有机电致发光材料..
- 格式:ppt
- 大小:983.50 KB
- 文档页数:24
电致发光材料电致发光材料,又称为电致冷光材料,指的是能够通过电场或电流激发而发出可见光的材料。
电致发光材料在现代电子技术和光电子技术中具有广泛的应用,例如LED、液晶显示器等。
最常见的电致发光材料是LED(Light Emitting Diode),也就是电致发光二极管。
LED是一种具有电致发光特性的二极管,通过施加正向电压,使得电子和空穴重新组合并释放能量,产生可见光。
LED具有体积小、节能、寿命长等优点,广泛应用于室内外照明、屏幕显示、汽车照明等领域。
另外一种常见的电致发光材料是有机电致发光材料(OLED)。
有机电致发光材料是一种由有机化合物构成的薄膜材料,通过电压激发有机分子的激发态,从而发出光线。
OLED具有发光均匀、色彩鲜艳、可弯曲等特点,因此被广泛应用于手机屏幕、电视屏幕、车载显示器等领域。
除了LED和OLED,还有一些其他的电致发光材料,如电致发光多晶硅材料、电致发光蓝宝石材料等。
这些电致发光材料都具有突出的发光特性,可以通过激励能源(如电场或电流)来产生发光效果。
电致发光材料的运作原理可以简单地描述为电子和空穴在材料中重新组合并释放能量,产生光线。
具体来说,当材料中施加电压时,电子会从高能级跃迁到低能级,而空穴则从低能级跃迁到高能级。
当电子和空穴重新组合时,释放出能量,这些能量以光的形式辐射出来。
电致发光材料的应用广泛,不仅可以用于照明和显示领域,还可以用于传感、通信、医疗等领域。
电致发光材料具有发光效率高、寿命长、响应速度快等优点,因此在现代科技中扮演着重要的角色。
总之,电致发光材料是一类能够通过电场或电流激发而发光的材料,其中LED和OLED是最常见的电致发光材料。
电致发光材料具有广泛的应用前景,推动了现代电子技术和光电子技术的发展。
1、有机材料中载流子输运(纵波、孤子)P16~P17与无机半导体或单晶材料不同的是,有机半导体中并没有延续的能带,有机半导体的结构中都会有去定域化的π电子,这些电子比较自由,但也只被局限在分子之内,因此,跳跃式的理论最常被用来说明电荷在有机分子间传递的现象,即在一电场的驱动下,电子在被激发或被注入至分子的LUMO能级后,经由跳跃至另一分子的LUMO能级,以达到传递的目的。
需要特别指出的是,电荷并不只是简单地以电子或空穴存在于这些有机分子中,而是带电荷的位置会伴随化学键长和结构而变形。
因此,一个电子或空穴加上变形区形成一个单位一起移动,此单位称为极化子。
有机半导体由于电子或空穴的移动往往伴随着结构的变形(核的运动),所以有机半导体中的自由电子或空穴的迁移率一般比无机半导体或金属中的低。
2、OLED结构(从能级匹配分析)P27~P29发光层(EML)、电子/空穴输运层(E/HTL)、阻隔层(BL)、电子/空穴注入层(E/HIL)、激子幽禁层(ECL)激子:在光跃迁过程中,被激发到导带中的电子和在价带中的空穴由于库仑相互作用,将形成一个束缚态,称为~。
而激子的复合导致发光。
淬灭:在这里,淬灭是指在荧光过程中,光子产生的数量在很短的时间内衰减或者消失。
PS:空穴阻隔是因为阻隔层的HOMO能级比发光层高,因此在EML和BL间会产生很大的能垒,空穴的传递会被阻挡在发光层与阻隔层的界面,增加了空穴在界面的浓度,如此可增加电子、空穴在发光层发生复合的几率。
而这些阻隔层的三重态激发态的能隙也要比发光层大,才可防止能量转移至电子输运层而消光。
3、OLED发光原理(主发光、掺杂、主客体关系)P23、P14步骤一:当施加一正向外加偏压,空穴和电子克服界面能垒后,经由阳极和阴极注入,分别进入空穴输运层(HTL)的HOMO能级和电子输运层(ETL)的LUMO能级;步骤二:电荷在外部电场的驱动下,传递至空穴输运层和电子输运层的界面,因为界面的能级差,使得界面会有电荷的累积;步骤三:当电子、空穴在有发光特性的有机物质内复合,形成处于激发态的激子,此激发态在一般的环境中是不稳定的,能量将以光或热的形式释放出来而回到稳定态的基态,因此电致发光是一个电流驱动的现象。
