高等代数习题
- 格式:doc
- 大小:1.53 MB
- 文档页数:58
《高等代数》习题答案一、1、存在多项式()()()()()()1,=+x v x g x u x f x v x u 使得与2、()()x f x f '和互质3、()()的重因式为x f x p4、05、1,-26、()k n n --121 7、3 8、- 48 9、相 10、相11、1或2(有非零解) 12、()()A r A r = 13、无 14、12 15、9816、⎥⎦⎤⎢⎣⎡-0001 17、E 18、()2222121,,r n Z Z Z x x x f ++= 19、()22122121,,r p p n Z Z Z Z x x x f --++=+ 20、大于零21、α为非零向量,α不能由β线性表出 22、无 23、关于V 的加法和数乘封闭 24、对于 V 中任意向量α、β和数域P 中任意数K 都有()()()βαβαA A A +=+和()()ααkA k A = 25、相似 26、线性无关的27、线性变量A 在数域P 中有个互异的特征的值 28、1 29、T A ,1 30、线性无关的 31、正交矩阵二、1、1)()()7422+--x x x 有理根22)()()333122+⎪⎭⎫ ⎝⎛-+x x x 有理根31,2-2、()()()n mx x n mx x n mx x x ---++=++-2342211=b ax x x x +++-23463 由7,37,3-==⇒=-=b a n m3、1)0211211211=+++→cba2)31131031605510019182402113------→9532001235250019182402113-----→409201235250019182402113=-----→3)1103100321011111033100321011111993952032101111=→→→4)()()()xaan x a x an x a a an x111-+-+-+→()[]a n x 1-+=xaa x a a111→()[]a n x 1-+ax a x a a --001=()[]()11---+n a x a n x5)n n y x +6)nna a a a a1001010011110---→nn a a a a a a 211011⎥⎦⎤⎢⎣⎡---=4、1)系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---11178424633542 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→572527003542 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-→000570005442通解为⎪⎪⎪⎩⎪⎪⎪⎨⎧-===-=24231221157522t x t x t x t t x 则基础解系[]⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡--==57,1,0,520,0,1,221x x2)系数矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----7931181332111511⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→0000004720123018144472047201511通解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=--=241321221122723t x t x t t x t t x 则基础解系为[]⎪⎩⎪⎨⎧--=⎥⎦⎤⎢⎣⎡-=1,0,2,10,1,27,2321x x5、1)扩展矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----112131111202121⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→00000151505205301151501515002121通解为⎪⎪⎪⎩⎪⎪⎪⎨⎧-+===+=21423122151515352t t x t x t x t x 令21,t t 为0,则特解⎥⎦⎤⎢⎣⎡=51,0,0,520x通解⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=511053101051005221t t x , 21,t t 为任意常数2)扩展矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---787695754636323⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------→0000015100090232102001510036323通解为⎪⎪⎩⎪⎪⎨⎧=-==+=24231221151332t x t x t x t t x 令21,t t 为0,则特解[]0,1,0,00=x通解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=150300132010021t t x , 21,t t 为任意常数6、扩展矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------11111111112111111111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------→00220020201220011111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------→022********220011111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→02200020*******11111 则⎪⎪⎩⎪⎪⎨⎧=+-=--=-=+++022022141434244321x x x x x x x x x ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=-===⇒414141454321x