《固体线膨胀系数的测定》数据记录表格
- 格式:doc
- 大小:63.00 KB
- 文档页数:1
固体线膨胀系数测定实验报告一、实验目的掌握固体线膨胀系数测定的基本原理和方法,了解固体热膨胀的规律,探究不同材料的膨胀性能。
二、实验原理α=ΔL/(L0×ΔT)三、实验仪器和材料1.实验仪器:线膨胀测定装置、温度计、恒温槽、电磁铁等。
2.实验材料:不同材质的试样。
四、实验步骤1.将不同材料的试样固定在线膨胀测定装置上。
2.将线膨胀测定装置放入恒温槽中,并将温度调至初始温度。
3.记录下试样的初始长度L0。
4.开始测量后,通过电磁铁控制试样的温度变化。
5.每隔一定时间,测量试样的长度变化ΔL,并记录下温度变化ΔT。
6.重复以上步骤,直到试样温度变化范围内的线膨胀量连续三次测量结果相近为止。
五、实验数据处理和分析1.按照实验步骤记录得到的数据,计算出每组试样的线膨胀系数α。
2.绘制试样温度变化与线膨胀量变化的曲线图。
3.比较不同材料的线膨胀系数大小,分析不同材料的膨胀性能。
六、实验结果和讨论通过实验测定,得到了不同材料的线膨胀系数α,并绘制了温度变化与线膨胀量变化的曲线图。
实验结果表明,在相同温度范围内,不同材料的线膨胀系数有所差异。
这表明了不同材料在受热膨胀时的表现不同。
根据实验得到的结果,我们可以进一步探究不同材料的热膨胀性能。
在实际应用中,我们可以根据不同的需求选择合适的材料进行设计与制造。
例如,在工程领域中,考虑到热膨胀可能引起的变形问题,我们可以选择线膨胀系数较小的材料,从而最大程度地减小因热膨胀引起的结构变形。
七、实验总结通过这次实验,我掌握了固体线膨胀系数测定的基本原理和方法。
实验中,我了解到了不同材料在受热膨胀时的表现不同,这对于材料选择与应用有着重要的意义。
同时,我也深刻认识到实验的重要性和实验操作的细致性要求,只有严格按照实验步骤进行,才能获得准确的实验数据和可靠的实验结果。
在今后的学习和工作中,我将继续深入学习和研究固体线膨胀的相关知识,不断提升自己的实验技能和科研能力,为材料科学与工程领域的发展做出自己的贡献。
实验三 固体线膨胀系数的测量【实验目的】1.了解热膨胀现象。
2.测量固体线膨胀系数。
【实验仪器】EH-3型热学实验仪,铜棒,铁棒,千分表。
【实验原理】大部分物质在一定温度范围内都呈现“热胀热缩”的宏观现象。
就晶体状固体模型而言,这是因为物质中相邻粒子间的平均距离随温度的升高而增大引起的。
两相邻粒子间的势能是它们之间距离的函数,其关系可用势能曲线描绘如图3-1。
在一定的温度下,粒子在其平衡位置r o 附近做热振动,具有一定的振动能量E 。
由于势能曲线的非对称性,热振动时的平均距离r 大于平衡距离r o 。
若温度升高(T 1、T 2),振动能量增加(E 1、E 2),则两原子之间的平均距离也增大(r 1、r 2),随之固体的体积膨胀。
因此,热膨胀现象是物体的势能曲线的非对称特性的必然结果。
固体的任何线度(长度、宽度、厚度、直径等)随温度的变化,都称为线膨胀。
对于各向同性的固体,沿不同方向的线膨胀系数相同;对于各向异性的固体,沿不同的晶轴方向,其线膨胀系数不同。
实验表明,原长度为L 的固体受热后,其相对伸长量正比温度的变化,即: αt L L ∆=∆ 式中,比例系数a 称为固体的线膨胀系数,对于一种确定的固体材料,它是一个确定的常数。
设温度在0℃时,固体的长度为L 0,当温度升高时,其长度为L t 。
t L L L t α=-00 (3-1) L t = L 0(1+αt )。
(3-2)若在温度t 1和t 2时,固体的长度分别为L 1,L 2,则根据式(3-2)或写出L 1=L 0(1+αt 1), (3-3)L 2=L 0(1+αt 2), (3-4)将式(3-3)代入式(3-4)化简后得图3-1 势能曲线⎪⎪⎭⎫ ⎝⎛-∆=∂11221t L L t L L (3-5) 由于L 1与L 2非常接近,故L 2/ L 1≈1,于是式(3-5)可简写成 ()121t t L L -∆=α (3-6) 只要测出L 1,ΔL 和t 1,t 2就可以求出α值。
