余杭区2008年“假日杯”初中数学竞赛试卷
- 格式:doc
- 大小:91.50 KB
- 文档页数:7
≤∑100k =1a 2k +1∑100k =1(a 2k +2a k +1a k +2)2=1×∑100k =1(a2k+2a k +1a k +2)2=∑100k =1(a4k+4a 2k a k +1a k +2+4a 2k +1a 2k +2)≤∑100k =1[a 4k +2a 2k (a 2k +1+a 2k +2)+4a 2k +1a 2k +2]=∑100k =1(a 4k+6a 2k a 2k +1+2a 2k a 2k +2).又∑100k =1(a 4k +2a 2k a 2k +1+2a 2k a 2k +2)≤∑100k =1a 2k2,∑100k =1a2ka 2k +1≤∑50i =1a22i -1∑50j =1a22j,故 (3S )2≤∑100k =1a2k2+4∑50i =1a22i -1∑50j =1a22j≤1+∑50i =1a 22i -1+∑50j =1a 22j2=2.从而,S ≤23≈014714<0148=1225.7.本届I M O 第6题.2008年全国初中数学联赛(江西卷) 说明:2008年全国初中数学联赛于4月13日举行,因当日与江西省其他考试的时间重叠,经与联赛组委会商议,联赛江西省赛区竞赛改于4月19日举行,并由江西另行命制一份试题.第一试一、选择题(每小题7分,共42分)1.从分数组12,14,16,18,110,112中删去两个分数,使剩下的数之和为1.则删去的两个数是( ).(A )14与18(B )14与110(C )18与110(D )18与1122.化简32+51+5的结果是( ).(A )12 (B )54 (C )38 (D )1+573.555的末尾三位数字是( ).(A )125(B )375(C )625(D )875.4.若实数x 、y 、z 满足方程组:xy x +2y =1,①yz y +2z=2,②zx z +2x=3,③则( ).(A )x +2y +3z =0(B )7x +5y +2z =0(C )9x +6y +3z =0(D )10x +7y +z=05.将正三角形每条边四等分,然后过这图1些分点作平行于其他两边的直线.则以图1中线段为边的菱形个数为( ).(A )15(B )18(C )21(D )246.某人将2008看成了一个填数游戏式:28.于是,他在每个框中各填写了一个两位数ab 与cd ,结果发现,所得到的六位数2abcd 8恰是一个完全立方数.则ab +cd =( ).(A )40(B )50(C )60(D )70二、填空题(每小题7分,共28分)1.设x +x 2+1y +y 2+4=9.则x y 2+4+yx 2+1= .图22.如图2,在边长为1的正△ABC 中,由两条含120°圆心角的弓形AOB 、AOC 及边BC 所围成的(火炬形)阴影部分的面积是 .3.一本书共有61页,顺次编号为1,2,…,61.某人在将这些数相加时,有两个两位数页码都错把个位数与十位数弄反了(形如ab 的两位数被当成了两位数ba ),结果得到的总和是2008.那么,书上这两个两位数页码之和的最大值是 .4.不超过5+36的最大整数是 .第二试一、(20分)设a 为整数,使得关于x 的方程ax 2-(a +5)x +a +7=0至少有一个有理根.试求方程所有可能的有理根.二、(25分)如图3,在四边形ABCD 中,图3E 、F 分别是边AB 、CD 的中点,P 为对角线AC 延长线上的任意一点,PF 交AD 于点M ,PE 交BC 于点N ,EF 交MN 于点K .求证:K是线段MN 的中点.三、(25分)120人参加数学竞赛,试题共有5道大题.已知第1、2、3、4、5题分别有96、83、74、66、35人做对.如果至少做对3题便可获奖,问:这次竞赛至少有几人获奖?参考答案第一试 一、1.C.由14+112=13,而12+13+16=1,故删去18与110后,可使剩下的数之和为1.2.A.32+5=38(2+5)8=12316+85 =123(1+5)3=1+52]32+51+5=12.3.A.注意到555=5×554.因为52被8除余1,所以,554被8除余1.故555被8除余5.而在125、375、625、875四个数中,只有125被8除余5.4.D.由式①、③得y =x x -2,z =6xx -3.故x ≠0.代入式②解得x =2710.所以,y =277,z =-54.检验知此组解满足原方程组.于是,10x +7y +z =0.5.C.图1中只有边长为1或2的两种菱形,每个菱形恰有一条与其边长相等的对角线,原正三角形内部每条长为1的线段,恰是一个边长为1的菱形的对角线;这种线段有18条,对应着18个边长为1的菱形;原正三角形的每条中位线恰是一个边长为2的菱形的对角线,三条中位线对应着3个边长为2的菱形.共得21个菱形.6.D.设2abcd 8=(xy )3.据末位数字特征得y =2,进而确定xy .因603=216000,703=343000,所以, 60<xy<70.故只有xy=62.而623=238328,则ab=38,cd=32,ab+cd=70.二、1.77 18.据条件式有xy+y x2+1+x y2+4+(x2+1)(y2+4)=9.①令x y2+4+y x2+1=z.则式①化为z+xy+(x2+1)(y2+4)=9,即 9-z=xy+(x2+1)(y2+4).平方得81-18z+z2=x2y2+(x2+1)(y2+4)+2xy(x2+1)(y2+4).②又z2=(x y2+4+y x2+1)2=x2(y2+4)+y2(x2+1)+2xy(x2+1)(y2+4),代入式②得81-18z=4.所以,z=7718.2.312.图4如图4,联结OA、OB、OC.线段OA将阴影的上方部分剖分成两个弓形,将这两个弓形分别按顺时针及逆时针方向绕点O旋转120°后,阴影部分便合并成△OBC,它的面积等于△ABC面积的13,即等于312.3.68.注意到1+2+…+61=1891,2008-1891=117.由于形如ab的页码被当成ba后,加得的和数将相差9|a-b|,因为a、b只能在1,2,…,9中取值,|a-b|≤8,所以,9|a-b|≤72.由于117=72+45=63+54,设弄错的两数是ab和cd.若9|a-b|=72,9|c-d|=45,则只有ab=19,而cd可以取16,27,38,49,此时,ab+ cd的最大值是68;若9|a-b|=63,9|c-d|=54,则ab可以取18,29,而cd可以取17,28,39,此时, ab+cd的最大值也是68.4.3903.注意到(5+3)6=(8+215)3.令8+215=a,8-215=b.得a+b=16,ab=4.知a、b是方程x2-16x+4=0的两个根,则有a2=16a-4,b2=16b-4;a3=16a2-4a,b3=16b2-4b.故a3+b3=16(a2+b2)-4(a+b)=16[16(a+b)-8]-4(a+b)=252(a+b)-128=3904.而0<b<1,故3903<a3<3904.因此,不超过(5+3)6的最大整数是3903.第二试一、当a=0时,方程的有理根为x=75.以下考虑a≠0的情况.此时,原方程为一元二次方程,由判别式(a+5)2-4a(a+7)≥0,即 3a2+18a-25≤0.解得-9-1563≤a≤-9+1563.整数a只能在其中的非零整数1,-1, -2,-3,-4,-5,-6,-7中取值.由方程得x=a+5±52-3(a+3)22a.①当a=1时,由式①得x=2和4;当a=-1时,方程无有理根;当a=-2时,由式①得x=1和-52;当a =-3时,方程无有理根;当a =-4时,由式①得x =-1和34;当a =-5时,方程无有理根;当a =-6时,由式①得x =12和-13;当a =-7时,由式①得x =0和27.因此,相对于不同的a 值,方程共有11个有理根.二、证法1:如图3,EF 截△PMN ,则N K K M ・MF FP ・PEEN =1.①BC 截△P A E ,则E B BA ・AC CP ・PNN E=1.故PN N E =2CPAC.所以,PE EN =2CP +AC AC .②AD 截△PCF ,则FD DC ・C A A P ・PM MF =1,PM MF =2A P AC.所以,FP MF =2A P -ACAC.③因为A P =AC +CP ,所以,2CP +AC =2A P -AC .由式②、③得PE EN =FP MF ,即MF FP ・PEEN=1.由式①得N K =K M ,即K 是线段MN 的中点.图5证法2:如图5,在PF 上取点G ,使GF =FM ,CG ∥DM ,又取C A 的中点L ,联结GC 、G N 、L E 、L F .则L E 、L F分别为△ABC 、△ACD 的中位线,有L F ∥AD ,L E ∥CB .得∠GCN =∠F L E ,CG L F =PC P L =CNL E.故△CNG △L EF ,NG ∥EF .于是,FK 是△MNG 的中位线.所以,K 是MN 的中点.三、将这120人分别编号为P 1,P 2,…,P 120,并视为数轴上的120个点.用A k (k =1,2,3,4,5)表示这120人之中未答对第k 题的人所成的组,|A k |为该组的人数.则|A 1|=24,|A 2|=37,|A 3|=46,|A 4|=54,|A 5|=85.将以上五个组分别赋予五种颜色,如果某人未做对第k (k =1,2,3,4,5)题,则将表示该人的点染第k 色.问题转化为:求出至少染有三色的点最多有几个.由|A 1|+|A 2|+|A 3|+|A 4|+|A 5|=246,知至少染有三色的点不多于2463=82个.一方面,将点P 1,P 2,…,P 85这85个点染第5色,因85>82,而为使染有三色的点数尽可能多,需在上述85个点中将尽可能多的点再加染另两色,由于|A 1|+|A 2|+|A 3|+|A 4|=161,故加染另两色的点不会多于1612=80个,即染有三色的点不多于80个.另一方面,可以具体构造一种染法,使得有80个点染有三种颜色.例如,如图6,将点P 1,P 2,…,P 85这85个点染第5色;点P 1,P 2,…,P 44以及点P 79、P 80这46个点染第3色;点P 45,P 46,…,P 81这37个点染第2色;点P 1,P 2,…,P 24这24个点染第1色;点P 25,P 26…,P 78这54个点染第4色.于是,至少染有三种颜色的点最多有80个.因此,染色数不多于两种的点至少有40个,即至少有40人获奖(他们每人至多答错两题,而至少答对三题,例如,P 81,P 82,…,P 120这40个人).图6(陶平生 提供)。
