涡轮增压器系统及常见故障案例分析
- 格式:ppt
- 大小:12.77 MB
- 文档页数:81
涡轮增压器常见故障模式及分析
涡轮增压器是一种经常用于汽车引擎中的设备,它可以通过压缩空气来增加引擎的燃烧效率,从而提高汽车的性能。
然而,涡轮增压器也会出现一些常见的故障模式,下面将对这些故障模式进行分析。
1. 涡轮增压器漏油
涡轮增压器漏油是一种常见的故障模式,通常是由于密封件磨损或损坏导致的。
当涡轮增压器漏油时,会导致润滑油流失,使得涡轮叶轮无法正常运转,从而影响引擎性能。
此外,漏油也可能导致引擎温度升高,甚至造成火灾的危险。
因此,一旦发现涡轮增压器漏油,应及时进行修理或更换。
2. 涡轮增压器阻塞
涡轮增压器在长时间的使用过程中,容易出现阻塞的情况。
主要原因是引擎内积炭导致涡轮增压器进气口和排气口堵塞。
当涡轮增压器出现阻塞时,会导致引擎性能下降,燃油消耗增加,甚至引发引擎缸内爆震或过热。
因此,定期清洗涡轮增压器是非常重要的,可以有效预防此类故障的发生。
3. 涡轮增压器叶片断裂
叶片断裂是一种严重的涡轮增压器故障,通常是由于材料疲劳或外部物体的撞击导致的。
当涡轮增压器叶片断裂时,会导致涡轮增压器无法正常运转,从而影响引擎性能。
此外,断裂的叶片也可能导致引擎内部零部件的损坏,进而导致引擎严重损坏。
因此,一旦发现涡轮增压器叶片断裂,应立即停止使用汽车,并进行维修。
综上所述,涡轮增压器故障可能导致引擎性能下降甚至严重损坏,因此在日常使用中应注意定期检查涡轮增压器的工作状态,及时发现并修复故障,以保障汽车的安全和正常使用。
ds6涡轮增压器故障案例【实用版】目录1.DS6 涡轮增压器故障案例概述2.故障现象及原因分析3.故障诊断与解决方案4.故障预防及维护建议5.结论正文【DS6 涡轮增压器故障案例概述】本文主要介绍了一起 DS6 涡轮增压器的故障案例,通过对故障现象、原因分析、诊断与解决方案以及预防与维护建议等方面的阐述,旨在帮助读者了解涡轮增压器故障的处理方法,并提高对涡轮增压器的维护意识。
【故障现象及原因分析】本次案例中,DS6 涡轮增压器出现了故障,具体表现为:发动机加速无力,油耗增加,尾气排放异常。
经过分析,原因可能有以下几点:1.涡轮增压器内部磨损:长时间高负荷工作导致涡轮增压器内部轴承、叶片等部件磨损,进而影响其性能。
2.涡轮增压器进油、进气管道堵塞:油污、积碳等杂质导致涡轮增压器进油、进气管道不畅,影响其工作效率。
3.涡轮增压器控制系统故障:传感器、执行器等部件故障,导致涡轮增压器无法正常工作。
【故障诊断与解决方案】1.诊断:使用专用诊断仪器读取涡轮增压器相关数据流,检查涡轮增压器工作状态。
2.解决方案:(1) 更换涡轮增压器内部磨损部件,如轴承、叶片等。
(2) 清洗涡轮增压器进油、进气管道,确保通畅。
(3) 修复或更换涡轮增压器控制系统故障部件,如传感器、执行器等。
【故障预防及维护建议】1.定期更换涡轮增压器机油,确保润滑充足,降低磨损。
2.定期清理涡轮增压器进油、进气管道,避免油污、积碳等杂质堵塞。
3.检查涡轮增压器控制系统部件,发现故障及时修复或更换。
4.避免长时间高负荷使用涡轮增压器,以降低磨损风险。
【结论】通过对 DS6 涡轮增压器故障案例的分析与处理,我们了解到涡轮增压器故障的原因及表现,掌握了诊断与解决方案,并提出了预防与维护建议。