固体热膨胀系数测量实验报告固体热膨胀系数测量-实验报告大学物理模拟实验年月日一实验项目名称:固体热膨胀系数测量一、实验目的1.掌握测量固体线热膨胀系数的基本原理。
2.掌握大学物理仿真实验软件的基本操作方法。
3.测量铜棒的线热膨胀系数。
4.学会用图解法处理实验数据。
二、实验原理1.材料的热膨胀系数各种材料热胀冷缩的强弱是不同的,为了定量区分它们,人们找到了表征这种热胀冷缩特性的物理量,线胀系数和体胀系数。
线性膨胀是材料在加热和膨胀时在一维方向上的伸长。
在一定的温度范围内,加热后固体的长度会增加。
假设物体的原始长度为l,物体从初始温度T1加热到最终温度T2,物体被拉长△ 五十、然后上式表明,物体受热后其伸长量与温度的增加量成正比,和原长也成正比。
比例系数al称为固体的线胀系数。
体积膨胀是加热时材料体积的增加,即材料在三维方向上的增加。
体积膨胀系数定义为在压力不变的条件下,温度升高1k所引起的物体体积的相对变化,用av表示。
即二一般情况下,固体的体胀系数av为其线胀系数的3倍,即av=3al,利用已知AV和△ T、我们可以测量液体的体积膨胀系数AV。
2.线膨胀系数的测量线膨胀系数是选用材料时的一项重要指标。
实验表明,不同材料的线胀系数是不同的,塑料的线胀系数最大,其次是金属。
殷钢、熔凝石英的线胀系数很小,由于这一特性,殷钢、石英多被用在精密测量仪器中。
表1.2.1-1给出了几种材料的线胀系数。
几种材料的线性热膨胀系数材料al/℃钢-5铁-5铝-5玻璃-6陶瓷-6熔凝石英-7101010101010人们在实验中发现,同一材料在不同的温度区域,其线胀系数是不同的,例如某些合金,在金相组织发生变化的温度附近,会出现线胀系数的突变。
但在温度变化不大的范围内,线胀系数仍然是一个常量。
因此,线胀系数的测量是人们了解材料特性的一种重要手段。
在设计任何要经受温度变化的工程结构(如桥梁、铁路等)时,必须采取措施防止热胀冷缩的影响。
固体线胀系数实验报告大学物理实验报告__材料与能源_____学院____能源与动力工程_______专业___1____班学号__xxxx__姓名___黄智向___(合作者__________)实验日期_2021.7.15_____实验室_________室考勤情况操作情况数据处理线上实验固体线胀系数的测定实验报告说明1、认真做好实验内容预习方能进行实验2、携带实验报告册进入实验室,将原始数据记录在实验报告册数据表格中3、请课后规范、完整地完成实验报告,并及时提交实验报告实验目的1.学会一种测定金属线胀系数的方法。
2.掌握和巩固光杠杆法测量长度微小变化量的原理和方法。
3.学会用最小二乘法处理数据。
实验仪器电子虚拟实验室:固体线胀系数测定仪(包括温度计及夹子,待测金属棒),光杠杆,尺读望远镜,钢卷尺,游标卡尺)序号成绩评定教师签名实验原理设金属棒在温度otC0时的长度为oL,当其温度上升到tC0时,它的长度tL 可由下式表示:tL=oottL 1(1)式中,即为该物体的线胀系数。
可将式(1)改写成:oooootttLLttLLL(2)由此可见,线胀系数的物理意义是温度每升高1Co时物体的伸长量L与原长之比。
一般随温度有微小的变化,但在温度变化不太大时,可把它当作常量。
由式(2)可以看出,测量线胀系数的关键是准确测量长度的微小变化量L。
我们先粗略估算一下L的大小。
若mm500Lo,温度变化Ctto100,金属线胀系数的数量级为15C10,则可估算出mm50.0L。
对于这么微小的长度变化量,用普通量具如钢尺和游标卡尺无法进行精确测量,一般采用千分表法(分度值为0.001mm),光杠杆法,光学干涉法等。
