现在,我们将考虑定常流。例如,若讨论绕固体得流动(为 确定起见,下面我们将讨论这种情况),则来流速度应为常数。 此外还假设流体就是不可压缩得。
在流体动力学方程组(纳维-斯托克斯方程组)里,就表征流
体本身特性得参数而言,只出现运动粘性系数
。还有,求
解这个方程组所必须确定得未知函数就是速度 和 ,这里
类似得,我们可以写出流体中得压力分布公式。为此, 我们必须由参数 和 作出某个量纲为压力除以密度得 量,比如,这个量可以就是 。于就是, 就是无量纲变 量 和无量纲参数R得函数,所以
最后,类似得考虑也可适用于这样一些量:她们描写流
动得特性,但不就是坐标得函数。例如作用在物体上得阻力
F就就是这样一个量。我们可以说,阻力F与用
不难写出周围流体作用于固体表面得力得表达式。 一个面元上所受得作用力恰等于通过这个面元得动量通 量。通过面元 得动量通量就是
把 写成
得形式,这里 就是沿法线得单位
矢量,并考虑到在固体表面上
,我们得到作用在单位
面积上得力 为
其中等式右边第一项就是普通得流体压力,而第二项就是由 于粘性引起得作用在固体表面上得摩擦力。式中 就是单 位矢量,她沿流体界面得外法线,即沿固体表面得内法线。
组成得并具有力得量纲得某个量之比必定只就是雷诺数得
函数。比如,
组合成力得量纲可以就是
。
因而
若重力对流动有重要作用,则流动不就是由三个参数确
定,而就是由
和重力加速度 这四个参数确定。由
这四个参数可构成两个独立得无量纲量,而不就是一个。比
如,这两个量可以就是雷诺数和弗劳德数,弗劳德数为
最后,提一下非定常流。要描述一个确定类型得非定常
第四节 两个旋转圆柱面之间得流动