典型增压器涡壳开裂失效案例分析管奇贤董碧瑾杨亚宾蔺桂成(宁波吉利罗佑发动机零部件有限公司,宁波315336)摘要:涡轮增压器处在高温㊁高压和高速运转的复杂工作状态下,承受着较高的瞬态热负荷,对制造的材料㊁零部件的结构及加工技术等都有较高的要求㊂由于汽油机排气温度很高,随着不同工况的变化,涡壳通常在400~900ħ高温交变热负荷下工作[1],高温㊁快速㊁大范围的温变工况致使热应力引起的涡壳开裂成为增压器常见的失效现象㊂采用计算机辅助工程(C A E)分析计算㊁材料耐温分析㊁微观组织质量评价与台架试验边界等方法,对涡壳开裂问题进行探讨,增加在新产品开发及试制过程中处理及改善此类问题的经验,从而减少产品开发的成本,缩短开发周期,对提升发动机的可靠性及耐久性具有重要意义㊂关键词:涡轮增压器;开裂;D5S材料0前言涡轮增压技术可有效提高发动机升功率及燃油经济性,特别是有助于满足日益严格的车辆排放标准法规,从而成为了汽车技术的焦点㊂本文通过对某机型涡轮增压器涡壳开裂失效案例进行研究,对其失效机理开展分析,从而制定改进措施,并进行了效果验证㊂1涡轮增压器涡壳开裂失效现象涡轮增压器在发动机台架耐久试验过程中经常会发生涡壳开裂现象㊂在本案例中,发动机在完成400h 冷热冲击试验后,研究人员发现废气阀座附近存在贯穿裂纹,开裂情况见图1㊂研究人员通过对涡壳开裂部位断面的S E M分析,得出开裂主要原因为热应力㊂2增压器涡壳开裂失效原因分析引起汽油机涡轮增压器涡壳开裂失效的原因一般是各种因素的综合结果,但根据实际案例经验的积累,基本可分为以下4大类:(1)涡壳结构设计缺陷㊂由于安装空间和其他连接部件的限制,涡壳外形结构复杂而导致涡壳开裂[2]㊂主要表现为结构设计不合理,整体壁厚设计不均匀,局部倒角㊁圆角过小,过渡突兀等,可结合计算机辅助工程(C A E)仿真分析等手段进行分析㊂图1耐久试验后涡壳开裂(2)产品铸造㊁热处理问题㊂考量微观组织质量,主要表现为涡壳热处理不满足要求或者无热处理,无法目视的铸造缺陷(砂眼㊁气孔㊁缩松㊁缺肉等),金相组织㊁孔隙率等微观质量问题㊂(3)标定排温控制㊂涡壳在运行过程中的稳态最高排温超过了材料本身的许用限值导致开裂㊂(4)试验边界,台架悬置不合理(带来异常振动等)㊂排气系统未按照设计要求布置,未采用柔性悬挂,台架散热不佳或无散热等㊂772020 NO.6汽车与新动力All Rights Reserved.综上,本文将重点围绕这4类导致涡壳开裂的典型原因进行分析论述㊂表1 D 5S 材料力学性能表项目性能要求化学成分/%CS iM nPST iM o N iM g C rɤ2.04.0~6.00.5~1.5ɤ0.05ɤ0.01--34~36-1.5~2.5石墨球化率ȡ90%,石墨球大小为6~8级基体奥氏体,少量碳化物机械性能抗拉强度ȡ370M P a ,延伸率ȡ10%,硬度130H B ~170H B2.1 涡壳介绍涡壳的流道曲面形状和外形结构复杂,影响涡壳开裂的因素较多,诸如流道设计结构㊁流道整体壁厚㊁涡轮外壳(W /G )凸台㊁涡壳材料等㊂本文所述增压器涡壳结构与排气歧管集成,材料采用高镍铸铁材料G G G -N i S i C r 35-5-2(以下简称D 5S )㊂安全使用温度约为920ħ,实际应用瞬态工况可以允许达到950ħ,持续时间一般应小于5s㊂材料的低热膨胀系数和稳定的金相组织有着较高重要性,它决定着涡壳在使用过程中的伸长㊁收缩和弯曲变形,材料具有较高的相变温度才能获得稳定的基体组织,以减小相变引起的热裂和变形[3]㊂该材料的力学性能见表1㊂2.2 热应力分析-校核涡壳结构设计2.2.1 裂纹原因分析在试验冷热过程中,由于受到材料热胀冷缩㊁壁厚不均㊁高温蠕变㊁振动及涡壳结构等因素的影响,会形成应力集中区,随着耐久试验的推进,应力集中区会产生裂纹㊂对于涡壳铸件来说,其壁厚一般为4~5m m ㊂均匀的壁厚将有利于涡壳的良好散热,也不容易产生热应力集中的情况㊂2.2.2 