2008年初二数学竞赛试题答题时注意;1.用圆珠笔或钢笔作答.2.解答书写时不要超过装订线. 3.可以用计算器一、选择题(共8小题,每小题5分,满分40分.以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填均得零分)1.设x =x 的值为 ( ) A .正数 B .负数 C .非负数 D .零 2.已知312=-yx ,则x y xy xy y x 3652-+--的值 ( )A .71 B . 71- C . 72 D . 72- 3.方程(1)132=--+x x x 的所有整数解的个数是 ( )A .2B .3C .4D .5 4.若直线b ax y +=与直线2521+=x y 关于x 轴对称,则b a +的值是 ( ) A .-3 B .-2 C .2 D .35.口袋中有20个球,其中白球9个,红球5个,黑球6个,现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是 ( ) A .14 B .16 C . 18 D .206. 如图,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是 ( )主视图 左视图 俯视图 A.7个 B.8个 C.9个 D.10个7.在凸四边形ABCD 中,∠C=1200, ∠B=∠D=900,AB=6,BC=23,则AD= ( ) A. 23 B.6 C. 43 D.638.设n(n ≥2)个正整数1a ,2a ,…,n a ,任意改变它们的顺序后,记作1b ,2b ,…,n b ,若P=(1a -1b )(2a -2b )(33b a -)…(n a 一n b ),则 ( ) A . P 一定是奇数. B .P 一定是偶数.C .当n 是偶数时,P 是奇数.D .当n 是奇数时,P 是偶数二、填空题(共6小题,每小题5分,满分30分)9.已知20082006,20082007,20082008a x b x c x =+=+=+,则多项式222a b c ab bc ca ++---的值 .10.将5个整数从大到小排列,中位数是4,如果这个样本中的唯一众数是7,则这5个整数的和的最大值是 . 11.在图8中每个小方格内填入一个数,使每一行、每一列都有1、 2、3、4、5,那么,右上角的小方格内填入x 的数应是 .12.在△ABC 中,AB =15cm ,AC =13cm ,BC 边上高A D =12cm ,则三角形ABC 的面积为 .132353145x13.如图,有一种动画程序,屏幕上方正方形区域ABCD表示黑色物体甲,其中A ( 1,1 ) B ( 2,1 ) C ( 2,2 )D ( 1,2 ),用信号枪沿直线b x y +=3发射信号,当信号遇到区域甲时,甲由黑变白,则当b 的取值范围为 ______时,甲能由黑变白.14.如果正整数n 有以下性质:n 的八分之一是平方数,n 的九分之一是立方数,n 的二十五分之一是五次方数,那么n 就称为“希望数”,则最小的希望数是 .三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分) 15.已知四个实数,,,a b c d ,且,a b c d ≠≠.若四个关系式:24a ac +=,2224,8,8b bc c ac d ad +=+=+= 同时成立,(1)求c a +的值; (2)分别求d c b a ,,,的值.每辆车乘坐28名人,出发开出一段时间后,发现有一学生迟到没上车.现决定开一辆空车去接他,接回后为赶时间就把这辆空车开走,让所有的人员重新分配,则刚好平均分乘余下的汽车,已知每辆车的载客量不能多于32人,那么原有几辆汽车,这批春游的学生共有多少人?图1FEDC BA图2FEABCD 17.在△ABC 中,∠C=90︒,D 是AB 的中点,E 、F 分别在BC 、AC 上,且∠EDF=90︒.(1)如图1,若E 是BC 的中点,,EF 与AF 、BE 有怎样的数量关系?并说明理由;(2)如图2,当F 在AC 上运动时,点E 在BC 上随之运动,问在运动过程中,EF 与AF 、BE 有怎样的数量关系?并说明理由.18.已知直线)1(142k y ≠--+=k k k x(1)说明无论k 取不等于1并求出此定点的坐标;(2)若点B(5,0) , 点P 在y 轴上,点A 为(1)中确定的定点,要使△PAB 为等腰三角形,求直线PA 的解析式.2008年初二数学数学竞赛试题参考答案及评分建议二、填空题(共6小题,每小题5分,满分30分)9. 3 10.23 11. 1 12.84cm 2或24 cm 2(答对一个得2分) 13. -5≤b ≤-1 14. 215·320·512三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分) 15.(12分)解:(1)由)(2ac a ++)(2ac c +=4+8=12,得12)(2=+c a ,∴ 32±=+c a . …… 4分(2)由)(2ac a +(-)2bc b +=4-4=0,-+)(2ac c )(2ad d +=8-8=0得 0))((=++-c b a b a ,)((d c -0)=++d c a ∵b a ≠,d c ≠,∴0=++c b a ,0=++d c a . ∴)(c a d b +-==. …… 2分 又)(2ac a +-)(2ac c +=4-8=-4, 得,4))((-=+-c a c a . …… 2分 当32=+c a 时,332-=-c a , 解得334=a ,332=c , 32-==d b . …… 2分当32-=+c a ,332=-c a , 解得334,332-=-=c a , 32==d b . …… 2分16.(12分)解:设原有k 辆汽车,开走一辆空车后,留下的每辆车乘坐n 个人,显然k ≥2,GFEABC Dn ≤32.易知旅客人数等于128+k ,当一辆空车开走以后,这批春游的学生的人数可以表示为)1(-k n ,由此列出方程)1(128-=+k n k . …… 2分所以 12928129)1(221128-+=-+-=-+=k k k k k n . …… 4分 因为n 为正整数数,所以129-k 必为正整数,但由于29是质数,因数只有1和29两个,且k ≥2,所以11=-k ,或291=-k . …… 2分如果11=-k ,则2=k ,57=n ,不满足n ≤32的条件. 如果291=-k ,则30=k ,29=n ,符合题意. …… 2分 所以旅客人数等于)1(-k n =29×29=841(人). …… 2分 答:原有车辆30辆,这批春游的学生共有841人.17.(12分)解:(1)EF 2= AF 2+BE 2. …… 1分 ∵E D ,分别是AB,BC 的中点, ∴DE ∥AC ,且DE=21AC . ∵∠C=90︒,∠EDF=90︒, ∴ 四边形CFDE 是矩形, ∴DE=CF=AF,DF=CE=BE. …… 3分又∵∠EDF=90︒,∴EF 2=DF 2+DE 2=AF 2+BE 2. …… 1分 (2) EF 2= AF 2+BE 2. …… 1分延长FD 至G,使得DG=DF,连结BG,EG. 则△AFD ≌△BGD. …… 2分 ∴BG=AF=CF, DF=DG , ∠GBD=∠A . ∵∠EDF=90︒, ∴EF=EG. …… 1分 又∠GBD=∠A , ∴BG ∥AC,∴∠GBE=∠C=900, …… 1分 ∴EG 2=BE 2+BG 2=BE 2+AF 2∴ EF 2=AF 2+BE 2. …… 2分18.(14分)解:(1)由题意知1≠k ,若取,1-=k 得62=+-y x ①, 若取,2=k 得02=-y x ②. 解①②得⎩⎨⎧==42y x . 所以,不论k 取任何实数此直线都经过一定点,其坐标为(2,4). …… 5分 (2)分三种情况讨论:① 设P 1(0,m 1) ,满足P 1B=P 1A, 由勾股定理得, 2222)4(25m m -+=+,解得85-=m ,即P 1(0,85-),符合题意, 直线P 1A 的解析式: 851637-=x y . …… 2分② 设P 2(0,m 2),满足P 2B=AB, 易求得AB=5, 所以点P 2(0,0), 直线P 2A 的解析式: x y 2=. …… 2分 ③设P 3(0,m 3),满足P 1A=AB, 由勾股定理得,2225)4(2=-+m ,解得214±=m ,即P 3(0,)214+,P 4(0,)214-,直线P 3A 的解析式:214221++-=x y , …… 2分 直线P 3A 的解析式:214221-+=x y . …… 2分 综上所述,直线PA 的解析式为:851637-=x y ,或x y 2=,或214221++-=x y ,或214221-+=x y . …… 1分。