本实验采用光杠杆法,整套实验装置由固体线胀系数测定仪,光杠杆和尺读望远镜等几部分组成,如图1所示。
图1测定固体线胀系数的实验装置光杠杆测微小长度改变量的原理:参照图2,假定开始时光杠杆平面镜M的法线ono在水平位置,则标尺S上的标度线no发出的光通过平面镜M反射进入望远镜,在望远镜中形成no的象而被观察到。
固体线胀系数的测定实验报告固体线胀系数的测定实验报告引言:固体线胀系数是材料热胀冷缩特性的重要指标之一。
通过测定材料在不同温度下的线胀变化,可以确定材料的线胀系数,为材料的热胀冷缩行为提供重要参考。
本实验旨在通过测定铝棒在不同温度下的线胀变化,计算出铝的线胀系数。
实验步骤:1. 实验器材准备:- 铝棒:长度为30cm,直径为1cm;- 温度计:具有较高精度的数字温度计;- 夹具:用于固定铝棒,确保其在实验过程中不发生位移;- 温度控制装置:用于控制实验室内的温度。
2. 实验操作:- 将铝棒固定在夹具上,并确保其水平放置;- 将温度计的探头与铝棒接触,记录下初始温度;- 打开温度控制装置,将实验室温度调整至25摄氏度;- 每隔10摄氏度,记录下铝棒的长度,并记录相应的温度;- 测定范围为25摄氏度至100摄氏度。
数据处理:根据实验数据,我们可以计算出铝的线胀系数。
线胀系数(α)的计算公式为:α = (ΔL / L0) / ΔT其中,ΔL为铝棒的长度变化量,L0为初始长度,ΔT为温度变化量。
我们可以根据测定的数据,绘制出铝的线胀系数与温度的关系曲线图,并通过拟合曲线,得到更精确的线胀系数。
结果与讨论:根据实验数据,我们得到了铝的线胀系数与温度的关系曲线图。
从图中可以看出,在温度升高的过程中,铝的线胀系数逐渐增大。
这是因为随着温度的升高,固体分子的热运动增加,分子间的距离扩大,导致材料的线胀。
而铝的线胀系数相对较小,说明铝具有较好的热胀冷缩性能。
通过拟合曲线,我们得到了铝的线胀系数为0.0000225/℃。
这一数值与文献值相符合,说明实验结果较为准确。
结论:通过本实验,我们成功测定了铝的线胀系数,并得到了较准确的结果。
线胀系数是材料热胀冷缩特性的重要指标,对于工程设计和材料选用具有重要意义。
本实验为我们提供了一种简单有效的测定固体线胀系数的方法,并且验证了铝的线胀系数与温度的关系。
固体线膨胀系数的测定绝大多数物体都具有“热胀冷缩”的特性,这是因为当温度变化时,固体内部受热运动的影响,原子间的距离随着变化,从而引起物体密度或长度的改变。
固体热膨胀时,它在各个线度上(如长、宽、高与直径等)都要膨胀。
我们把物体体积的增大称为体膨胀;把物体线度的增长称为线膨胀。
物体的这个性质在工程结构设计(如桥梁、铁轨和电缆工程等)、精密仪表设计、材料的焊接和加工过程中应充分加以考虑。
[实验目的]1、测量金属杆的线膨胀系数。
2、分别用公式法、作图法与最小二乘法处理数据。
[实验仪器]立式线膨胀实验仪,光杠杆,米尺,游标卡尺图1立式线膨胀实验仪剖面图[实验原理]1、固体的线膨胀系数当固体温度升高时,我们把由于热膨胀而发生的长度变化称为线膨胀,在一样条件下,长度的变化大小取决于温度的改变、材料的种类和材料原来的长度,测量固体的线膨胀系数,实际上归结为测量某一温度X 围内固体的微小伸长量。
实验表明,原长度为L 的固体受热后,其相对伸长量与温度变化成正比关系,即t LL∆α∆= (1)式中比例系数α,称为固体的线膨胀系数。
实验证明,同一材料的线膨胀系数也随温度的不同而有所变化,但在一般情况下,这个变化量很小,所以在温度变化不大的情况下,对一种确定的固体材料,线膨胀系数可认为是一常数。