分析模型图通过模拟计算,评估涡壳热应力开裂风险并给出相应改进方案,分析流程按下文所述4点开展进行[4],并根据结果进行优化㊂(1)设定边界条件(基于有限元模型)㊂涡壳温度场负荷:气体换热系数和气体温度㊁环境热对流与辐射㊁模拟中间体冷却㊂涡壳热应力负荷:温度场㊁位移约束涡壳进气法兰[5];其中气体换热系数和气体温度通过计算流体力学(C F D )计算求得㊂(2)试验工况㊂模拟计算需加入台架试验的循环工况(冷热冲击),其示意图如图2所示㊂根据试验循环工况,排温最高出现在全速全负荷时候,模拟计算涡壳前废气排温怠速425ħ,额定功率点950ħ(实测数据)进行㊂图2 试验循环工况示意图(3)温度场分布㊂根据试验工况,得出各工况点下的涡壳温度场分布,可得出高温区域范围㊂涡壳温度场分布如图3所示㊂图3 涡壳温度场分布示意塑性应变分布:得出应变分布,业内考核通常采用等效塑性应变幅值(ΔP E E Q )来评价,涡壳内外部的考核标准根据实际有所差异,一般要求外部ΔP E E Q<0.1%㊂2.3 铸件微观组织质量对开裂的影响本试验采用高镍球墨铸铁(奥氏体镍抗球墨铸铁),高镍球铁一般含镍量为13%~36%㊂镍是强力的奥氏体稳定化学元素,可扩大奥氏体的存在区间,可以使基体在室温下获得稳定奥氏体组织[6-7]㊂高镍球铁具有优异的高温组织稳定性和抗氧化能力,下文从如78汽车与新动力All Rights Reserved.下几个微观组织方面进行论述㊂2.3.1碳化物金相组织中碳化物一般以粒状或网状分布较多,粒状要优于网状㊂如果碳化物呈网状分布的话,会降低材料的塑性㊂一旦出现了裂纹,则会大幅降低其抑制裂纹扩展的能力[8]㊂同时,铸件如果未采用热处理工艺,则其碳化物分布均匀性会相对较差㊂2.3.2显微缩松(孔隙率)一般而言,显微缩松越严重,说明铸造质量越差,其机械性能也就越差㊂根据涡壳具体部位的不同,对于孔隙率的评判标准也不大相同,关键放气阀座㊁涡壳舌口等功能部位要求严格,缩松目标为不大于2%,非功能区标准应控制在5%以下㊂2.3.3球化率球化率指标有着较高重要性,详见表2标准㊂在排气系统特别是在涡轮增压器涡壳的应用上建议为2级或者更高,即球化率大于90%㊂球化率级别越高,其机械性能越好,反之越差㊂另外,对石墨的大小也有要求,一般为6~7级㊂表2各类球铁应用温度值材料牌号基体组织应用温度/ħ铁素体球铁Q T420-15铁素体,珠光体含量ɤ5%,石墨球600~650高硅球铁-铁素体,珠光体含量ɤ5%,石墨球600~750硅钼球铁H i S i M oD C I铁素体,珠光体含量ɤ5%,石墨球650~820加钒硅钼球铁-铁素体,珠光体含量ɤ5%,石墨球ɤ850高镍球铁D5S㊁D4㊁D2奥氏体基体,石墨球化级别2~3级ɤ920 2.4标定排温控制对开裂的影响根据表2可知,D5S排温最高应不超过920ħ,可允许瞬时最高排温至950ħ㊂对于大负荷工况下的汽油机排温控制而言,通常的手段是采用加浓燃油喷射㊂因此在标定策略上必须以增压器涡壳材料耐温限值来约束标定的最高排温,以本研究的高镍球墨铸铁D5S为例,最高标定稳态排温必须限制在920ħ,此时过量空气系数λʈ0.79~0.80㊂2.5试验边界条件的控制对于试验边界条件的控制(台架布置的合理性),主要是通过散热及振动来关注㊂2.5.1振动加速度㊁振幅试验人员对台架耐久发动机排气系统振动加速度及振动幅值进行测试,在所有工况下的最大振动加速度最高可达12.5G,见图4㊂相比振动加速度,其振动幅值相对较小,其幅值为0.45m m,见图5㊂图4振动加速度图5振动幅值由此可以判断,过大的振动加速度将加剧涡壳开裂失效的风险㊂在可控范围内,加速度以及振幅均是越小越好[9]㊂2.5.2散热条件台架耐久试验不同于整车道路耐久试验,其全速全负荷工况恶劣,必须在排气侧加装额外的大功率散热风扇㊂综上分析,需要对此涡壳开裂案例进行整改,以达到规避风险的目标要求㊂3锁定本案例失效的主因根据上文可知,其热应力区域与本文故障增压器792020 NO.6汽车与新动力All Rights Reserved.