2008年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为D C B A ,,,的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.1.设213a a +=,213b b +=,且a b ≠,则代数式2211a b+的值为 ( ) )(A 5. )(B 7. )(C 9. )(D 11.【答】B .解 由题设条件可知2310a a -+=,2310b b -+=,且a b ≠,所以,a b 是一元二次方程2310x x -+=的两根,故3a b +=,1ab =,因此222222222211()23217()1a b a b ab a b a b ab ++--⨯+====. 故选B . 2.如图,设AD ,BE ,CF 为三角形ABC 的三条高,若6AB =,5BC =,3EF =,则线段BE 的长为 ( ) )(A 185. )(B 4. )(C 215. )(D 245. 【答】D . 解 因为AD ,BE ,CF 为三角形ABC 的三条高,易知,,,B C E F 四点共圆,于是△AEF ∽△ABC ,故35AF EF AC BC ==,即3cos 5BAC ∠=,所以4sin 5BAC ∠=. 在Rt △ABE 中,424sin 655BE AB BAC =∠=⨯=. 故选D . 3.从分别写有数字1,2,3,4,5的5张卡片中任意取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率是 ( ))(A 15. )(B 310. )(C 25. )(D 12. 【答】C . 解 能够组成的两位数有12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54,共20个,其中是3的倍数的数为12,15,21,24,42,45,51,54,共8个. 所以所组成的数是3的倍数的概率是82205=. 故选C .4.在△ABC 中,12ABC ∠=︒,132ACB ∠=︒,BM 和CN 分别是这两个角的外角平分线,且点,M N 分别在直线AC 和直线AB 上,则 ( ))(A BM CN >. )(B BM CN =.)(C BM CN <. )(D BM 和CN 的大小关系不确定.【答】B .解 ∵12ABC ∠=︒,BM 为ABC ∠的外角平分线,∴1(18012)842MBC ∠=︒-︒=︒. 又180********BCM ACB ∠=︒-∠=︒-︒=︒,∴180844848BMC ∠=︒-︒-︒=︒,∴BM BC =. 又11(180)(180132)2422ACN ACB ∠=︒-∠=︒-︒=︒, ∴18018012()BNC ABC BCN ACB ACN ∠=︒-∠-∠=︒-︒-∠+∠168(13224)=︒-︒+︒12ABC =︒=∠,∴CN CB =. 因此,BM BC CN ==.故选B .5.现有价格相同的5种不同商品,从今天开始每天分别降价10%或20%,若干天后,这5种商品的价格互不相同,设最高价格和最低价格的比值为r ,则r 的最小值为 ( ))(A 39()8. )(B 49()8. )(C 59()8. )(D 98. 【答】 B .解 容易知道,4天之后就可以出现5种商品的价格互不相同的情况.设5种商品降价前的价格为a ,过了n 天. n 天后每种商品的价格一定可以表示为98(110%)(120%)()()1010k n k k n k a a --⋅-⋅-=⋅⋅,其中k 为自然数,且0k n ≤≤. 要使r 的值最小,五种商品的价格应该分别为:98()()1010i n i a -⋅⋅,1198()()1010i n i a +--⋅⋅, 2298()()1010i n i a +--⋅⋅,3398()()1010i n i a +--⋅⋅,4498()()1010i n i a +--⋅⋅,其中i 为不超过n 的自然数. 所以r 的最小值为44498()()91010()988()()1010i n i i n ia a +---⋅⋅=⋅⋅. 故选B . 6. 已知实数,x y满足(2008x y =,则223233x y x y -+-2007-的值为 ( ))(A 2008-. )(B 2008. )(C 1-. )(D 1.【答】D .解 ∵(2008x y =,∴x y -==y x -==由以上两式可得x y =. 所以2(2008x =,解得22008x =,所以22222323320073233200720071x y x y x x x x x -+--=-+--=-=.故选D .二、填空题(本题满分28分,每小题7分)1.设12a -=,则5432322a a a a a a a+---+=-2-.解 ∵221a a ===-,∴21a a +=, ∴543232323222()2()2a a a a a a a a a a a a a a a a+---++--++=-⋅- 33332221211(1)(11)2(1)1a a a a a a a a a a a--+--===-=-++=-+=-⋅----.2.如图,正方形ABCD 的边长为1,,M N 为BD 所在直线上的两点,且AM =135MAN ∠=︒,则四边形AMCN 的面积为52解 设正方形ABCD 的中心为O ,连AO ,则AO BD ⊥,2AO OB ==,2MO ===, ∴MB MO OB =-=又135ABM NDA ∠=∠=︒, 13590NAD MAN DAB MAB MAB ∠=∠-∠-∠=︒-︒-∠45=︒-MAB AMB ∠=∠,所以△ADN ∽△MBA ,故AD DNMB BA =,从而12AD DN BA MB =⋅==. 根据对称性可知,四边形AMCN 的面积115222222MAN S S MN AO ==⨯⨯⨯=⨯⨯=△. 3.已知二次函数2y x ax b =++的图象与x 轴的两个交点的横坐标分别为m ,n ,且1m n +≤.设满足上述要求的b 的最大值和最小值分别为p ,q ,则p q +=12解 根据题意,,m n 是一元二次方程20x ax b ++=的两根,所以m n a +=-,mn b =. ∵1m n +≤,∴1m n m n +≤+≤,1m n m n -≤+≤. ∵方程20x ax b ++=的判别式240a b ∆=-≥,∴22()1444a m n b +≤=≤. 22244()()()11b mn m n m n m n ==+--≥+-≥-,故14b ≥-,等号当且仅当12m n =-=时取得; 22244()()1()1b mn m n m n m n ==+--≤--≤,故14b ≤,等号当且仅当12m n ==时取得. 所以14p =,14q =-,于是12p q +=. 4.依次将正整数1,2,3,…的平方数排成一串:149162536496481100121144…,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是 1 .解 21到23,结果都只各占1个数位,共占133⨯=个数位; 24到29,结果都只各占2个数位,共占2612⨯=个数位;210到231,结果都只各占3个数位,共占32266⨯=个数位;232到299,结果都只各占4个数位,共占468272⨯=个数位;2100到2316,结果都只各占5个数位,共占52171085⨯=个数位;此时还差2008(312662721085)570-++++=个数位.2317到2411,结果都只各占6个数位,共占695570⨯=个数位.所以,排在第2008个位置的数字恰好应该是2411的个位数字,即为1.第二试 (A )一.(本题满分20分) 已知221a b +=,对于满足条件01x ≤≤的一切实数x ,不等式 (1)(1)()0a x x ax bx b x bx ------≥ (1)恒成立.当乘积ab 取最小值时,求,a b 的值.解 整理不等式(1)并将221a b +=代入,得 2(1)(21)0a b x a x a ++-++≥ (2)在不等式(2)中,令0x =,得0a ≥;令1x =,得0b ≥.易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式(2)对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥. 由方程组 221,14a b ab ⎧+=⎪⎨=⎪⎩ (3) 消去b ,得42161610a a -+=,所以224a -=或224a +=. 又因为0a ≥,所以a =a =, 于是方程组(3)的解为4,4a b ⎧=⎪⎪⎨⎪=⎪⎩或,44a b ⎧=⎪⎪⎨⎪=⎪⎩所以ab 的最小值为14,此时,a b 的值有两组,分别为a b ==a b ==二.(本题满分25分) 如图,圆O 与圆D 相交于,A B 两点,BC为圆D 的切线,点C 在圆O 上,且AB BC =.(1)证明:点O 在圆D 的圆周上.(2)设△ABC 的面积为S ,求圆D 的的半径r 的最小值.解 (1)连,,,OA OB OC AC ,因为O 为圆心,AB BC =,所以△OBA ∽△OBC ,从而OBA OBC ∠=∠.因为,OD AB DB BC ⊥⊥,所以9090DOB OBA OBC DBO ∠=︒-∠=︒-∠=∠,所以DB DO =,因此点O 在圆D 的圆周上.(2)设圆O 的半径为a ,BO 的延长线交AC 于点E ,易知BE AC ⊥.