有机电致发光材料三(8-羟基喹啉)铝(tris(8-hydroxyquinolinato)aluminum, Alq3)是一种常用的有机半导体材料,广泛应用于有机发光二极管(OLED)、有机场效应晶体管(OEFT)和太阳能电池等领域。
其合成方法较为简单,一般采用反相溶剂法,主要步骤如下:1.雄性醇类亲核试剂(如异丙醇)在氧化剂存在下氧化制备出8-羟基喹啉酸(8-hydroxyquinolinol, HQ)。
将醇类亲核试剂(如异丙醇)放入反应釜内,加入氧化剂(如氧气或过氧化氢) 进行氧化反应。
反应的最终产物是8-羟基喹啉酸。
2.在惰性溶剂(如氢氧化钾/钾碳酸钠溶液)中,将8-羟基喹啉酸与氯化铝反应制备出配合物Alq3。
在一个量热容器中加入8-羟基喹啉酸和氯化铝。
在惰性溶剂(如丙酮或四氢呋喃)中在-78°C 的温度下进行反应,控制加入氢氧化钾/钾碳酸钠两者的浓度,使反应物迅速反应形成Alq3中间体。
在反应后,Alq3物质会沉淀在反应溶液中。
为获取纯度高的Alq3,少量的取沉淀物用冷水洗涤,用真空泵吸干。
这些步骤需要多次重复,以确保纯度充分高的Alq3沉淀晶体获得。
3.沉淀的Alq3物质在凉水中反复洗涤、过滤干燥、再经真空干燥得到纯净的Alq3粉末。
取得的Alq3晶体沉淀通过凉水反复洗涤和过滤处理。
这些沉淀晶体然后在高温烘干箱中干燥,也可在真空下在低温下干燥以去除水分。
这样合成得到的Alq3配合物大多数晶体为亮绿黄色,对有机发光二极管的制备有广泛应用。
上述工艺过程比较简单,但需要注意入料顺序、溶剂的选择和反应条件等因素,以保证合成出的Alq3样品物理化学性质良好,达到研究和工程应用的需求。
有机电致发光材料及器件导论引言:近年来,由于有机电致发光材料及器件的研究和应用取得了巨大的进展,成为光电领域的研究热点之一、有机电致发光材料及器件具有很高的发光效率、易于制备、柔性可折叠等特点,被广泛应用于平板显示、照明、生物传感等领域。
本文将介绍有机电致发光材料及器件的基本原理、制备方法以及应用前景。
一、有机电致发光材料的基本原理有机电致发光材料是一种能够通过施加电场来实现发光的材料,其基本原理是在有机半导体材料中注入载流子,通过载流子在材料中的扩散和再组合过程中释放出能量,从而产生发光。
一般来说,有机电致发光材料包括发光层、载流子注入层和电极层等。
载流子注入层用于实现载流子从电极注入到发光层,电极层用于提供足够的电场以驱动载流子在发光层中运动。
二、有机电致发光材料的制备方法1.分子设计法:有机电致发光材料的制备通常需要合成复杂的有机分子,具有特殊的分子结构和能级分布。
通过分子设计法,可以设计出具有良好光电性能的有机分子,进而制备出高效的电致发光材料。
2.整体法:整体法是一种将有机分子溶解在溶剂中,通过溶液沉积、旋涂等技术制备电致发光材料的方法。
这种方法制备的电致发光材料结构均匀、制备成本较低,但是光电转换效率较低。
3.蒸发法:蒸发法是一种将有机分子在真空条件下蒸发沉积在基板上的方法。
这种方法制备的电致发光材料具有较高的光电转换效率和较好的膜层质量,但是制备过程较为复杂。
三、有机电致发光器件的制备方法1.有机电致发光二极管(OLED):OLED是一种采用有机电致发光材料制备的光电器件,具有高亮度、广色域、快速响应等特点。
OLED器件由ITO透明导电玻璃基板、有机电致发光层、载流子注入层和金属电极等组成。
制备OLED器件的方法主要有真空蒸发法、旋转涂敷法和喷墨印刷法等。
2.有机电致发光场效应晶体管(OFET):OFET是一种利用有机电致发光材料制备的场效应晶体管。
OFET器件由基底、源极、漏极和门极等组成,其中源极和漏极之间的有机电致发光材料层起到了发光的作用。