涡壳开裂区域相吻合,热应力是其开裂的主要原因之一,详见图6塑性应变分布㊂图6 塑性应变分布D 5S 材料的耐温上限为920ħ,此故障件耐久试验并未对排温进行严格控制,详见图7㊂最高温度情况达到了950ħ,这是导致涡壳开裂的重要原因之一㊂图7 涡壳前废气排温曲线随着,研究人员对失效故障件切片进行微观组件检测,其孔隙率㊁碳化物含量偏高,可知微观质量缺陷为开裂主因之一,详见图8㊂显微缩松显示,碳化物含量偏高,且局部成网状分布,对机械性能产生影响,抑制裂纹扩展的能力大幅下降[8],详见图9㊂在试验室台架布置中,所有紧固支架㊁支撑点㊁散热风扇均已按照设计及试验要求安装,但是根据上述图8孔隙率以及显微缩松现象图9 100倍放大条件下的碳化物分布情况振动加速度的测量,振动加速度偏高㊂鉴于试验台架无法完全与整车布置一致,且台架悬置也已经按整车要求加装橡胶垫,因此振动加速度偏大不被纳入主因㊂失效故障增压器厂家设定的振动加速度标准为小于15G ,但针对非旋转部件(涡壳㊁中间壳等)的振动限值须根据实际项目应用情况测试,结果以满足使用要求㊁无共振为导向㊂4 改进措施及效果验证研究人员在偏薄区域增加壁厚,按5m m 的厚度考量,加大根部圆角,局部增设加强筋,优化涡壳三维(3D )造型,缓解热应力,详见图10㊂研究人员考虑优化微观结构,减少孔隙率㊁显微缩松,弱化碳化物㊂图11示出了改善后的结果,其已经满足功能区不大于2%,非功能区小于5%的目标要求㊂在失效案例整改的过程中,试验人员与铸造厂家交流了铸造工艺方面的几个要点:80汽车与新动力All Rights Reserved.图10优化前后3D 模型对比图11改善后的显微缩松分布示意图(1)炉料要求干净㊁无油污,杂质含量严格控制,浇冒口要抛丸处理;(2)严格控制开浇温度;(3)增加脱氧次数,提高抗氧化性[10];台架耐久排温监测,严格控制涡轮前废气温度,温度如达到920ħ会报警,温度如达到950ħ则会自动停机㊂通过上述整改措施,在后续的400h冷热冲击耐久试验中,开裂问题得到有效解决㊂5结论本文通过对涡轮增压汽油机涡壳台架耐久后开裂(贯穿裂纹)问题进行分析,围绕结构设计㊁涡壳材料㊁材料微观组织㊁排温㊁试验边界等方面开展详细的验证工作,最终开裂问题得到有效解决,从中得到如下结论㊂(1)涡壳结构的设计必须通过有限元分析研究,优化热应力集中部位结构,缓解热应力㊂(2)涡壳微观组织必须得到监控,根据不同材料制定相应的评价标准,同一批次保留样件,供后续分析㊁对比检测使用㊂(3)排温必须在涡壳材料许用温度限制以内,如采用果不能满足,则需要更换耐温更高的材料,如采用铸钢D I N1.4837材料㊂(4)台架振动带来的影响不可避免,尽可能通过结构优化及布置方式来减缓台架振动对排气侧的影响㊂参考文献[1]王泽华,许鹤皋,蒋兴国,等.汽车增压器涡轮壳材料研究[J].内燃机,1999(1):31-35.[2]蒋德明.高等内燃机原理[M].西安:西安交通大学出版社,1993.[3]王佳华.发动机排气歧管开裂失效分析[D].上海:同济大学机械与汽车工程学院,2009.[4]李红庆.杨万里,刘国庆,等.内燃机排气歧管热应力分析[J].内燃机工程,2005,26(5):81-84.