设2AC y =(0)y a <≤,OE x =,AB l =,则222a x y =+,()S y a x =+,22222222()2222()aS l y a x y a ax x a ax a a x y=++=+++=+=+=. 因为22ABC OBA OAB BDO ∠=∠=∠=∠,AB BC =,DB DO =,所以△BDO ∽△ABC ,所以BD BO AB AC=,即2r a l y =,故2al r y =.所以22223222()4422a l a aS S a S r y y y y ==⋅=⋅≥,即2r ≥其中等号当a y =时成立,这时AC 是圆O 的直径.所以圆D 的的半径r 三.(本题满分25分)设a 为质数,b 为正整数,且29(2)509(4511)a b a b +=+ (1)求a ,b 的值.解 (1)式即2634511()509509a b a b ++=,设634511,509509a b a b m n ++==,则 509650943511m a n a b --== (2) 故351160n m a -+=,又2n m =,所以2351160m m a -+= (3)由(1)式可知,2(2)a b +能被509整除,而509是质数,于是2a b +能被509整除,故m 为整数,即关于m 的一元二次方程(3)有整数根,所以它的判别式251172a ∆=-为完全平方数.不妨设2251172a t ∆=-=(t 为自然数),则2272511(511)(511)a t t t =-=+-. 由于511t +和511t -的奇偶性相同,且511511t +≥,所以只可能有以下几种情况:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解. ②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解.③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解. ④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解.⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =.⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去. 综合可知251a =.此时方程(3)的解为3m =或5023m =(舍去). 把251a =,3m =代入(2)式,得5093625173b ⨯-⨯==. 第二试 (B )一.(本题满分20分)已知221a b +=,对于满足条件1,0x y xy +=≥的一切实数对(,)x y ,不等式 220ay xy bx -+≥ (1)恒成立.当乘积ab 取最小值时,求,a b 的值.解 由1,0x y xy +=≥可知01,01x y ≤≤≤≤.在(1)式中,令0,1x y ==,得0a ≥;令1,0x y ==,得0b ≥.将1y x =-代入(1)式,得22(1)(1)0a x x x bx ---+≥,即2(1)(21)0a b x a x a ++-++≥ (2)易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式(2)对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥. 由方程组 221,14a b ab ⎧+=⎪⎨=⎪⎩ (3) 消去b ,得42161610a a -+=,所以2a =2a =0a ≥,所以a =或4a =. 于是方程组(3)的解为,4a b ⎧=⎪⎪⎨⎪=⎪⎩或4a b ⎧=⎪⎪⎨⎪=⎪⎩所以满足条件的,a b 的值有两组,分别为44a b ==44a b == 二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同.二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)设a 为质数,,b c 为正整数,且满足29(22)509(41022511)2a b c a b c b c ⎧+-=+-⎨-=⎩ (1)(2) 求()a b c +的值.解 (1)式即266341022511()509509a b c a b c +-+-=, 设66341022511,509509a b c a b c m n +-+-==,则 5096509423511m a n a b c ---== (3) 故351160n m a -+=,又2n m =,所以 2351160m m a -+= (4)由(1)式可知,2(22)a b c +-能被509整除,而509是质数,于是22a b c +-能被509整除,故m 为整数,即关于m 的一元二次方程(4)有整数根,所以它的判别式251172a ∆=-为完全平方数.不妨设2251172a t ∆=-=(t 为自然数),则2272511(511)(511)a t t t =-=+-. 由于511t +和511t -的奇偶性相同,且511511t +≥,所以只可能有以下几种情况:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解.②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解. ③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解.④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解. ⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =.⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去.综合可知251a =,此时方程(4)的解为3m =或5023m =(舍去). 把251a =,3m =代入(3)式,得50936251273b c ⨯-⨯-==,即27c b =-. 代入(2)式得(27)2b b --=,所以5b =,3c =,因此()251(53)2008a b c +=⨯+=.。
2008年全国初中数学竞赛浙江初赛试卷作者:来源:《数学金刊·初中版》2008年第06期一、选择题(每小题6分,共30分)1.已知x+y=x-1+y-1≠0,则xy的值为()A. -1B. 0C. 1D. 22.甲、乙、丙、丁四位同学参加校田径运动会4×100 m接力跑比赛,如果任意安排四位同学的跑步顺序,那么恰好由甲将接力棒交给乙的概率是()A. B. C. D.3.如图1,两个反比例函数y=和y=(其中k1>k2>0)在第一象限内的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为()A. k1+k2B. k1-k2C. k1·k2D.4.在平面直角坐标系中,如果横坐标与纵坐标都是整数的点称为整点,将二次函数y=-x2+6x-的图象与x轴所围成的封闭图形染成红色,则在此红色区域内部及其边界上的整点的个数是()A. 5B. 6C. 7D. 85.如图2,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=2,AC=3,BC=6,则⊙O的半径是()A. 3B. 4C. 4D. 2二、填空题(每小题6分,共24分)6.△ABC中,∠A和∠B均为锐角,AC=6,BC=3,且sinA=,则cosB的值为_________.7.如图3,四边形ABCD中,∠A=∠BCD=90°,BC=CD,E是AD延长线上一点,若DE=AB=3 cm,CE=4 cm,则AD的长是_________.8. 已知△ABC为钝角三角形,其最大边AC上有一点P(点P与点A,C不重合),过点P作直线l,使直线l截△ABC所得的三角形与原三角形相似,这样的直线l可作的条数是_________.9.如图4,矩形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,点P在矩形ABCD内.若AB=4 cm,BC=6 cm,AE=CG=3 cm,BF=DH=4 cm,四边形AEPH的面积为5 cm2,则四边形PFCG的面积为_________cm2.三、解答题(本题3小题,共46分)10.(15分)小王、小李两同学玩“石头、剪刀、布”的划拳游戏.游戏规则为:胜一次得3分,平一次得1分,负一次得0分,一共进行7次游戏,游戏结束时,得分高者为胜.(1)若游戏结束后,小王得分为10分,则小王7次游戏比赛的结果是几胜几平几负?(2)若小王前3次游戏比赛的结果是一胜一平一负,则他在后面4次比赛中,要取得怎样的比赛结果,才能保证胜小李?11.(15分)在直角坐标系xOy中,一次函数y=kx+b+2(k≠0)的图象与x轴、y轴的正半轴分别交于A,B两点,且使得△OAB的面积值等于|OA|+|OB|+3.(1)用b表示k;(2)求△OAB面积的最小值.12.(16分)如图5,AB,AC,AD是圆中的三条弦,点E在AD上,且AB=AC=AE.请你说明以下各式成立的理由:(1)∠CAD=2∠DBE;(2)AD2-AB2=BD·DC.参考答案见P60。