OLED有机电致发光材料与器件摘要本文概述了OLED的发展简史,并简单介绍了OLED有机电致发光器件的基本结构与发光机理。
此外,还对比了OLED与PLED,这两种系列材料只是材料特性和成膜方法不同,本质上却无异。
相较于LCD,OLED具有很大优势,但仍面临寿命短等技术瓶颈。
随着研发力度的加大,其技术瓶颈将会被逐渐解决,可以预见在未来的显示市场,OLED必将是绝对主流产品。
关键词:有机电致发光器件;OLED显示器OLED (Organic Light Emitting Device)全名叫做有机电致发光器件,是指有机半导体材料和发光材料在电场驱动下,通过载流子注入和复合导致发光的现象。
其原理是用ITO透明电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子和空穴传输层,电子和空穴分别经过电子和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。
辐射光可从ITO一侧观察到,金属电极膜同时也起了反射层的作用。
根据这种发光原理而制成显示器被称为有机发光显示器,也叫OLED显示器[1]。
1.OLED有机电致发光显示器件的发展简史1963年New York University的Pope[2]等第一次发现有机材料单晶蒽的电致发光现象。
1982年Vincett[3]的研究小组制备出厚度0.6 蒽的薄膜,并观测到电致发光。
1987年Kodak公司的邓青云等采用了夹层式的多层器件结构,开创了有机电致发光的新的时代[4]。
1990年,英国剑桥大学Cavendish实验室的Burroghes[5]等人首次采用共轭聚合物聚对苯撑乙烯(PPV,polyphenylene vinylene)制作了高分子发光二极管,简化了制备工艺,开辟了发光器件的又一个新领域—聚合物薄膜电致发光器件。
1997年,Princeton Univ. Forrest S R的小组发现磷光的有机电致发光材料,使得有机电致发光器件的内量子效率可能到达100%。
有机电致发光材料的研究进展及应用材化1111班王蒙 1120213122摘要:简要论述有机电致发光设备的发光机理、器件结构及彩色显示方法,详细介绍有机电致发光材料的种类、组成、特点和研究近况,并对其用途和前景,尤其在军事领域的应用作了一定介绍。
另外还指出了有机电致发光在商业化过程中一些急待解决的问题。
关键词:有机发光材料,进展,应用。
正文:信息技术的持续快速发展对信息显示系统的性能,如亮度、对比度、色彩变化、分辨率、成本、能量消耗、质量和厚度等均提出了高的要求。
在已有的成熟显示技术中,电致发光显示设备能够满足上述性能要求,另外它还具有宽视角、较宽的工作温度范围和固有的强度等优点。
电致发光显示设备一般包括发光二极管(LED)、粉末磷设备、薄膜电致发光设备(TFEL)和厚介质电致发光设备等。
目前的信息显示市场上真正的参与者主要是TFEL和有机LED (OLED)。
OELD技术的发展时间并不很长,但发展速度较快。
近几年,随着市场对高质量、高可靠性、大信息量显示器件的需求日益增加,OLED技术更是得到了长足的发展,目前已有多种OLED产品投入市场。
1997年,日本Pioneer公司推出配备有绿色点阵OLED的车载音响,并建立了世界上第一条OELD生产线。
1998年,日本NEC、Pioneer公司各自研制出5英寸无源驱动全彩色四分之一显示绘图阵列(QVGA)有机发光显示器。
2000年,Motorola公司推出了有机显示屏手机。
2002年,Toshiba公司推出了17英寸的全彩色显示器。
清华大学与北京维信诺公司共同开发出国内首款多色OLED手机模块。
2003年,台湾奇美电子公司与IBM合作推出加英寸的OELD显示器。