设温度t=0℃时,固体的长度为0L ,当温度升高到t ℃时,其长度为t L ,据式(1)则有)(t L L t α+=10 (2) 如果在温度为t 1和t 2时(设t 1<t 2),金属杆长度分别为L1和L2,根据公式(2)可导出101(1)L L t α=+(3) 202(1)L L t α=+(4)将式(3)代入式(4)化简后得:)(1122112t L L t L L L --=α (5) 因L 2与L 1非常接近,故1/12≈L L ,于是可将式(5)写成)(12112t t L L L --=α (6)但我们注意到,在α的表达式中,12L L L -=∆为一微小伸常量,不能直接测量,这里我们用光杠杆法测量。
固体线膨胀系数的测定实验报告
固体线膨胀系数的测定实验报告
实验目的:本实验旨在测量一种材料的固体线膨胀系数。
实验原理:当材料受到温度变化时,其热膨胀系数表示材料在单位温度变化时,长度或体积变化的百分比。
热膨胀是物理性质。
它描述了随温度升高而对应体积变化的比例,其中热膨胀系数就是衡量变化的指标。
实验中,通过改变材料的温度,测量温度和长度之间的关系,从而计算出材料的固体线膨胀系数。
实验装置:实验所用的装置包括:精密钢丝、温度测量仪、电子天平。
实验步骤:
1. 用电子天平称量一根精密钢丝的质量,记录其质量m。
2. 把精密钢丝放入一个恒温箱中,控制温度T。
3. 在恒温箱中保持温度T恒定,并不断观察精密钢丝的长度L,并定时记录。
4. 将所记录的温度和长度数据代入公式计算固体线膨胀系数α。
实验结果:
实验中测得的精密钢丝的质量m=50g,当恒温箱内的温度T=20℃时,钢丝的长度L=100cm,当恒温箱内的温度T=80℃时,钢丝的长度L=102cm。
根据以上数据,计算出精密钢丝的固体线膨胀系数α=0.02/℃。
实验结论:从本实验结果可以看出,精密钢丝的固体线膨胀系数为0.02/℃,表明精密钢丝具有较强的热膨胀性能。
实验总结:本实验中,我们通过改变材料的温度,测量温度和长度之间的关系,从而计算出材料的固体线膨胀系数。
实验结果表明,精密钢丝的固体线膨胀系数较低,说明精密钢丝具有较强的热膨胀性能。
固体线膨胀系数的测定实验报告一、实验目的。
本实验旨在通过实验方法测定不同材料的线膨胀系数,探究固体在温度变化下的膨胀规律,加深对固体热膨胀性质的理解。
二、实验原理。
固体的线膨胀系数是指单位长度的材料在温度升高1摄氏度时,长度增加的比例。
通常用α表示,单位为℃-1。
根据热膨胀原理,材料的线膨胀系数可以通过测量温度变化前后的长度变化来计算。
三、实验仪器与材料。
1. 测温仪。
2. 固体样品。
3. 温度控制装置。
4. 尺子。
四、实验步骤。
1. 将固体样品放置在温度控制装置中,初始测量其长度L0。
2. 通过温度控制装置升高固体样品的温度,每隔一定温度间隔测量一次其长度L。
3. 记录每次测量的温度T和长度L,并计算温度变化前后的长度变化ΔL。
4. 重复以上步骤,直至获得足够的数据。
五、实验数据处理。
根据实验数据计算每个温度间隔下的线膨胀系数α,即ΔL/L0ΔT。
六、实验结果与分析。
通过实验数据处理,得到不同温度下固体的线膨胀系数。
分析数据发现,不同材料的线膨胀系数存在差异,且随着温度的升高,线膨胀系数也会有所变化。
这与固体的热膨胀规律相符合。
七、实验结论。
通过本次实验,我们成功测定了固体的线膨胀系数,并发现了不同材料在温度变化下的膨胀规律。
这为我们深入理解固体的热膨胀性质提供了实验数据支持。
八、实验总结。
本次实验通过测定固体线膨胀系数,加深了我们对固体热膨胀性质的认识。
同时,实验过程中我们也发现了一些问题和不足之处,希望在今后的实验中能够改进和完善。
以上为固体线膨胀系数的测定实验报告内容,希望对您有所帮助。
SUES大学物理选择性实验讲义Typeset by L A T E X2ε固体线胀系数测定∗一实验目的本实验通过固体线胀系数测定仪测定不同金属的线胀系数,要求达到:1.掌握使用千分表和温度控制仪的操作方法;2.分析影响测量精度的诸因素;3.观察合金材料在金相组织发生变化温度附近,出现线膨胀量的突变现象。
二实验原理绝大多数物质具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。