x x x则432141414145ααααβ--+=5、因四元非齐次线性方程组的系数矩阵秩为3, 则通解形式为110x t x x +=则通解为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=432154321t x , 1t 为任意常数6、()()A A x A x A 122--=⇒=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1111221124100111032100111011x ⎥⎥⎦⎤⎢⎢⎣⎡411010103⎥⎥⎦⎤⎢⎢⎣⎡-----=3222352257、1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1012010411001210⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→1012001210010411⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→1283001210010411⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→2112311240101120011232001210011201则逆矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----21123124112 2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--1243012210011101101201221000111110111010012001111 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----→3132341032313201031313100112430323132010313131001,则逆矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----3132343231323131318、原式=()1123---AA A 3421322123111=⎪⎭⎫⎝⎛⋅=⋅-=--A9、⎥⎦⎤⎢⎣⎡22211211X X X X ⎥⎦⎤⎢⎣⎡00CA ⎥⎦⎤⎢⎣⎡==A X CX A X CX E 21221112⎪⎪⎩⎪⎪⎨⎧====⇒--112121221100C A AX X X 则⎥⎦⎤⎢⎣⎡=---00111ACX10、1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----524212425,,011225,05>=>01524212425>=---- 正定 2)064320222210,02422210,010,3020222210<-=-<-=->⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡- 不正定11、0545212111,0111,01,521211122>--=-->-=>⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--t t t tt t t t t则054<<-t12、1)031610213510610213112311213≠-=---→---→----03321021112210211131021211≠=-→--→,故为3P 的两组基 2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----173510101610211213131112021311211213⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→0721010161031280313、⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----00000110201000003306031155033033311341335512333则基为[][]3,3,1,34,5,2,3---与, 维数为214、1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-001010100,0010101001M M=-AM M 1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡131211232221333231a a a a a a a a a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111213212223313233a a a a a a a a a2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-10010001,11000011k M k M=-AM M 1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211111a a a a k a k a k a a a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10010001k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=33323123222113121111a ka a a k a a k a ka a3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-100011001,100110011M M=-AM M 1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-+-333231231322122111131211a a a a a a a a a a a a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10011001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-+-++--+=33323231231322122221121113121211a