流体力学(中)(第六章 粘性流体动力学)
- 格式:ppt
- 大小:4.99 MB
- 文档页数:102
第六章 粘性流体动力学基础实际流体都是有粘性的,只有当粘性力与惯性力相比很小时,才能忽略粘性力而采用“理想流体”这个简单的理想模型。
支配粘性流体运动的方程比理想流体的基本方程复杂得多,因此粘性流体动力学问题的求解比理想流体动力学问题更加复杂、困难。
本章的目的在于介绍粘性流体动力学的一些基本知识。
§1 雷诺数(Re )——粘性对于流动的影响的大小的度量粘性流体运动方程为:⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+=z y x Dt D z y x p p p f V ρ1 在x 方向的投影为:⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+=∂∂+∂∂+∂∂+∂∂z p y p x p f z u w y u v x u u t u zx yx xx x ρ1 这里以xu u ∂∂作为惯性力的代表; y p yx ∂∂ρ1作为粘性力项的代表,其大小为⎪⎪⎭⎫ ⎝⎛∂∂∂∂y u y μρ1。
下面以圆球的粘性流体绕流为例,来估算作用在单位质量流体上的惯性力和粘性力的量阶:(插圆球绕流图)L 为所研究问题的特征长度;∞V 为特征速度;∞ρ为特征密度;∞μ为特征粘性系数。
u 的量阶为∞V ;x u ∂∂的量阶为L V ∞; 22yu ∂∂的量阶为L V 2∞, 则: 作用在单位质量流体上的惯性力的量阶为:LV 2∞ 作用在单位质量流体上的粘性力的量阶为:2L V ∞∞∞ρμ 粘性力惯性力~22L V L V ∞∞∞∞ρμ=∞∞v L V =∞Re Re 称为雷诺数(Reynolds 数),它的物理意义是作用在流体上的惯性力与粘性力的比值的度量。
Re 数是粘性流体动力学中最重要的无量纲参数,它在粘性流体动力学中所占地位与无粘气体动力学的M 数相当。
在不同Re 数范围内的粘性流体运动可以有完全不同的性质,下面以圆柱绕流为例看不同Re 数范围内的圆柱绕流运动。
(插圆柱绕流图)总之:Re 增加,粘性影响变弱,当Re 》1时,对于某些问题,如无分离绕流物体的升力问题,可忽略粘性影响,采用“理想流体”模型。
粘性流体动力学的数值模拟与分析粘性流体动力学是涉及流体运动和其内部粘性的物理学领域。
在许多工程和科学领域中,对粘性流体的数值模拟与分析具有重要意义。
本文将介绍粘性流体动力学数值模拟的基本原理、常用数值方法以及分析结果的评估。
一、粘性流体动力学的基本原理粘性流体动力学研究的基础是纳维-斯托克斯方程(Navier-Stokes equations),它描述了粘性流体的流动。
纳维-斯托克斯方程由连续性方程和动量方程组成,在实际计算中,还需要考虑能量方程和相对运动的边界条件。
二、粘性流体动力学数值模拟的方法1. 有限差分法(Finite Difference Method):有限差分法是最早被应用到计算流体力学的数值方法之一,它通过将连续性方程和动量方程分别离散化,将微分方程转化为差分方程,进而使用差分方程进行数值计算。
2. 有限体积法(Finite Volume Method):有限体积法将流体域划分为小的控制体积,通过积分的方式得到物理方程的离散形式,然后通过迭代求解差分方程,得到流体的数值解。
3. 有限元法(Finite Element Method):有限元法通常用于解决边界复杂的流体问题。
它将流体问题转化为边界值问题,并将流体区域离散化为无数小的单元,通过有限元方法求解流体的数值解。
4. 计算流体动力学方法(Computational Fluid Dynamics, CFD):CFD是一种基于数值模拟的流体力学方法,通过将流体域划分为网格,将纳维尔-斯托克斯方程离散化数值求解,模拟流体在不同条件下的行为。
三、粘性流体动力学数值模拟的分析1. 利用数值模拟可以得到流体在不同条件下的速度场、压力场等相关参数。
通过分析这些数据,可以对流体的流动行为进行定量描述。
2. 可以通过数值模拟分析流体的粘性特性和流动特性,包括流体的粘滞性、阻力、湍流等。
