶体之间的滑移面上。
材料力学例题及解题指导(第二章至第六章)第二章 拉伸、压缩与剪切 例2-1 试画出图a 直杆的轴力图解:此直杆在A 、B 、C 、D 点承受轴向外力。
先求AB 段轴力。
在段内任一截面1-1处将杆件截开,考察左段(图2-5b )。
在截面上设出正轴力N 1。
由此段的平衡方程∑X =0得 N 1-6=0, N 1=+6kNN 1得正号说明原先假设拉力是正确的,同时也就表明轴力是正的。
AB 段内任一截面的轴力都等于+6kN 。
再求BC 段轴力,在BC 段任一截面2-2处将杆件截开,仍考察左段(图2-5c ),在截面上仍设正的轴力N 2,由∑X =0得-6+18+N 2=0 N 2=-12kNN 2得负号说明原先假设拉力是不对的(应为压力),同时又表明轴力N 2是负的。
BC 段内任一截面的轴力都等于-12kN 。
同理得CD段内任一截面的轴力都是-4kN 。
画内力图,以水平轴x 表示杆的截面位置,以垂直x 的坐标轴表示截面的轴力,按选定的比例尺画出轴力图,如图2-5(d )所示。
由此图可知数值最大的轴力发生在BC 段内。
解题指导:利用截面法求轴力时,在切开的截面上总是设出正轴力N ,然后由∑X =0求出轴力N ,如N 得正说明是正轴力(拉力),如得负则说明是负轴力(压力)。
图2-5例2-2试求自由悬挂的直杆(图2-6a)由纵向均匀分布荷载q(力/长度)引起的应力和纵向变形。
设杆长l、截面积A及弹性模量E均已知。
解:在杆上距下端为x处取一任意横截面m-m,则该截面轴力为N(x)=qx,根据此式可作出轴力图如图2-6b所示。
m-m截面的应力为σ(x)=N(x)/A=qx/A。
显然,悬挂端有最大轴力N max=ql及最大正应力Aql/max=σ。
求杆纵向变形,由于各横截面上轴力不等,不能直接应用公式(2-4),而应从长为d x的微段出发。
在x处取微段d x,其纵向伸长可写为()()EAxxNxdd=∆杆件的总伸长()EAqlxxEAqxEAqxEAxxNllll2ddd2====∆⎰⎰⎰研究上端固定杆件由于自重引起的伸长时,杆件自身重量就是一种均匀纵向分布力,此时单位杆长的分布力q=A⋅1⋅γ,此处γ是材料单位体积的重量即容重。
第二章杆件的内力分析第一节杆件拉伸或压缩的内力一、轴向拉伸或压缩的概念轴向拉伸或压缩:由一对大小相等、方向相反、作用线与杆件轴线重合的外力作用下引起的,沿杆件长度发生的伸长或缩短。
二、工程实例三、轴力轴力图1、轴力与杆轴线重合的内力合力。
轴力符号:拉伸为正,压缩为负。
∑=0X0122=-+F F N kNF F N 242212-=-=-= ∑=0X34=-N FkNF N143==任一截面上的轴力等于该截面一侧轴向载荷的代数和,轴向载荷矢量离开该截面者取正,指向该截面者取负。
2、轴力图正对杆的下方,以杆的左端为坐标原点,取平行于杆轴线的直线为x 轴,并称为基线,垂直于x 轴的N 轴为纵坐标。
正值绘在基线的上方,负值绘在基线的下方,最后在图上标上各截面轴力的大小。
注意:轴力图与基线形成一闭合曲线。
轴力图必须与杆件对齐。
在轴向集中力作用的截面上,轴力图将发生突变,其突变的绝对值等于轴向集中力的大小,而突变方向:集中力箭头向左时向上突变,集中力箭头向右时向下突变(图是从左向右画)。
例2-10第二节剪切的内力一、剪切的概念剪切:由一对相距很近、大小相等、方向相反的横向外力引起的横截面沿外力作用方向发生的相对错动。
剪切面或受剪面 m-m二、工程实例三、剪力第三节杆件扭转的内力一、扭转的概念扭转:由一对大小相等、方向相反、作用面都垂直于杆轴的力偶引起的杆的任意两个横截面绕杆轴线的相对转动。
ϕ:扭转角;γ:剪切角二、工程实例三、扭矩某一截面上的扭矩等于其一侧各外力偶矩的代数和。
外力偶矩矢量指向该截面的取负,离开该截面的取正。
四、 扭矩图在外力偶作用的截面上,扭矩图将发生突变,其突变的的绝对值等于该外力偶矩的大小,而突变方向:外力偶矩矢量方向向左的向上突变,向右则向下突变。
外力偶矩的计算公式:)(9550m N nP Mk ⋅=注意:kP 单位为kw ;n 单位为min r ;M 单位为m N ⋅第四节 梁弯曲时的内力一、 弯曲 变形的基本概念弯曲变形:由一对大小相等、方向相反,位于杆的纵向平面内的力偶引起的,杆件的轴线由直线变为曲线。