a a a a a a a a a a a a a a a15、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10010001 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=111101011B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-121011101则=B 110010001-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111101011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-121011101⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=21122011016、1)()()215122212221+-=---------=-λλλλλλA E 特征值1,521-==λλ(二重)51=λ代入()01=-X A E λ得基础解系[],1,1,11=X 特征向量为321εεε++12-=λ代入()02=-X A E λ得基础解系[][]1,1,0,1,0,132-=-=X X特征向量为3231εεεε--和由3dim dim dim 21P w w =+λλ知可对角化。
高等代数(北大版第三版)习题答案I I(总95页)-本页仅作为预览文档封面,使用时请删除本页-高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章 —矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A 为一个n 级实对称矩阵,且0<A ,证明:必存在实n 维向量0≠X ,使0<'A X X 。
证 因为0<A ,于是0≠A ,所以()n A rank =,且A 不是正定矩阵。
故必存在非退化线性替换Y C X 1-=使()BY Y ACY C Y AX X '=''='-12222122221n p p p y y y y y y ----+++=++ ,且在规范形中必含带负号的平方项。
于是只要在Y C Z 1-=中,令p y y y === 21,1,021=====++n p p y y y 则可得一线性方程组 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=++++++1102211,122,111,122111212111n nn n n n n p p p n pn p p n n x c x c x c x c x c x c x c x c x c x c x c x c ,由于0≠C ,故可得唯一组非零解()ns s s s x x x X ,,,21 =使()0111000<--=----+++='p n AX X s s, 即证存在0≠X ,使0<'A X X 。
13.如果B A ,都是n 阶正定矩阵,证明:B A +也是正定矩阵。
证 因为B A ,为正定矩阵,所以BX X AX X '',为正定二次型,且 0>'A X X , 0>'B X X ,因此()0>'+'=+'BX X AX X X B A X ,于是()X B A X +'必为正定二次型,从而B A +为正定矩阵。
《高等代数》试题库一、 选择题1.在[]F x 里能整除任意多项式的多项式是( )。
A .零多项式B .零次多项式C .本原多项式D .不可约多项式2.设()1g x x =+是6242()44f x x k x kx x =-++-的一个因式,则=k ( )。
A .1 B .2 C .3 D .43.以下命题不正确的是 ( )。
A . 若()|(),()|()f x g x f x g x 则;B .集合{|,}F a bi a b Q =+∈是数域;C .若((),'())1,()f x f x f x =则没有重因式;D .设()'()1p x f x k -是的重因式,则()()p x f x k 是的重因式4.整系数多项式()f x 在Z 不可约是()f x 在Q 上不可约的( ) 条件。
A . 充分B . 充分必要C .必要D .既不充分也不必要5.下列对于多项式的结论不正确的是( )。
A .如果)()(,)()(x f x g x g x f ,那么)()(x g x f =B .如果)()(,)()(x h x f x g x f ,那么))()(()(x h x g x f ±C .如果)()(x g x f ,那么][)(x F x h ∈∀,有)()()(x h x g x fD .如果)()(,)()(x h x g x g x f ,那么)()(x h x f6. 对于“命题甲:将(1)n >级行列式D 的主对角线上元素反号, 则行列式变为D -;命题乙:对换行列式中两行的位置, 则行列式反号”有( ) 。
A .甲成立, 乙不成立;B . 甲不成立, 乙成立;C .甲, 乙均成立;D .甲, 乙均不成立7.下面论述中, 错误的是( ) 。
A . 奇数次实系数多项式必有实根;B . 代数基本定理适用于复数域;C .任一数域包含Q ;D . 在[]P x 中, ()()()()()()f x g x f x h x g x h x =⇒=8.设ij D a =,ij A 为ij a 的代数余子式, 则112111222212.....................n n n n nn A A A A A A A A A =( ) 。
高等代数试题及参考答案The document was prepared on January 2, 2021高等代数(一)考试试卷一、单选题(每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号填入答题纸内相应的表格中。