[5]谷爱国.车用涡轮增压器涡壳流场分析[D].长春:吉林大学,2007.[6]金永锡,范仲嘉.高镍奥氏体球墨铸铁涡轮增压器壳体材质及工艺研究[J].铸造,2005,54(5):494-500.[7]陈平昌,黄志刚,肖理明,等.高镍奥氏体球墨铸铁高温性能研究[J].华中理工大学学报,1995,23(1):104-108.[8]球墨铸铁金相检验[S].G B/T9441-2009.[9]刑素芳,王现荣,王超,等.发动机排气系统振动分析[J].河北工业大学学报,2005,34(5):109-111.[10]中国机械工程学会.铸造手册(第1卷铸铁)[M].北京:机械工业出版社,1997.812020 NO.6汽车与新动力All Rights Reserved.。
摘要随着经济的高速发展,国内高档汽车的增加,涡轮增压器被广泛使用,通过对涡轮增压器的工作原理的了解,采取正确使用、安装及检测方法,可以增加其使用寿命。
针对影响增压器的使用寿命因素,故障和诊断加以分析,并说明使用中的注意事项,意在减少增压器的故障,延长其使用寿命,降低维护费用。
只要掌握了正确的操作方法并定期检查维护好涡轮增压器,不但会使涡轮增压器的使用寿命大大延长,提高了汽车的动力性,而且也提高了汽车使用的经济性。
关键词:涡轮增压器检查故障排除浅析汽车涡轮增压器原理及故障前言随着汽车工业的飞速发展,汽车已逐渐走进到千家万户,在满足乘坐的舒适性、使用的经济性要求后,人们对于汽车的动力性的要求也逐步提高,在现有的技术条件下,给发动机加装涡轮增压器是最好的解决办法。
一般情况下,加装增压器后,发动机的功率及扭矩要比加装前增大20%~30%。
小排量,大功率,代表着当前发动机技术的最高水平。
比普通发动机拥有更好的动力,也有更好的燃油经济性。
但在使用中常发生废气涡轮增压器早期损坏的故障,分析其原因,主要是对增压器的使用,维护不当造成的。
现对影响增压器的使用寿命因素,故障和诊断加以分析,并说明使用中的注意事项,意在减少增压器的故障,延长其使用寿命,降低维护费用。
涡轮增压器它是安装在发动机排气管道上的一台精致的空气压缩机,利用发动机排出的废气推动涡轮室内的涡轮旋转,涡轮又带动同轴的叶轮旋转,这样,叶轮就把从空气滤清器进来的空气进行压缩,使之增压进入汽缸。
由于进入气缸的空气密度增大,可使更多的燃油充分燃烧,因而大大提高了发动机的功率,降低了燃油消耗。
一、涡轮增压器的工作原理涡轮增压器的组成由涡轮,压气机,转子总成,轴承机构,中间体和密封装置等组成。
工作原理是利用发动机排出的高温高压废气驱动废气涡轮旋转,废气涡轮带动同一轴上的压气机共同旋转,压气机压缩由空气滤清器过滤后的空气,使空气被压缩后增压进入发动机气缸内,提高发动机进气量的装置,减少废气中CO、HC、CL粒等有害物的排放。
车况:一辆宝马328Li轿车,搭载N20发动机,该车发动机动力下降,仪表盘显示信息提示传动系统及DSC失效故障。
检查分析:接车后进行试车,确定客户描述的为真实存在的现象。
随后对该车进行了快测,发现以下故障信息:1、增压空气温度传感器电气对正极短路;2、增压空气温度传感器电压变化过快;3、增压压力调节作为后续反应关闭;4、增压压力传感器电气对正极短路。
接下来,我们根据上面的故障码自动生成的检测计划进行测量,步骤及结论如下:1、根据下图所示的传感器电路图,在怠速情况下测量了该传感器的供电线26号针脚和搭铁之间的电压,电压值为4.97V,说明DME的供电正常。
随后在传感器端测量2号针脚,电压也为4.97V,说明传感器至DME之间的线路正常。
2、怠速情况下测量温度传感器12号针脚和搭铁之间的电压,电压值为2.79V,说明温度传感器至DME信号正常,且线路也正常。