余杭区2008年“假日杯”初中数学竞赛试卷(2008年11月22日 上午9∶00—10∶30)说明:试卷满分120分,不能使用计算器.一、选择题 (共8小题,每小题5分,满分40分.以下每小题均给出代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填均得零分) 1.已知分式2212x x x -+-的值是0,则x 的值是( ) (A) 1 (B) -1 (C) 1或-1 (D) -2或-1 2.如图,已知点D ,E ,F 和点A ,B ,C 分别在同一直线上,1256∠=∠=︒,57D ∠=︒,则A ∠的度数( )(A) 是56° (B) 是57°(C) 是67° (D) 无法确定其大小3.在共有16人参加的“我爱家乡”演讲比赛中,若想知道自己是否能进入前8名(可以并列名次进入前8名),则只需了解自己的成绩以及全部成绩的 ( ) (A) 平均数 (B) 众数 (C) 中位数 (D) 方差4.甲、乙、丙三名射击运动员在某场测试中各射击20次,3人的测试成绩如下表:则甲、乙、丙3名运动员测试成绩最稳定的是( ) (A) 甲 (B) 乙 (C) 丙 (D) 3人成绩稳定情况相同 5. 满足“两数的和与这两数的积相等”这一条件的有理数有( )(A) 1对 (B) 2对 (C) 4对 (D) 无穷多对6. 由若干个相同的小立方块搭成的几何体其主视图和左视图如图所示,则所搭小立方块的个数不可能是( )(A) 4块 (B) 6块 (C) 7块 (D) 8块A B C D E F (第2题)21 (第6题)主视图 左视图7. 如图,在△ABC 中,AB =AC =5,BC =6,点D 为BC 中点,DE ⊥AC 于点E ,点F 为AC 中点,则EF 等于( )(A) 45(B) 710(C)35(D) 128. 23,33和43分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和.83也能按此规律进行“分裂”,则83“分裂”出的奇数中最大的是( ) (A) 67 (B) 69(C) 71 (D) 73二、填空题(共6小题,每小题5分,满分30分)9. 抛掷两枚均匀的硬币,硬币落地后,朝上一面恰好出现一正一反的概率是 .10. 一个几何体的三视图(不完整)如图所示,请将此三视图补画完整.11. 汶川大地震牵动每个人的心,一方有难,八方支援.在余杭区有5位外地打工者也捐款献爱心.已知5人平均捐款560元(每人捐款数额均为百元的整数倍),捐款数额最少的也捐了200元,最多的(只有1人)捐了800元,其中一人捐600元,600元恰好是5人捐款数额的中位数,那么其余两人的捐款数额分别是 .12. 如图,AB ∥DE , FC ⊥CD 于点C ,∠ABC =107°,∠CDE =130°,点G 在BC 的延长线上,则∠FCG 的度数是 . 13. 如图,分别以直角三角形的三边长为边长向外作正方形,然后分别以三个正方形的中心为圆心、正方形边长的一半为半径作圆.记大圆的面积是1S ,两个小圆 的面积和是2S ,则1S 和2S 两者之间的大小关系 是 .(第10题)(第12题) AB CD E F G 23 353379 1143 1315 1719(第8题) (第7题)C(第13题)14. 已知等腰三角形一腰上的高把它分成两个面积相等的三角形,如果该腰上的高是,那么这个等腰三角形的面积是.三、解答题(共4题,分值依次为12分、12分、12分和1415. 已知四个数据:10、x、8、12,若这组数据的众数和平均数的差的绝对值是1.5,求这组数据的中位数.(不能只有结论,要有适当的解题过程)16. 如图,在长方形ABCD 中,AB =5cm ,在边CD 上适当选定一点E ,沿直线AE 把△ADE 折叠,使点D 恰好落在边BC 上一点F 处,若△ABF 的面积是30cm 2,求DE .E AB CD (第16题) F17. 如图,△ABC 中,点D 在BC 上,记△ABD 的面积为1S ,△ACD 的面积为2S ,若12::S S AB AC ,则AD 是△ABC 的角平分线.请说明理由.ABCD (第17题)18. 下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案用4根小木棒搭成1个小正方形,拼搭第2个图案用7根小木棒搭成2个小正方形,…….依此规律拼搭,求:(1) 前2 008个图案中小正方形的总个数;(2) 前n个图案中,小木棒的总根数.第3个第4个第1个第2个(第18题)余杭区2008年“假日杯”初中数学竞赛参考答案和评分标准一、选择题 (共8小题,每小题5分,满分40分) 1. 答案:B解:原式(1)(1)(1)(2)x x x x -+=-+,1x ≠且2x ≠-,所以当1x =-时,分式的值为0.2. 答案:D解:由1256∠=∠=︒,可以推出D B ∥EC ,但无法确定D F 和AC 的位置关系,因此也无法确定A ∠的度数. 3. 答案:C解:因为可以并列名次进入前8名,因此自己的成绩不小于中位数就进入前8名,小于中位数则进不了前8名. 4. 答案:A解:三人20次射击的平均成绩均为8.5环,经计算,甲、乙、丙三名运动员20次射击环数的方差依次为1.05、1.45、1.25,所以甲运动员测试成绩最稳定. 5. 答案:D解:设这两个有理数为x 和y ,则x y xy +=.当1x ≠时,1xy x =-.只要取不等于1的有理数x ,另一个有理数取1xx -,则必满足x y xy +=.所以满足条件的有理数有无穷多对. 6. 答案:D解:符合其主视图和左视图的几何体的小立方块个数可以是4块、5块、6块和7块,但不可能是8块. 7. 答案:B解:连结AD ,DE ,则AD ⊥BC ,DC =3,AD =4,1522DF AC ==.∵ △ADC 的面积为162AD DC ⋅=,其面积又可表示为1522AC DE DE ⋅=. ∴ 125DE =. ∴EF=710=.8. 答案:C解:23“分裂”出的奇数中最大的是22+1=5,33“分裂”出的奇数中最大的是32+2=11,43“分裂”出的奇数中最大的是42+3=19,按此规律,83“分裂”出的奇数中最大的是82+7=71.(第7题)C二、填空题(共6小题,每小题5分,满分30分)9. 答案:12解:朝上一面发生的结果总数有4种,即(正,正)、(反,反)(正,反)、(反,正),所以朝上一面恰好出现一正一反的概率是2142=. 10. 答案:如图所示. 11. 答案:600元,600元或700元,500元解:由题设可知,其余两人共捐款1 200元,因为600元是中位数,所以这两人中有一人的捐款数不小于600元,但最多是700元.因此其余两人的捐款数额分别是600元,600元或700元,500元.12. 答案:33°解:过点C 作CH ∥AB ,∠GCD =107°-∠HCD =107°-(180°-130°)=57°, 所以∠FCG =90°-57°=33°. 13. 答案:12S S =解:设大圆的半径是R ,则21S R π=;设两个小圆的半径分别是1r 和2r ,则22212()S r r π=+.由勾股定理,知22212(2)(2)(2)R r r =+,得22212R r r =+.所以12S S =.14.答案:解:所分成的两个三角形是全等的直角三角形,所以原等腰三角形又是等边三角形,设三角形一边长为x,则2221()(22x x +=,4x =,所以三角形的面积是142⨯⨯=三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分) 15.(12分)解:(1) 假设10x =,则众数是10,平均数是10,众数和平均数的差的绝对值是0,不合题意; ……4分 (2) 假设8x =,则众数是8,平均数是9.5,众数和平均数的差的绝对值是1.5,此时中位数是9; ……4分 (3) 假设12x =,则众数是12,平均数是10.5,众数和平均数的差的绝对值是1.5,此时中位数是11. ……4分 综上所述,这组数据的中位数是9或11.(注:只有正确结论对一个给3分)(第10题) H (第12题)AB CD E F G16.(12分)解:∵ △ABF 的面积是`30cm 2,即15302BF ⋅⋅=,12BF =.∴13AF =. ……4分∵ △AFE ≌△ADE ,∴ AF =AD . 又∵ AD =BC ,∴ AF =BC .∴ 13121FC BC BF =-=-=. ……4分在Rt △EFC 中,222EF FC CE =+,即2221(5)DE DE =+-. 所以 2.6DE =(cm ). ……4分17.(12分)解:过D 作DE ⊥AB 于点E ,过D 作DF ⊥AC 于点F ,……4分则112S AB DE =⋅,212S AC DF =⋅. ∵ 12::S S AB AC =, 得AB DE ABAC DF AC⋅=⋅. ∴ DE DF =. ……4分 ∴ AD 是△ABC 的角平分线. ……4分18.(14分)解:(1) 前2 008个图案中,小正方形的总个数为: 1+2+3+…+2 008=2 017 036(个); ……4分(2) 第1个图案中小木棒的根数为(311)⨯+根, 第2个图案中小木棒的根数为(321)⨯+根, 第3个图案中小木棒的根数为(331)⨯+根,… …第n 个图案中小木棒的根数为(31)n ⨯+根, 所以前n 个图案中,小木棒的总根数为: (311)(321)(331)(31)n ⨯++⨯++⨯+++⨯+……4分3(123)n n =+++++3(1)2n n n =++ ……4分 1(53)2n n =+(根).……2分2008年11月EABCD (第16题)FEABCD(第17题)F。
2008年余杭区“假日杯”小学数学竞赛试题(60分钟)班级 姓名一、填空题:(每题5分,共35分)1、一只挂钟的分针长20厘米,经过45分钟后,这根分针尖端所走过的路程是( )厘米,这根分针所扫过的面积是( )平方厘米。
2、将一根细绳对折10次,然后拦腰剪断,则这根细线被剪成了( )段。
3、把一个圆剪拼成一个近似的长方形,这个长方形的长是6.28厘米,拼成的长方形的周长是( )厘米,这个圆的面积是( )平方厘米。