错选、多选、不选均不给分,6小题,每小题4分,共24分)1. 以下乘积中( )是4阶行列式ij D a =展开式中取负号的项. A 、11223344a a a a . B 、14233142a a a a . C 、12233144a a a a . D 、23413214a a a a .2.行列式13402324a --中元素a 的代数余子式是( ).A 、0324-. B 、0324--. C 、1403-. D 、1403. 3.设,A B 都是n 阶矩阵,若AB O =,则正确的是( ). A 、()()r A r B n +≤. B 、0A =. C 、A O =或B O =. D 、0A ≠. 4.下列向量组中,线性无关的是( ). A 、{}0. B 、{},,αβ0. C 、{}12,,,r ααα,其中12m αα=. D 、{}12,,,r ααα,其中任一向量都不能表示成其余向量的线性组合.5.设A 是n 阶矩阵且()r A r n =<,则A 中( ). A 、必有r 个行向量线性无关. B 、任意r 个行向量线性无关.C 、任意r 个行向量构成一个极大线性无关组.D 、任意一个行向量都能被其它r 个行向量线性表出.6.n 阶矩阵A 具有n 个不同的特征值是A 与对角阵相似的( )条件. A 、充要. B 、充分非必要. C 、必要非充分. D 、非充分非必要. 二、判断题(正确的打√,错误的打×,5小题,每小题2分,共10分). 1.若A 为n 阶矩阵,k 为非零常数,则kA k A =. ( ) 2.若两个向量组等价,则它们包含的向量个数相同. ( ) 3.对任一排列施行偶数次对换后,排列的奇偶性不变. ( ) 4.正交矩阵的逆矩阵仍是正交矩阵. ( ) 5.任何数域都包含有理数域. ( )三、填空题(每空4分,共24分).1.行列式000100201000D n n==- . 2.已知5(1,0,1)3(1,0,2)(1,3,1),(4,2,1)αβ---=--=-,则α= ,(,)αβ= .3.矩阵12311211022584311112A ---⎡⎤⎢⎥--⎢⎥=⎢⎥---⎢⎥--⎣⎦,则()r A = . 4.设线性方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩有解,其系数矩阵A 与增广矩阵A 的秩分别为s 和t ,则s 与t 的大小关系是 .5.设111123111,124111051A B ⎡⎤⎡⎤⎢⎥⎢⎥=-=--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,则1A B -= . 四、计算题(4小题,共42分)1.计算行列式(1)111111111111a a a a;(2)111116541362516121612564.(每小题6分,共12分)2.用基础解系表出线性方程组123451234512345123452321236222223517105x x x x x x x x x x x x x x x x x x x x ++-+=⎧⎪+++-=⎪⎨+++-=⎪⎪+--+=⎩的全部解.(10分)3.求与向量组123(1,1,1,1),(1,1,0,4),(3,5,1,1)ααα==-=-等价的正交单位向量组.(10分)4.求矩阵211020413A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的特征根和特征向量.(10分)一、单选题(每题4分,共24分)二、判断题(每题2分,共10分)三、填空题(每空4分,共24分)1.(1)2(1)!n n n --⋅; 2.(1 (2)0;3.3; 4.s t =;5.351222312212112-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦. 四、计算题(共42分)1.(12分,每小题各6分) (1)解:11131111111111311111(3)111311111111311111a a a a a a a a a a a aa a a++==+++ ..............(3分)311110100(3)(3)(1)001001a a a a a a -=+=+--- ...................(3分)注:中间步骤形式多样,可酌情加分 (2)解:222233331111111116541654136251616541216125641654=,此行列式为范德蒙行列式 ......(3分)进而2222333311111654=(61)(51)(41)(56)(46)(45)12016541654=------=-原式 .......(3分)2.(10分)解:用初等变换把增广矩阵化为阶梯形1213211213211213212111360317740115411122220115410317742351710501711630171163---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-------⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥------⎢⎥⎢⎥⎢⎥--------⎣⎦⎣⎦⎣⎦1213211213210115410115410317740048510171163000000--⎡⎤⎡⎤⎢⎥⎢⎥------⎢⎥⎢⎥→→⎢⎥⎢⎥-----⎢⎥⎢⎥---⎣⎦⎣⎦..................(3分) 得同解方程组取45,x x 为自由未知量,得方程的一般解为12345234534521321544185x x x x x x x x x x x x++=+-⎧⎪-=+-⎨⎪=--+⎩(其中45,x x 为自由未知量) 将450,0x x ==代入得特解01551(,,,0,0)444γ=--. ................(3分)用同样初等变换,得到与导出组同解的方程组12345234534523205404850x x x x x x x x x x x x ++-+=⎧⎪--+=⎨⎪+-=⎩仍取45,x x 为自由未知量,得一般解12345234534523254485x x x x x x x x x x x x++=-⎧⎪-=-⎨⎪=-+⎩,将451,0x x ==和450,4x x ==分别代入得到一个基础解系:12(1,3,2,1,0),(9,11,5,0,4)ηη=--=- ...............(3分)所以,原方程组的全部解为01122k k γηη++,12,k k 为数域P 中任意数。