3、怠速情况下测量压力传感器10号针脚和搭铁之间的电压,电压值为4.97V,此测量值说明信号电压在怠速时不正常。
随后又在传感器端测量1号针脚的电压,电压值也为4.97V,两端电压相等只可说明该线路没问题。
4、为了验证该系统是否进入了紧急模式,随即在点火开关打开和怠速2种情况下测量了24号和10号针脚之间的电压,电压值均为4.97V。
根据增压压力传感器的部件失灵特性,当该传感器失效时,预计将出现以下情况:在发动机控制单元内记录故障代码,以替代值紧急运行。
此时DME内部将自动生成1个5V的替代值以紧急运行,据此我们可以判断该传感器进入了应急模式。
故障排除:通过上面的测量,我们断定增压压力传感器已损坏,更换新的传感器,再次在点火开关打开和怠速2种情况下测量了24号和10号针脚之间的电压,电压值均为1. 23V,说明故障排除。
故障总结:随后为了进一步的说明该传感器工作特性,我们采集了它在正常工作时的怠速波形,发现完全符合该传感器的相关特性:增压压力的有效信号根据压力变化而波动。
探究汽车发动机涡轮增压器原理及常见故障处理摘要:随着汽车工业的不断进步,汽车的各种表现也在不断提高。
汽车不断独立创新。
在现有技术条件下,向汽车发动机添加涡轮增压器可以有效地提高汽车性能。
一般来说,装有涡轮增压器的汽车往往比普通发动机性能更好。
涡轮增压器虽然有其独特的功能,但如果保养不当,会严重影响涡轮增压器的寿命。
为了充分发挥涡轮增压器的功能,除了了解涡轮增压器的工作原理外,还应了解涡轮增压器常见故障的一些原因,并对其进行分析、诊断和分析。
尽量减少涡轮增压器故障,延长其使用寿命,有效降低车辆维修成本。
关键词:汽车发动机;涡轮增压器原理;常见故障处理引言汽车工业的现代发展直接提高了汽车产品各方面的性能水平,在汽车发动机中安装涡轮增压器进一步提高了汽车的动力性能。
但应注意的是,涡轮增压器作为汽车零件之一,一旦保养或使用不当,就会直接影响涡轮增压器的运行安全性和寿命。
1涡轮增压器的类别、结构涡轮增压器通常可分为三种类型:径向流量类型、轴向流量类型和混合流量类型,以适应不同的涡轮类型。
涡轮增压器主要由压缩机和涡轮组成。
涡轮零件主要由涡轮壳、喷嘴环和单级径向涡轮组成,它们是驱动压缩机旋转的能源。
压缩机部分主要由单层径向压缩机、无翼扩散器和压缩机外壳组成。
与水轮机主轴的连接采用焊接结构,压缩机叶轮以动态通道的形式安装在涡轮轴上,并按下螺母。
涡轮轴和压缩机叶轮进行精确的动态单对比,保证高速正常运行。
压缩机转子轴承系统是一种内部轴承类型。
压缩机通过压力润滑,并添加专用过滤器。
润滑油从专用过滤器输送到中间壳体润滑系统,然后直接通过机油加注管流入发动机的油底壳。
涡轮末端和压缩机上安装了活塞环结构密封装置,压缩机末端也安装了油箔,防止润滑油和气体泄漏。
涡轮增压器的主要固定部分是涡轮壳体、压缩机壳体和中间壳体。
2涡轮增压器工作原理机械压缩机采用机械充电技术,前提是不改变汽油机废气排放。
它主要采用提高力轮性能的方法来实现充电效果。
废气涡轮增压系统及其常见故障分析专业班级:08电控技师学生姓名:刘跃指导老师:戴德荣职称:讲师摘要进过一段时间的社会实践,我发现很多人对废气涡轮增压感到很神秘,很多买车的人只知道轿车尾部有T表明该车发动机采用了废气涡轮增压技术,只知道采用废气涡轮增压的发动机好,却不知它好在哪。
该如何使用,如何维护保养。
然而现在的一些维修工连废气涡轮增压器的结构、组成、分类,工作原理,控制模式都不理解又谈何去排除废气涡轮增压器的故障。
我通过查阅有关汽车发动机及废气涡轮增压器的书籍,网络信息资料。