这些分析结果对于工程设计和优化具有重要指导意义。
3. 数值模拟还可以用于研究流体流动中的复杂现象,如乱流、湍流、涡旋等。
(完整版)流体力学选择题精选题库《流体力学》选择题库第一章绪论1.与牛顿内摩擦定律有关的因素是:A、压强、速度和粘度;B、流体的粘度、切应力与角变形率;C、切应力、温度、粘度和速度;D、压强、粘度和角变形。
2.在研究流体运动时,按照是否考虑流体的粘性,可将流体分为:A、牛顿流体及非牛顿流体;B、可压缩流体与不可压缩流体;C、均质流体与非均质流体;D、理想流体与实际流体。
3.下面四种有关流体的质量和重量的说法,正确而严格的说法是。
A、流体的质量和重量不随位置而变化;B、流体的质量和重量随位置而变化;C、流体的质量随位置变化,而重量不变;D、流体的质量不随位置变化,而重量随位置变化。
4.流体是一种物质。
A、不断膨胀直到充满容器的;B、实际上是不可压缩的;C、不能承受剪切力的;D、在任一剪切力的作用下不能保持静止的。
5.流体的切应力。
A、当流体处于静止状态时不会产生;B、当流体处于静止状态时,由于内聚力,可以产生;C、仅仅取决于分子的动量交换;D、仅仅取决于内聚力。
6.A、静止液体的动力粘度为0;B、静止液体的运动粘度为0;C、静止液体受到的切应力为0;D、静止液体受到的压应力为0。
7.理想液体的特征是A、粘度为常数B、无粘性C、不可压缩D、符合RT=。
pρ8.水力学中,单位质量力是指作用在单位_____液体上的质量力。
A、面积B、体积C、质量D、重量9.单位质量力的量纲是A、L*T-2B、M*L2*TC、M*L*T(-2)D、L(-1)*T10.单位体积液体的重量称为液体的______,其单位。
A、容重N/m2B、容重N/M3C、密度kg/m3D、密度N/m311.不同的液体其粘滞性_____,同一种液体的粘滞性具有随温度______而降低的特性。
A、相同降低B、相同升高C、不同降低D、不同升高12.液体黏度随温度的升高而____,气体黏度随温度的升高而_____。
B、增大,减小;C、减小,不变;D、减小,减小13.运动粘滞系数的量纲是:A、L/T2B、L/T3C、L2/TD、L3/T14.动力粘滞系数的单位是:A、N*s/mB、N*s/m2C、m2/sD、m/s15.下列说法正确的是:A、液体不能承受拉力,也不能承受压力。
第六节粘性流体动力学的无量纲特征参数粘性流体运动的基本方程是一个复杂的二阶非线性偏微分方程,除少数特殊情况外,一般很难求得这一方程的解析解。
为了实用,人们往往根据问题在几何方面、动力学方面以及传热学方面的特征对方程进行简化,目的是略去方程中的次要项,保留主要项,然后对简化了的方程进行求解。
为了保证判断方程中哪些项可以略去,哪些项必须保留,有必要把原有的方程无量纲化,这时在方程中出现一系列无量纲参数,对这些无量纲参数的数量级进行比较,就可以决定方程中各项的取舍。
1.特征物理量:--特征长度;--特征速度;--特征时间;--特征压力;--特征密度;--特征温度;--特征粘性系数;--特征第二粘性系数;--特征等容比热;--特征等压比热--特征热传导系数;--特征重力;--特征声速;用上述特征参数就可以将粘性流体的基本方程方程无量纲化,在无量纲化方程中将出现以下无量纲的特征参数。
2.无量纲参数:(1):它是与流场的不定常性有关的数。
无量纲数称为斯特罗哈数,用St表示之:(2):它是与流体的物性有关的数。
利用状态方程有:式中:<< 回页首(3):它是与流体运动状态及物性有关的物理量。
利用声速公式,可得:其中:是气体动力学中重要的特征参数,反映了惯性力与压差力之比值;是声速。
(4):它是与重力加速度有关的物理量。
人们称为佛罗德数:表示惯性力与重力之比。
(5):它是与粘性有关的无量纲物理量。
人们称为雷诺数:Reynolds数是粘性流体力学中重要的特征物理量,它表示惯性力与粘性力之比。
<< 回页首(6):与热传导有关,它又可化为:其中:,称为普郎特数,它的物理意义是对流热与传导热之比。
(7) Eckert 数:其中为壁面温度。
Eckert数是传热学中重要的特征物理量。
(8)努赛尔数:数是表征物面热传导特性的无量纲参数,其中是边界上的特征热通量。