2004年5月,日本精工爱普生公司研制成功的40英寸大屏幕OLED显示器以全彩、超薄、动态影像显示流畅的特点成为OELD显示市场上最大的亮点。
2006年,首尔半导体株式会社的子公司SeoulOptodeviceCo.Lid.以控股方式与美国SensorElectronicTechnology公司共同开发生产的世界唯一的短波长紫外发光二极管(UVEL D)产品已开始量产。
无机和有机电致发光材料
电致发光技术是一种通过电场激发材料发光的技术,它已经成为制造高质量平面显示器和照明设备的关键技术之一。
无机和有机材料是目前应用最广泛的电致发光材料,以下是它们的详细介绍。
一、无机电致发光材料
1.磷光体
磷光体是由氧化物或氟化物等高熔点材料和稀有金属离子组成的复合材料,具有较高的耐高温性和抗氧化性。
目前,磷光体已被广泛应用于LED照明和显示器行业。
其中,红色磷光体的发光效率较高,已经成为了LED照明产业中应用最广泛的颜色之一。
2.氮化物LED
氮化物LED是由镓铝氮化物等材料制成的发光二极管,具有发光效率高,颜色纯度度高等特点。
目前,氮化物LED已被广泛应用于绿色、蓝色和紫色LED照明以及RGB LED显示器中。
3.硅基LED
硅基LED是由硅材料和硅基异质结构组成的发光器件,具有低电压、高效率、长寿命等特点。
硅基LED已经成为了微电子学、生命科学、航空航天等领域的关键设备。
二、有机电致发光材料
1.聚合物LED
聚合物LED是由导电聚合物或导电聚合物复合材料制成的发光器件。
它具有发光效率高、颜色范围广等优点,目前已被广泛应用于照明、显示、可穿戴等领域。
2.小分子有机LED
小分子有机LED是由有机荧光分子制成的发光器件,具有可调颜色、发光亮度高等特点。
它已经被广泛应用于OLED电视、OLED照明等领域。
总体来说,无机和有机电致发光材料都具有各自的特点和优缺点。
未来,随着材料科学和控制技术的不断发展,电致发光材料的性能将
得到进一步提高和改善。
有机电致发光材料
有机电致发光(OLED)材料是一种在电场作用下产生发光的有机材料,具有高亮度、高对比度、宽视角、薄、轻、柔性等特点,被广泛应用于显示器、照明、生物医药等领域。
有机电致发光材料的研究和开发已经成为当今光电材料领域的热点之一。
首先,有机电致发光材料具有优异的发光特性。
它能够在低电压下产生高亮度的发光,具有较高的发光效率和光电转换效率。
同时,OLED材料的发光波长范围广,可以实现全彩色显示,满足不同应用场景的需求。
此外,有机电致发光材料还具有快速响应速度和良好的稳定性,能够长时间保持良好的发光性能。
其次,有机电致发光材料具有良好的加工性能和柔性。
OLED材料可以通过溶液法、真空蒸发法等简单加工工艺制备成薄膜,适用于各种基板材料上。
同时,有机电致发光材料可以制备成柔性器件,具有弯曲、折叠等特性,可以应用于柔性显示器、可穿戴设备等领域,拓展了其应用范围。
此外,有机电致发光材料还具有环保、节能的特点。
相较于传统的无机发光材料,OLED材料不含重金属等有害物质,对环境友好。
同时,有机电致发光材料在低电压下即可发光,具有较低的功耗,能够实现节能减排的效果,符合可持续发展的趋势。
总的来说,有机电致发光材料具有优异的发光特性、良好的加工性能和柔性、环保节能等优点,是一种具有广阔应用前景的新型光电材料。
随着技术的不断进步和应用需求的增加,有机电致发光材料必将在显示、照明、生物医药等领域发挥越来越重要的作用,为人类生活带来更多的便利和美好。
电致发光材料电致发光概述电致发光(Electroluminescence, EL)是指发光材料在电场作用下而发光的现象。
用有机发光材料制作的发光器件,一般统称作OLEDs(Organic Light-emitting Devices),用聚合物为发光层的器件,称作PLEDs(Polymeric Light-emitting Devices)。
有机电致发光器件多采用夹层式(三明治)结构,即将有机层夹在两侧的电极之间。