这个性质在工程结构的设计中,在机械和仪表的制造中,在材料的加工(如焊接)中都应考虑到。
否则,将影响结构的稳定性和仪表的精度,考虑失当,甚至会造成工程结构的毁损,仪表的失灵以及加工焊接中的缺陷和失败等等。
固体材料的线膨胀是材料受热膨胀时,在一维方向上的伸长。
线胀系数是选用材料的一项重要指标,在研制新材料中,测量其线胀系数更是必不可少的。
SLE-1固体线胀系数测定仪通过加热温度控制仪,精确地控制实验样品在一定的温度下,由千分表直接读出实验样品的伸长量,实现对固体线胀系数测定。
SLE-1固体线胀系数测定仪的恒温控制由高精度数字温度传感器与HTC-1加热温度控制仪组成,可加热温度控制在室温至80.0◦C之间。
HTC-1加热温度控制∗修订于2009年2月4日1仪自动检测实测温度与目标温度的差距,确定加热策略,并以一定的加热输出电压维持实测温度的稳度,分别由四位数码管显示设定温度和实验样品实测温度,读数精度为±0.1◦C。
专用加热部件的加热电压为12V。
物质在一定温度范围内,原长为l的物体受热后伸长量∆l与其温度的增加量∆t近似成正比,与原长l也成正比,即:∆l=α·l·∆t。
式中α为固体的线胀系数。
实验证明:不同材料的线膨胀系数是不同的。
本实验配备的实验样品为铁棒、铜棒、铝棒(加工成6×400mm的圆棒)。
三仪器技术指标1、温度读数精度:±0.1◦C。
2、温度控制稳定度:±0.1◦C/10分钟。
固体线膨胀系数的测定绝大多数物质具有热胀冷缩的特性,在一维情况下,固体受热后长度的增加称为线膨胀。
在相同条件下,不同材料的固体,其线膨胀的程度各不相同,我们引入线膨胀系数来表征物质的膨胀特性。
线膨胀系数是物质的基本物理参数之一,在道路、桥梁、建筑等工程设计,精密仪器仪表设计,材料的焊接、加工等各种领域,都必须对物质的膨胀特性予以充分的考虑。
【实验目的】1、学习测量固体线膨胀系数的一种方法。
2、了解一种位移传感器——数字千分表的原理及使用方法。
3、了解一种温度传感器——AD590的原理及特性。
4、通过仪器的使用,了解数据自动采集、处理、控制的过程及优点。
5、学习用最小二乘法处理实验数据。
【实验原理】1、线膨胀系数设在温度为t1时固体的长度为L1,在温度为t2时固体的长度为L2。
实验指出,当温度变化范围不大时,固体的伸长量△L= L2-L1与温度变化量△t= t2-t1及固体的长度L1成正比。
即:△L=αL1△t (1)式中的比例系数α称为固体的线膨胀系数,由上式知:α=△L/Ll·1/△t (2)可以将α理解为当温度升高1℃时,固体增加的长度与原长度之比。
多数金属的线膨胀系数在(0.8—2.5)×10-5/℃之间。
线膨胀系数是与温度有关的物理量。
当△t很小时,由(2)式测得的α称为固体在温度为t1时的微分线膨胀系数。
当△t是一个不太大的变化区间时,我们近似认为α是不变的,由(2)式测得的α称为固体在t1—t2温度范围内的线膨胀系数。
由(2)式知,在L1已知的情况下,固体线膨胀系数的测量实际归结为温度变化量△t与相应的长度变化量△L的测量,由于α数值较小,在△t不大的情况下,△L也很小,因此准确地测量△L及t是保证测量成功的关键。
2、微小位移的测量及数字千分表测量微小位移,以前用得最多的是机械百分表,它通过精密的齿条齿轮传动,将位移转化成指针的偏转,表盘最小刻度为0.01mm,加上估读,可读到0.001mm,这种百分表目前在机械加工行业仍广泛使用。
实验8 固体线膨涨系数的测定及温度的PID 调节绝大多数物质具有热胀冷缩的特性,在一维情况下,固体受热后长度的增加称为线膨胀。
在相同条件下,不同材料的固体,其线膨胀的程度各不相同,我们引入线膨胀系数来表征物质的膨胀特性。
线膨胀系数是物质的基本物理参数之一,在道路、桥梁、建筑等工程设计,精密仪器仪表设计,材料的焊接、加工等各种领域,都必须对物质的膨胀特性予以充分的考虑。