4、要想用天平称出1——280克所有整数克的重量,如果只能在一边放砝码,至少用( )个砝码,如果允许两边放砝码,至少用( )个砝码。
5、把一个英语单词HELLO 的字母写错了,则可能出现的错误共有( )种。
6、把若干个自然数1,2,3,4,……乘到一起如果已知乘积的末尾恰好有13个0,那么最后出现的自然数最小应该是( )。
7、数学竞赛题共有15道,规定每做对一题得8分,每做错一题倒扣4分,不做不得分也不扣分。
小华各题均做得72分。
他做对了( )道题。
二、计算题:(每题5分,共20分)①1993×19941994—1994×19931993 ②+22+24+26……+258260③+⨯+⨯+⨯151411413113121……+⨯+⨯+⨯201911918118171三、解答题:(每题10分,共40分)1、如图,将圆桶中的水倒入一个直径是40厘米,高为55厘米的圆口容器中,圆桶放置的角度与水平线的夹角是45度,要使容器中的水面和圆桶相接触,则容器中水的深度至少应该多少厘米?2.一个三位数的各个数字和是17,其中十位数字比个位数字大1,如果把这个三位数的百位数字和个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198.求原数。
3.师徒两人加工同样多的零件。
当师傅完成21时,徒弟完成了120个。
当师傅完成任务时,徒弟完成了54,这批零件共有多少个?4.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了两根蜡烛看书,若干分钟后,电来了,小芳将两只蜡烛同时熄灭。
鸣玉中学校2008年上期八年级数学竞赛试题(本试卷共6页,满分150分,考试时间:120分钟)一、选择题(本大题满分50分,每小题5分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母 代号填写在下表相应题号下的方格内1. 若a 为实数,则化简2a 的结果是A . -aB . aC . ±aD . |a | 2.如果1)1(2++-x m x 是完全平方式,则m 的值为A .-1B .1C .1或-1D . 1或-3 3. 如图1,点A 、B 、C 顺次在直线l 上,点M 是线段AC 的中点,点N 是线段BC 的中点.若想求出MN 的长度,那么只需条件A .AB =12 B .BC =4 C .AM =5D . CN =24.在平面直角坐标系y o x 内,已知A (3,-3),点P 是y 轴上一点,则使△AOP 为等腰三角形的点P 共有A .2个B .3个C .4个D . 5个5.已知关于x 的方程01)2(=-+x b a 无解,那么b a 的值是A .负数B .正数C .非负数D .非正数 6.一次函数)1(-=x k y 的图像经过点M (-1,-2),则其图像与y 轴的交点是 A .(0,-1) B .(1,0) C .(0,0) D .(0,1)图1N MCB l7.如图2,在线段AE 同侧作两个等边三角形△ABC 和△CDE (∠ACE <120°),点P 与点M 分别是线段BE 和AD 的中点,则△CPM 是A .钝角三角形B .直角三角形C .等边三角形D .非等腰三角形8.某校初一运动队为了备战校运动会需要购置一批运动鞋.已知该队伍有20名同学,统计表如下表.由于不小心弄脏了表格,有两个数据看不到.下列说法中正确的是A .这组数据的中位数是40,众数是39B .这组数据的中位数与众数一定相等C .这组数据的平均数P 满足39<P <40D .以上说法都不对9. 已知△ABC 的三个内角的比是m ∶(m +1) ∶(m +2),其中是m 大于1的正整数,那么△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形10. 某商店有5袋面粉,各袋重量在25~30公斤之间,店里有一磅秤,但只有能称50~70公斤重量的秤砣,现要确定各袋面粉的重量,至少要称A .4次B .5次C .6次D . 7次二、填空题(本大题共7小题,每小题5分,满分45分)11.如果不等式组⎩⎨⎧<->-001a x x 无解,则a 的取值范围是____________.12.已知1=-b a ,122-=-b a ,则=-20082008b a_________.13.分解因式:=+++++2)6)(3)(2)(1(x x x x x . 14.小丁、小明、小倩在一起做游戏时,需要确定做游戏的先后顺序.他们约定用“剪子、布、锤子”的方式确定.那么在一个回合中三个人都出“布”的概率是_________.15.已知a 、b 为实数,且1=b a ,1≠a ,设11+++=b b a a M ,1111+++=b a N ,则N M -的值等于________.图2 ABCDPM16. 已知511=+y x ,则y xy x y xy x +++-2252= .17. 一个几何体,是由许多规格相同的小正方体堆积而成的,其主视图、左视图如图6所示,要摆成这样的图形,至少需用______块小正方体18. 若在凸n (n 为大于3的自然数)边形的内角中,最多有M 个锐角,最少有m 个锐角,则M= ; m= .19.计算机将信息转换成二进制数来处理.二进制是“逢二进一”,如二进制数(1101)2转换成十进制数是1³23+1³22+0³21+1³20=13,那么二进制数212005)111111( 个转换成十进制数是 ___________.三、解答题(本大题满分45分,每小题15分)20. 某大型超市元旦假期举行促销活动,规定一次购物不超过100元的不给优惠;超过100元而不超过300时,按该次购物全额9折优惠;超过300元的其中300元仍按9折优惠,超过部分按8折优惠.小美两次购物分别用了94.5元和282.8元,现小丽决定一次购买小美分两次购买的同样的物品,则小丽应该付款多少元?图6主视图左视图21. 如图7,正方形ABCD 的边长为1,点F 在线段CD 上运动,AE 平分∠BAF 交BC 边于点E .(1)求证: AF =DF +BE .(2)设DF =x (0≤x ≤1),△ADF 与△ABE 的面积和S 是否存在最大值?若存在,求出此时x 的值及S . 若不存在,请说明理由.图7ABC DEF22、⑴如果a 是小于20的质数,且a 1可化为一个循环小数,那么a 的取值有哪几个? ⑵如果a 是小于20的合数,且a 1可化为一个循环小数,那么a 的取值有哪几个?参考答案一、1. D 2. D 3. A 4. C 5. D 6. A 7. C 8. C 9.A 10. B二、11. a ≤1 12. -1 13. 14.271 15. 0 16. 75 17. 5218.3 ; 0 19. 22005-1 解答提示:1.∵ 当a <0时,2a =|a |=-a . 故选D . 2.21±=+m ,解得1=m 或3-=m . 故选D .3.()AB BC AC BC AC NC MC MN 21212121=-=-=-=,∴只要已知AB 即可.故选A . 4. 分别以点A 、O 、P 三点为等腰三角形的顶点三种情况考虑.5. 关于x 的方程01)2(=-+x b a 无解,则02=+b a . ∴有0==b a 或者a 、b 异号,故选D .6. ∵一次函数)1(-=x k y 的图像经过点M (-1,-2),则有()211-=--k ,解得1=k .所以函数解析式为1-=x y .令0=x 代入得1-=y .故其图像与y 轴的交点是(0,-1).故选A .7.易得△ACD ≌△BCE .所以△BCE 可以看成是△ACD 绕着点C 顺时针旋转60°而得到的.又M 为线段AD 中点,P 为线段BE 中点,故CP 就是CM 绕着点C 顺时针旋转60°而得.所以CP =CM 且,∠PCM =60°,故△CPM 是等边三角形,选C .8.(1)由中位数及众数的意义以及表格可知当这组数据的中位数是40时,众数必然是40,所以A 错误.(2)当39码与40码的人数都是5时,中位数与众数不等,所以B 错误.(3)假设剩余10人全部穿39码鞋,可得平均数为39.35;假设剩余10人全部穿40码鞋,可得平均数为39.85.可以判断C 正确.(或者设穿39码鞋的有x 人,且由0≤x ≤10也可得解) 故选C .9. ∵ 62121OC OD 21OCAD ==⋅=⋅=k y x S A A 正方形,∴ 62121OF OE 21B B OCAD ==⋅=⋅=k y x S 长方形 ,故选B . 10.拿出任意三袋,假设它们的重量分别为x 千克、y 千克、z 千克,两两一称,记录下相应的重量,若分别等于a 千克、b 千克、c 千克,则有方程组⎪⎩⎪⎨⎧=+=+=+c x z b z y ay x 容易求出x 、y 、z ;另外两袋分别与已知重量的其中一袋一起称,即可求出其重量.所以需要称5次,故选B .11.解不等式组⎩⎨⎧<->-01a x x 得⎩⎨⎧<>a x x 1,因为原不等式组无解,所以必有a ≤1.12.∵ ()()122-=-+=-b a b a b a ,又1=-b a ,则1-=+b a∴ ⎩⎨⎧=--=+11b a b a ,解得⎩⎨⎧-==1b a . 故()1102008200820082008-=--=-b a .13. 设菱形ABCD 的边长为x ,则AB =BC =x ,又EC =2,所以BE =x -2,因为AE ⊥BC 于E ,所以在Rt △ABE 中, cosB x x 2-=,又cosB 54=,于是542=-x x ,解得x =10,即AB =10.所以易求BE =8,AE =6,当EP ⊥AB 时,PE 取得最小值. 故由三角形面积公式有:21AB ²PE =21BE ²AE ,求得PE 的最小值为4.8 .14.