空穴和电子分别从阳极和阴极注入,并在有机层中传输,相遇之后形成激子,激子在电场的作用下迁移,将能量传递给发光分子,并激发电子从基态跃迁到激发态,激发态能量通过辐射失活产生光子,释放出光能。
ITO透明电极和低功函数的金属(Mg、Li、Ca、Ba、Ce等)常被分别用作阴极和阳极。
根据材料特性和器件要求,主要有单层器件、双层器件、三层器件、多层器件、带有掺杂层的器件、三像素垂直层叠式器件等器件结构。
早在1963年,美国纽约大学的Pope等首次发现有机材料单晶蒽的电致发光现象,直到1987年,美国柯达(Eastern Kodak)公司邓青云等用苯胺-TPD做空穴传输层(HTL)、八羟基喹啉铝(Alq3)作为发光层(EML)成功研制出一种有机发光二极管,其工作电压小于10 V,亮度高达1000 cd/m2,这样的亮度足以用于实际应用。
1990年Friend课题组[3]采用聚对苯撑乙烯(Poly-phenylene vinylene, PPV)为发光材料制成聚合物发光器件(PLED),打开了PLED研究的新局面。
近十多年来,聚合物发光材料受到各国科学家的高度重视,研究工作非常活跃。
相继合成并研究了种类繁多的共轭高分子,涉及聚对苯撑乙炔(PPE)、聚乙炔(PA)、聚对苯撑(PPP)、聚噻吩(PT)、聚芴(PF)以及它们的衍生物等等。
PPV及其衍生物是目前电致发光研究中最为成熟、最具商业化前景的一类电致发光材料,通过结构修饰、复合/共混来控制分子结构以及调节光电性能是当前研究的主要方向。
1.电致发光(EL):发光材料在电场作用下,受到电流和电场的激发而发光的现象,是一个将电能直接转化为光能的一种发光过程(非热转换即不是通过热辐射实现的)。
2. FED,PDP,LCD都存在问题,不能满足时代需求,所以研究更为高效的有机电致发光器件(OLED)。
OLED特点:材料选择有机物,高分子,因而选择范围宽;驱动电压低;发光亮度和发光效率高,发光视角宽,相应速度快;器件可弯曲,不受尺寸限制,分辨率高等。
3.基态:分子的稳定态即能量最低状态;激发态:被激发后,分子的电子排布不遵循构造原理。
激发态分子内的物理失活:辐射跃迁和非辐射跃迁。
而辐射跃迁:释放光子而从高能激发态失活到低能基态的过程。
导致电子运动轨道界面减少;在势能面上跃迁是垂直发生的。
4.有机半导体:在外电场作用下,电子和空穴在LUMO和HOMO间的跳跃产生电流。
而掺杂半导体中的载流子浓度大于本征半导体(电子和空穴浓度相同),所以导电性更好5.直流注入式有机电致发光:在有机EL器件的两端电机上加上直流电源,通电后发光器件受电激发的作用而发光的现象。
过程:载流子注入,载流子传输,电子和空穴碰撞形成激子(激子是彼此束缚在一起的电子和空穴对),激子辐射退激发发出光子。
6.单线态激子是总自旋为0的激发状态;注入的电子和空穴形成的单线态和三线态激子的比例正比于其状态数,有机电致发光的量子效率最大为25%;Forster能量转移:能量从主体向掺杂材料的传递方式,能在较远距离内实现,为单线态激子;Dexter能量转移:只能在紧邻分子间实现,为三线态激子。
7.单层器件:单层有机薄膜被夹在ITO阴极和金属极之间,形成的是单层有机电致发光器件。
但是单层器件的载流子的注入不平衡,器件发光效率低。
三层器件是目前OLED中最常用的一种。
在实际的器件中,在发光层往往采用掺杂的方式提高器件性能8.器件制备过程:刻蚀好的ITO玻璃一清洗一臭氧/氧等离子体处理一基片置于真空腔体一抽真空一蒸发沉积有机薄膜和阴极一取出器件并封装一测试表征9.有机小分子发光器件通常用真空蒸发沉积的方法制备构成器件的薄膜,整个过程要在真空腔内完成(真空度高于10八-4Pa)。
发光材料分类发光材料是一种能够发出可见光的物质,广泛应用于发光二极管、显示屏、荧光粉等领域。
根据其发光原理和结构特点,可以将发光材料进行分类,以便更好地了解其特性和应用。