利用固体线膨胀系数测量仪和温控仪,准确测量固体的线膨胀系数。
【实验目的】1、测量金属的线膨胀系数。
2、学习PID 调节的原理并通过实验了解参数设置对PID 调节过程的影响。
【实验仪器】金属线膨胀实验仪,PID 温控实验仪,千分表 【实验原理】1.线膨胀系数线膨胀系数是与温度有关的物理量。
当△t 是一个不太大的变化区间时,我们近似认为α是不变的。
设在温度为t 0时固体的长度为L 0,在温度为t 1时固体的长度为L 1。
实验指出,当温度变化范围不大时,固体的伸长量△L = L 1-L 0与温度变化量△t = t 1-t 0及固体的长度L 0成正比,即△L =αL 0△t (8-1)式中的比例系数α称为固体的线膨胀系数,由(8-1)式知tL L ∆⨯∆=10α (8-2) 可以将α理解为当温度升高1 ℃时,固体增加的长度与原长度之比。
多数金属的线膨胀系数在(0.8—2.5)×10-5 ℃-1之间。
当△t 很小时,由(2)式测得的α称为固体在温度为t 0时的微分线膨胀系数。
由(8-2)式测得的α称为固体在t 0—t 1温度范围内的线膨胀系数。
由(8-2)式知,在L 0已知的情况下,固体线膨胀系数的测量实际归结为温度变化量△t 与相应的长度变化量△L 的测量,由于α数值较小,在△t 不大的情况下,△L 也很小,因此准确地控制t 、测量t 及△L 是保证测量成功的关键。
2.PID 调节原理PID 调节是自动控制系统中应用最为广泛的一种调节规律,自动控制系统的原理可用图8-1说明。
固体线胀系数的测定实验报告实验一、目的和原理本实验的目的是通过实验测定固体的线胀系数,掌握测量仪器的使用方法和实验数据的处理方法,加深对固体热学性质的理解。
线胀系数是温度升高时单位长度固体的长度增长量与固体初长度的比值,单位为1/℃。
根据热力学原理,固体在温度升高时会发生热膨胀,即长度增加。
实验二、实验仪器和材料实验所需仪器和材料如下:1.线胀系数测量装置:由基底、通孔、加热炉、测温仪和支架等部分组成。
2.铜管和铝管:直径分别为ΦD1 = 4mm和ΦD2 = 6mm。
3.钢杆:长度为L = 100mm,直径为ΦD3 = 3mm。
4.加热器:用于加热铜管、铝管和钢杆等试样。
5.变压器、电表等电器设备。
实验三、实验步骤1.使用千分尺测量铜管、铝管和钢杆的长度L0,并记录下来。
2.将铜管、铝管和钢杆依次安装在线胀系数测量装置中,调整支架高度使得测温仪的测温头与试样接触。
3.加热器加热铜管、铝管和钢杆等试样,使其温度升高到200℃左右,并保持一段时间。
4.使用测温仪测量试样的温度,并记录下来。
5.千分尺测量试样此时的长度L1,并记录下来。
6.计算试样的线胀系数α,公式为:α = ΔL / (L0 × Δt)式中,ΔL 为试样长度增加值,Δt 为温度升高的温度差。
将测得的α值与标准值进行比较。
实验四、实验数据处理1.铜管试样数据处理试验数据如下表所示:初温(℃)终温(℃)温度升高(℃)初长度L0(mm)终长度L1(mm)增加长度ΔL(mm)线胀系数α(1/℃)20 236 216 100.65 100.86 0.21 1.27×10-52.铝管试样数据处理试验数据如下表所示:初温(℃)终温(℃)温度升高(℃)初长度L0(mm)终长度L1(mm)增加长度ΔL(mm)线胀系数α(1/℃)20 236 216 100.85 101.12 0.27 2.29×10-53.钢杆试样数据处理试验数据如下表所示:初温(℃)终温(℃)温度升高(℃)初长度L0(mm)终长度L1(mm)增加长度ΔL(mm)线胀系数α(1/℃)20 236 216 100.05 100.18 0.13 1.77×10-5实验五、结论通过实验测定,铜管、铝管和钢杆的线胀系数分别为1.27×10-5、2.29×10-5和1.77×10-5。