用树状图列出一个回合中三个人所出手势的各种结果.上面只画出树状图的一部分(列出9种结果),把图中小丁的“剪”改为“布”重复上述画法,可再列出9种结果,最后改为“锤”同样也列出9种结果,所以共有27种结果,故求得P (布,布,布)=27115.∵1=b a ,1≠a ,∴ =+++=+++=+++=)1()1(11a b b b a a b a b b b a a a b b a a M N b a =+++1111. ∴ N M -=0.17.小正方体个数最少情况如图所示(图中数字表示该位置小正方体的个数)所以最少为5块.三、19.因为100³0.9=90<94.5<100,300³0.9=270<282.8,所以有两种情况:设小美第二次购物的原价为x 元,则(x -300)³0.8+300³0.9=282.8解得,x =316 情况1: 小美第一次购物没有优惠,第二次购物原价超过300元 则小丽应付(316+94.5-300)³0.8+300³0.9=358.4(元)情况2: 小美第一次购物原价超过100元,第二次购物原价超过300元; 则第一次购物原价为:94.5÷0.9=105(元)所以小丽应付(316+105-300)³0.8+300³0.9=362.8(元).20.(1)证明: 如图,延长CB 至点G ,使得BG =DF ,连结AG . 因为ABCD 是正方形,所以在Rt △ADF 和Rt △ABG 中,AD =AB ,∠ADF =∠ABG =90°,DF =BG . ∴ Rt △ADF ≌Rt △ABG (SAS ),∴AF =AG ,∠DAF =∠BAG . 又 ∵ AE 是∠BAF 的平分线俯视图 2 1 2剪 剪 剪 布 锤布 剪 布 锤 锤 剪 布 锤 小丁 小明 小倩 A B CE P∴∠EAF =∠BAE , ∴ ∠DAF +∠EAF =∠BAG +∠BAE 即∠EAD =∠GAE .∵ AD ∥BC ,∴∠GEA =∠EAD ,∴∠GEA =∠GAE ,∴ AG =GE . 即AG =BG +BE .∴ AF =DF +BE ,得证.(2)AB BE AD DF S S S ABE ADF ⋅+⋅=+=∆∆2121∵ AD =AB =1, ∴ )(21BE DF S +=由(1)知,AF =DF +BE , 所以AF S 21=.在Rt △ADF 中,AD =1,DF =x , ∴12+=x AF ,∴1212+=x S .由上式可知,当x 2达到最大值时,S 最大.而0≤x ≤1,所以,当x =1时,S 最大值为2211212=+x .22、⑴小于20的质数有2,3,5,7,11,13,17,19 (2分) 除了2和5以外,其余各数的倒数均可化为循环小数, (4分) 所以a 可以取:3,5,7,11,13,17,19。
2008年全国初中数学竞赛浙江赛区初赛模拟试题(本卷满分120分,考试时间120分钟,允许使用科学计算器。
)一、选择题(共8小题,每小题5分,计40分。
每小题都给出代号为A 、B 、C 、D 的四个答案,其中有且只有一个正确,请将它前面的代号填入题后的括号内,多选、少选、不选皆不得分。
)1.关于x 的方程ax 2+bx+c=0的根为2和3,则方程ax 2-bx -c=0的根为( ) A . -2,-3 B. -6,1 C.2,-3 D. -1,6 2.已知动点P 在边长为2的正方形ABCD 的边上沿着A -B -C -D 匀速运动,x 表示点P 由A 点出发所经过的路程,y 表示△APD 的面积,则y 和x 之间函数关系的图像大致为 ( )A B C D3.将一个三位数的三个数字顺序颠倒,将所得到的数与原数相加,若所得的和中没有一个数字是偶数,则称这个数为“奇和数”。
那么,所有的三位数中,“奇和数”有多少个? ( ) A.200 B.120 C.160 D.100 4.设a 、b 、c 均为正数,若ac bc b a b a c +<+<+,则a 、b 、c 三个数的大小关系是 ( )A.c<a<b B.b<c<a C.a<b<c D.c<b<a5.三角形的三内角A 、B 、C 的对边长分别是a 、 b 、 c(a 、 b 、 c 都是素数),且满足a +b +c =16,又设∠A 是最小内角。
则cosA 的值是( ) A .71 B .72 C.4947D.条件不足,无法计算 6.美是一种感觉,本应没有什么客观的标准,但在自然界里,物体形状的比例却提供了在匀称与协调上的一种美感的参考,在数学上,这个比例称为黄金分割.在人体躯干(由脚底至肚脐的长度)与身高的比例上,肚脐是理想的黄金分割点,也就是说,若此比值越接近0.618,就越给别人一种美的感觉.如果某女士身高为1.60m ,躯干与身高的比为0.60,为了追求美,她想利用高跟鞋达到这一效果,那么她选的高跟鞋的高度约为 ( ) A.2.5cm B.5.1cm C.7.5cm D.8.2cm 7.如图2,一个边长分别为3cm 、4cm 、5cm 的直角三角形的一个顶点与正方形的顶点B 重合,另两个顶点分别在正方形的两条边AD 、DC 上,那么这个正方形的面积是( )。
余杭区2008年“假日杯”中小学网络应用能力竞赛试题小学组学校姓名得分注意事项:1、全卷共100分,考试时间为60分钟。
2、利用因特网完成题目。
3、答案直接做在本文档中,凡由答题者输入的文字一律以红色加粗显示,完成后请将文档排版,总页数控制在4页以内(2分)。
4、试卷做完后,将本文档改名为:“学校名称+队名.doc”,例如:“××中心小学一队”。
并上传到本组的专用FTP内,同时删除其余所有文件。
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●一、填空题:(20分)1、2008年3月24日北京奥运会的圣火在希腊奥林匹亚点燃后,担当第一火炬手的是亚历山大·尼克拉泽斯(中文全名),而首位传递奥林匹克圣火的中国人是罗雪娟。
2、参加第十一届全国人民代表大会的浙江代表人数为90名,参加政协第十一届全国委员会的委员中中国民主同盟会员人数有65名。
3、余杭教育网网站的备案证编号是浙ICP备05053615号。
4、2008年3月29日晚“铁榔头”郎平带队美国女排战胜浙江开元女排,比分为3比2,第四局美国女排与浙江开元女排的比分是23:25。
5、2007年中国篮球运动员易建联被密尔沃基雄鹿选中进入NBA打球,至2008年3月31日在49场比赛中首发,第26场首发是雄鹿与夏洛特山猫队(哪支球队)的比赛,在该场比赛中共得分29分。
四、(1)请你写出杭州地铁1号线路所行驶的路线及路过的地方?(8分)1号线的走向看,总长52.4公里的地铁1号线是一条“Y”状半环形骨干线,其两条支线以九堡为支点,分别到达临平和下沙。
1号线到九堡以后,向西到火车东站,再沿天城路、文晖路向西到武林广场一带,然后沿延安路往南到西湖大道,经城站火车站后,向东南过江后往南至西兴镇,终点至湘湖旅游度假区。
这一路将经过濮家新村、机神新村、艮山流水苑、和平小区、朝晖二区、朝晖一区、武林街道、天水街道、定安苑、源茂里、长明寺巷、近江小区。
bECDB2008年全国初中数学竞赛(浙江赛区)复赛试题答题时注意;1.用圆珠笔或钢笔作答.2.解答书写时不要超过装订线. 3.草稿纸不上交.一、选择题(共6小题,每小题5分,满分30分.以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填均得零分) 1.一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是( )(A )7.5秒 (B )6秒(C )5秒 (D )4秒 解:答案:【D 】设高速列车和普通列车的车速分别为x 米/秒和y 米/秒,则100520(/)x y m s -=÷=,所以坐在普通列车上的旅客看见高速列车驶过窗口的时间是:80÷20=4(秒)2.将一张边长分别为a ,b )(b a >的矩形纸片ABCD 折叠,使点C 与点A 重合,则折痕的长为( )(A (B(C (D 解:答案:【A 】CPE CBA ∆∆2PE CP CP PE AB AB BC BC a⇒=⇒==2EF PE ⇒==3.如图,设正方体ABCD -A 1B 1C 1D 1的棱长为1,黑、白 两个甲壳虫同时从A 点出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA 1→A 1D 1→……,白甲壳虫爬行的路线是AB →BB 1→……,并且都遵循如下规则:所爬行的第n n 与第2+条棱所在的直线必须是既不平行也不相交(其中n 是正整数).那么当黑、白两个甲壳虫各爬行完第2008条棱分别停止在所到的正方体顶点处时,它们之间的距离是( ) (A )0 (B )1 (C )2 (D )3 解:答案:【C 】 黑甲壳虫爬行的路径为:111111111......AA A D D C C C CB BA AA A D →→→→→→→→ 白甲壳虫爬行的路径为:111111111......AB BB B C C D D A A A AB BB →→→→→→→→(第3题)ABCD A 1B 1C 1D 1黑、白甲壳虫每爬行6条边后又重复原来的路径,因2008=334×6+4,所以当黑、白两个甲壳虫各爬行完第2008条棱分别停止时,黑甲壳虫停在点C ,白甲壳虫停在点D 1,因此1CD =4.设m ,n 是正整数,满足m +n >mn ,给出以下四个结论:① m ,n 都不等于1; ② m ,n 都不等于2;③ m ,n 都大于1;④ m ,n 至少有一个等于1.其中正确的结论是( ) (A )① (B )② (C )③ (D )④ 解:答案:【D 】 由m n mn +>,得(1)(1)1m n --<,因m ,n 是正整数,所以(1)(1)0m n --=, 即11m n ==或5.