对增压器的分类、组成。
特别对废气涡轮增压器的结构、工作原理、控制模式做了细致的介绍。
通过调研汽车维修站的内部资料和询问了很多维修技术人员。
对废气涡轮增压器的使用、维护、保养,进行分别进行了系统的全面的介绍。
对维修过程中出现的一些典型的故障进行了深度的细致的解析,如废气涡轮增压器的漏油。
对其中的难点和诊断反法进行综合性的分析。
废气涡轮增压在技术方面已经开始向相继增压系统、可变截面涡轮增压系统发展。
在材料方面也开始使用钛铝合金的材料,它具有密度小,耐高温及抗氧化的有点。
希望可以为维修技师在维护和修理时提供一些参考。
关键词:废气涡轮增压器常见故障目录第一章绪论 (2)1.1内燃机涡轮增压的概念 (2)1.2内燃机涡轮增压的发展简史 (2)1.3涡轮增压器在汽车上的应用 (3)第二章汽车发动机增压系统的分类及特点 (3)2.1 汽车涡轮增压器的分类 (3)2.2 汽车涡轮增压器的特点 (5)第三章废气涡轮增压系统的结构以及工作原理 (6)3.1 作用 (6)3.2 构造 (7)3.3 工作原理 (8)第四章汽车涡轮增压器的使用及维护 (9)4.1 涡轮增压器的维护 (9)4.2 涡轮增压发动机的使用 (10)第五章废气涡轮增压器的常见故障及案例分析 (13)5.1 常见故障 (13)5.2 故障检修方法 (14)5.3 废气涡轮增压漏油 (14)5.4 典型案例分析 (15)第六章废气涡轮增压技术的发展 (16)6.1 新技术方面 (16)6.2 新材料方面 (18)结论 (19)致谢 (20)参考文献 (21)引言废气涡轮增压器系统是用来提升发动机动力的。
涡轮增压器的常见故障原因分析及排除技巧废气涡轮增压器(以下简称增压器)是一种很精密的装置,广泛应用在工程机械、发电机组等动力设备中,在不改变柴油机基本结构的基础上,增压器能增加动力30%甚至更多,使燃油油耗降低5%左右,收到很好的经济效益。
但是,增压器在其使用过程中往往因安装、使用不当,达不到预期的使用效果,现以增压器的结构原理为基础,分析增压器的常见故障。
增压器是利用排气管中排出的废气,推动涡轮高速旋转,同时通过转子轴带动压气机叶轮高速旋转,其转速可高达50000~230000r/min,高速旋转的压气机叶轮将吸入的空气增压,使进入汽缸的空气密度大大增加,提高了柴油机功率。
1增压器常见的故障1.1增压效果差主要表现在动力下降,冒黑烟,燃油经济性差。
1.2增压器一端或两端漏油这是比较常见的故障,也是影响增压器使用寿命的主要原因。
1.3增压器使用寿命离理想值相差太大换上一个增压器,很快就出现浮动轴承损坏、两端漏油、动力下降等故障。
2故障原因2.1增压效果差(1)空气滤清器太脏,不能向发动机内提供高密度的洁净空气。
(2)叶轮破损,引起进气量不足。
(3)进气的灰尘太多,叶轮和增压器壳接缝处有油泥,影响了增压器叶轮转速,造成进气量不足。
2.2增压器一端或两端漏油增压器转速很高,其浮动轴承的润滑全靠来自油底壳的润滑油润滑。
以正常压力进入轴承间隙的机油在通过轴承工作面后,机油压力变为零,靠自身重力流回油底壳,不会从增压器两端流出。
并且在正常工作时,增压器两叶轮之间有一定的压力,机油是不会从低压的轴承区流向两端高压区的,况且两叶轮和浮动轴承之间还有密封环,一般情况不会发生漏油现象。
但在下列情况下机油有可能从增压器两端漏出:(1)浮动轴承磨损。
长期不换机油或空气滤清器失效造成太多沙尘进入增压器,严重磨损浮动轴承,造成轴承间隙过大,油膜不稳定,在增压器的高转速下,很快就出现增压器的不平衡,引起转子轴系振动加剧,破坏了两端的密封,造成润滑油泄漏。