下面将对发光材料按照其分类进行详细介绍。
一、根据发光原理分类。
1. 电致发光材料。
电致发光材料是指在电场或电流的作用下产生发光现象的材料,常见的有有机发光材料和无机发光材料。
有机发光材料包括有机发光分子和有机发光聚合物,常用于OLED等显示器件。
无机发光材料主要包括磷光体、硫化物、氧化物等,应用于LED等光电器件。
2. 电子激发发光材料。
电子激发发光材料是指在电子激发下产生发光的材料,主要包括荧光材料和磷光材料。
荧光材料是通过吸收紫外光或蓝光后发出可见光的材料,常见的有荧光粉和荧光染料;磷光材料是通过吸收能量后在较长时间内发光的材料,常用于夜光材料和荧光显示器件。
二、根据结构特点分类。
1. 有机发光材料。
有机发光材料是指以碳为主要骨架的发光材料,其分子结构复杂多样,可通过合成方法进行调控,具有较好的可溶性和加工性,适用于柔性显示器件等领域。
2. 无机发光材料。
无机发光材料是指以金属、非金属元素为主要成分的发光材料,具有较好的稳定性和耐光性,适用于高亮度、长寿命的发光器件。
三、根据应用领域分类。
1. 光电器件用发光材料。
光电器件用发光材料主要应用于LED、OLED、激光二极管等光电器件中,要求具有高亮度、高效率、长寿命等特点。
2. 夜光材料。
夜光材料是指在光照条件下吸收能量,然后在黑暗环境下发光的材料,常用于夜光表盘、夜光标识等领域。
3. 荧光材料。
荧光材料主要应用于荧光灯、荧光显示屏、生物成像等领域,具有发光颜色丰富、发光效率高等特点。
综上所述,发光材料根据其发光原理、结构特点和应用领域可以进行多方面的分类。
不同类型的发光材料具有各自特定的特性和应用场景,对于发光器件的设计和制备具有重要意义。
随着发光材料领域的不断发展,相信将会有更多新型发光材料的涌现,为光电器件和照明领域带来更多的创新和发展。
第二章 有机电致发光的基本原理2.1 有机电致发光器件的发光机理有机电致发光材料均为共轭有机分子,依据休克尔分子轨道理论(HMO ),并结合半导体理论中的能带理论,可将有机共轭分子中的最高分子占有轨道HOMO 类比为能带理论中的价带顶,最低空轨道LUMO 为导带底,这样就可以用半导体理论模型对有机电致发光进行理论研究。
有机电致发光和无机电致发光相似,属于载流子双注入型发光器件,所以又称为有机发光二极管,其发光机理一般认为是:在外界电压驱动下,从阴极注入的电子与从阳极注入的空穴在有机层中形成激子,并将能量传递给有机发光物质的分子,使其受到激发,从基态跃迁到激发态,当受激分子从基态回到基态时辐射跃迁而产生发光。
具体发光过程可分以下几个阶段:(1) 载流子的注入:在外加电场的条件下,空穴和电子分别从阳极和阴极向夹在电极之间的有机功能薄膜层注入,即空穴向空穴传输层的HOMO 能级(相当于半导体的价带)注入,而电子向电子传输层LUMO 能级(相当于半导体的导带)注入。
电子的注入机理比较复杂,可分为电场增强热电子发射;场致发射,其过程是在强电场作用下,电子通过势垒从金属至半导体的量子力学隧穿。
在低温时,大多数电子是在金属的费米能级上隧穿势垒的,这形成场致发射(F 发射),在中等温度时,大多数电子是在能级Em (高于金属的费米能级)上隧穿势垒的,这形成所谓的热电子场致发射或热助场致发射(T-F 发射),在极高温度时,主要贡献是热电子发射;隧穿发射,如果绝缘体足够薄或者含有大量的缺陷,或者两者兼有,则电子可直接从电极注入到有机层。
(2) 载流子的迁移:载流子在有机分子薄膜中的迁移被认为是跳跃运动和隧穿运动[9,10],并认为这两种运动是在能带中进行的。
当载流子一旦从两极注入到有机分子中,有机分子就处在离子基(A +、A -)状态,(见下图)并与相邻的分子通过传递的方式向对面电极运动。
此种跳跃运动是靠电子云的重叠来实现的,从化学的角度来说,就是相邻的分子通过氧化-还原方式使载流子运动。