小明按如图所示设计树形图,设计规则如下:第一层是一条与水平线垂直的线段,长度为1;第二层在第一层线段的前端作两条与该线段均成120°的线段,长度为其一半;第三层按第二层的方法,在每一条线段的前端生成两条线段;重复前面的作法作到第10层.则树形图第10层的最高 点到水平线的距离为( ) (A )11024 (B )17041024(C )17051024(D )2 解:答案:【C 】设第n 层的最高点到水平线的距离记为:(1,2,,10)n a n =由题意,得224412132435411111;();();();();2222a a a a a a a a a ==+=+=+=+66106576109111();();;();222a a a a a a =+=+=+把这10条式子左右相加,得2468101010111111170512[()()()()()]()2222221024a =+⨯++++-=6.有10条不同的直线n n b x k y +=(n = 1,2,3,…,10),其中369k k k ==,47100b b b ===,则这10条直线的交点个数最多有( )(A )45个 (B )40个 (C )39个 (D )31个 解:答案:【B 】如图,满足已知条件的6条直线至多有10这6条直线最多有6个交点,再增加一条直线与前7交点,……一直增加到第10条直线与前9条直线最多有9个 交点,所以这10条直线的交点个数最多有:10+6+7+8+9=40(个二、填空题(共6小题,每小题6分,满分36分) 7.在平行四边形ABCD 的边AB 和AD 上分别取点E 和F , 使13AE AB =,14AF AD =,连结EF 交对角线AC 于G ,则AC的值是 . 水平线第一层 第二层 第三层 第四层(第5题)x ,y ,zz y x ++11,x z y ++11,yx z ++11 (第10题)M解:答案:17如图,1//33AE AF AB CD DM AE DM FD ⇒==⇒=113367AG AE AE AE AG GC CM CD DM AEAE AC ∴====⇒=++ 8的圆过一个半径为2的圆的圆心,则图中阴影部分的面积为 . 解:答案:2连结OO 1, AB ,则有OO 1⊥AB 于点P ,在1Rt APO Rt APO ∆∆和中,222222222111112)AP AO OP O A O P O P O P O P =-=-⇒-=-⇒即点O 1在AB 上与点P 重合,易知AB 是圆O 1的直径,三角形ABO 是直角三角形. 所以222111=(22)2242S ππ⨯⨯-⨯⨯-⨯=阴影 9.已知y =26x mx +-,当1≤m ≤3时,y <0恒成立,那么实数x 的取值范围是. 解:答案:332x -<<由26<0x mx +-,22mmx +-<<=解得-当1≤m ≤3时,1=3 22m +-则 -的最大值为-; 所以,当1≤m ≤3时,y <0恒成立,即260x mx +-<恒成立时, x 的取值范围是3x -<<. 10.如图是一个数的转换器,每次输入3个不为零的数,经转换器转换后输出3个新数,规律如下:当输入数分别为x ,y ,z 时,对应输出的新数依次为z y x ++11,x z y ++11,yx z ++11.例如,输入 1,2,3,则输出56,34,23. 那么当输出的新数为31,41,51时,输入的3个数依次为 .(第8题)解:答案:1111 1132,, 2221112=333()1113=4()3(0)425()26111=5x y z kx k x y z xy xz x y z xy k xy yz x y z yz k y k k y z x yz xz x y z xz k z k z x y ++=⎧⎧+=⎪⎪+⎪+=++=⎧⎧⎪⎪⎪⎪⎪+⇒+=++−−−−→=⇒=>⎨⎨⎨⎨+⎪⎪⎪⎪+=++=⎩⎩⎪⎪=+⎪⎪⎩+⎩令1111,,1132k x y z x y z ⇒=++=++=++⇒=== 11.10张卡片上分别写有0到9这10个数,先将它们从左到右排成一排,再采用交换相邻两张卡片位置的方法对它们进行操作,规则如下:当相邻两张卡片左边卡片上的数比右边卡片上的数大时,交换它们的位置,否则不进行交换.若规定将相邻两张卡片交换一次位置称为1次操作,那么无论开始时这10张卡片的排列顺序如何,至多经过 次操作,就能将它们按从小到大的顺序排列. 解:答案:45记2n ≥张卡片至多经过n a 次操作后,能将它们按从小到大顺序排列,则232431091;2;3;............9.a a a a a a a ==+=+=+ 所以10123.....945a =++++=12.设整数a 使得关于x 的一元二次方程255261430x ax a -+-=的两个根都是整数,则a 的值是 .解:答案:18. 由题意,得222255202860(552)156()a a a k k N ∆=-+=-+=∈即22(552)156[(552)][(552)]782262ka k a k a --=⇒+-⨯--=⨯=⨯因为[(552)][(552)]ka k a +---和具有相同的奇偶性且[(552)][(552)]2k a k a k +---=≥+0故(552)=78(552)=26(552)=2(552)=6(552)=2(552)=6(552)=78(552)=26k a k a k a k a k a k a k a k a +-+-+-+-⎧⎧⎧⎧⎨⎨⎨⎨--------⎩⎩⎩⎩或或或 解得,只有=40=18k a ,符合题意。
余杭区2008年“假日杯”初中数学竞赛试卷(2008年11月22日上午9∶00—10∶30)
题次一二三
总分1~8 9~14 15 16 17 18
得分
说明:试卷满分120分,不能使用计算器.
一、选择题(共8小题,每小题5分,满分40分.以下每小题均给出代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填均得零分)
1. 已知分式
的值是0,则
的值是()
(A) 1 (B) -1 (C) 1或-1 (D) -2或-1
2. 如图,已知点D,E,F和点A,B,C分别在同一直线上,
,
,则
的度数()
(A) 是56° (B) 是57°
(C) 是67° (D) 无法确定其大小
3. 在共有16人参加的“我爱家乡”演讲比赛中,若想知道自己是否能进入
前8名(可以并列名次进入前8名),则只需了解自己的成绩以及全部成绩的 ( )
(A) 平均数 (B) 众数 (C) 中位数 (D) 方差
4. 甲、乙、丙三名射击运动员在某场测试中各射击20次,3人的测试成绩
如下表:
则甲、乙、丙3名运动员测试成绩最稳定的是()
(A) 甲 (B) 乙 (C) 丙 (D) 3
人成绩稳定情况相同
5. 满足“两数的和与这两数的积相等”这一条件的有理数有()
(A) 1对 (B) 2对 (C) 4对 (D) 无穷多对
6. 由若干个相同的小立方块搭成的几何体其主视图和左视图如图所示,则所搭小立方块的个数不可能是()
(A) 4块 (B) 6块
(C) 7块 (D) 8块
7. 如图,在△ABC中,AB=AC=5,BC=6,点D为BC中点,DE⊥AC于点E,点F为AC中点,则EF等于()
(A)
(B)
(C)
(D)
8. 23,33和43分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和.83也能按此规律进行“分裂”,则83“分裂”出的奇数中最大的是()
(A) 67 (B) 69
(C) 71 (D) 73
二、填空题(共6小题,每小题5分,满分30分)
9. 抛掷两枚均匀的硬币,硬币落地后,朝上一面恰好出现一正一反的概率
是.
10. 一个几何体的三视图(不完整)如图所示,请将此三视图补画完整.
11. 汶川大地震牵动每个人的心,一方有难,八方支援.在余杭区有5位外地打工者也捐款献爱心.已知5人平均捐款560元(每人捐款数额均为百元的整数倍),捐款数额最少的也捐了200元,最多的(只有1人)捐了800元,其中一人捐600元,600元恰好是5人捐款数额的中位数,那么其余两人的捐款数额分别
是.
12. 如图,AB∥DE,FC⊥CD于点C ,∠ABC=107°,∠CDE=130°,点G在BC的延长线上,则∠FCG的度数是.
13. 如图,分别以直角三角形的三边长为边长向外作正方形,然后分别以三个正方形的中心为圆心、正方形边
长的一半为半径作圆.记大圆的面积是
,两个小圆
的面积和是
,则
和
两者之间的大小关系
是.
14. 已知等腰三角形一腰上的高把它分成两个面积相等的三角形,如果该腰上的高是
,那么这个等腰三角形的面积是.
三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分)
15. 已知四个数据:10、x、8、12,若这组数据的众数和平均数的差的绝对值是1.5,求这组数据的中位数.(不能只有结论,要有适当的解题过程)
16. 如图,在长方形ABCD中,AB=5cm,在边CD上适当选定一点E,沿直线AE把△ADE折叠,使点D恰好落在边BC上一点F处,若△ABF的面积是30cm2,求DE.
17. 如图,△ABC中,点D在BC上,记△ABD的面积为
,△ACD的面积为
,若
,则AD是△ABC的角平分线.请说明理由.
18. 下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案用4根小木棒搭成1个小正方形,拼搭第2个图案用7根小木棒搭成2个小正方形,…….
依此规律拼搭,求:
(1) 前2 008个图案中小正方形的总个数;
(2) 前n个图案中,小木棒的总根数.。