高等代数学习题集一、线性方程组1. 解下列线性方程组:(1)$3x+2y=7$$2x-3y=4$(2)$2x-y+z=4$$x+3y-2z=5$$2x-y+z=1$(3)$3x+y=5$$4x-y=8$2. 通过矩阵表示以下线性方程组,并求出其解:(1)$4x+2y=6$$-2x+y=3$(2)$x-2y+3z=1$$2x+y+3z=9$$3x+2y+4z=12$(3)$x+y+z=0$$x+2y+3z=1$$x-3y+2z=2$二、矩阵运算与性质1. 计算以下矩阵的乘积:$\begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix}$$\begin{bmatrix} 4 & 2 \\ -1 & 3 \end{bmatrix}$2. 求下列矩阵的逆矩阵:(1)$\begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$(2)$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ -1 & 0 & 3 \end{bmatrix}$3. 判断下列矩阵是否可逆,并求其逆矩阵:(1)$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$(2)$\begin{bmatrix} 3 & -2 & 1 \\ 1 & -3 & 2 \\ 2 & -4 & 3 \end{bmatrix}$4. 求矩阵的转置:(1)$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$(2)$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$三、特征值与特征向量1. 求矩阵的特征值与特征向量:$\begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix}$2. 计算以下矩阵的迹:(1)$\begin{bmatrix} 2 & 5 \\ -1 & 3 \end{bmatrix}$(2)$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{bmatrix}$四、向量空间1. 判断向量组是否线性相关:(1)$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$(2)$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$2. 求以下向量组的一个极大线性无关组:(1)$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$(2)$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \\ 1\end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$五、线性变换1. 判断以下线性变换是否为一一映射:(1)$T\left(\begin{bmatrix} x \\ y\end{bmatrix}\right)=\begin{bmatrix} 2x+y \\ 3y \end{bmatrix}$(2)$T\left(\begin{bmatrix} x \\ y \\ z\end{bmatrix}\right)=\begin{bmatrix} x+y \\ y+z \\ x+z \end{bmatrix}$2. 求下列线性变换的矩阵表示:(1)$T\left(\begin{bmatrix} x \\ y\end{bmatrix}\right)=\begin{bmatrix} 2x-y \\ 3x+2y \end{bmatrix}$(2)$T\left(\begin{bmatrix} x \\ y \\ z\end{bmatrix}\right)=\begin{bmatrix} x+y+z \\ 2x+3y-z \\ 3x-2y+2z\end{bmatrix}$六、二次型1. 对以下二次型进行分类:(1)$f(x,y)=2x^2+3y^2-4xy$(2)$f(x,y,z)=x^2+y^2+z^2-2xy+4xz$2. 将以下二次型化为标准形:(1)$f(x,y,z)=3x^2+4y^2+2z^2+4xy+4xz-8yz$(2)$f(x,y,z)=x^2+2y^2+3z^2-2xy+6xz$以上为《高等代数学习题集》的内容,希望对你的学习有所帮助。
高等代数练习题一、选择题1、每个次数≥1的复系数多项式在复数域上都可以唯一的分解成( )A 、一次因式的乘积B 、一次与二次因式的乘积C 、只能是二次因式的乘积D 、以上结论均不对 2、多项式2128234++-x x x 在有理数域上( )A 、可约B 、不可约C 、不一定可约D 、不能确定 3、齐次线性方程组有非零解的充要条件是( )A 、系数行列式不为0B 、系数行列式为0C 、系数矩阵可逆D 、系数矩阵不可逆 4、若存在u (x ),v (x )使u (x )f (x )+v (x )g (x )=1,则( ) A 、f (x )|g (x ) B 、g (x )|f (x ) C 、f (x )g (x )=1 D 、以上均错 5、下列说法正确的是( )A 、设A 、B 是两个n 级矩阵,则秩(A+B )≤秩A+秩BB 、设21V V 、是两向量空间,则dim (21V V +)=dimV 1+dimV 2C 、以上均对D 、以上均错 6、模m 的完全剩余系有( )A 、唯一一个B 、无穷多个C 、有有限个D 、不一定有 7、设p 是素数,a 是整数,且(p,a)=1,则( )A 、)(mod p a a p ≡B 、)(mod 0p a p ≡C 、)(mod 01p a p ≡-D 、以上均错 8、多项式f(x)除以x-a 所得的余数为( )A 、f(0)B 、f(x-a)C 、f(a)D 、以上均错9、在xy 平面上,顶点的坐标(x,y)满足41,41≤≤≤≤y x ,且x,y 是整数的三角形个数有( ) A 、560 B 、32 C 、516 D 、44 10、零多项式的次数是( )A 、0次B 、1次C 、2次D 、不定义次数二、填空题1、方程032234=-+-x x x 的有理根为___________________。
2、排列657893的逆序数是_____________________。
《高等代数(上)》课程习题集一、填空题11. 若31x -整除()f x ,则(1)f =( )。
2. 如果方阵A 的行列式0=A ,则A 的行向量组线性( )关。
3. 设A 为3级方阵,*A 为A 的伴随矩阵,且31=A ,则=--1*A A ( )。
4. 若A 为方阵,则A 可逆的充要条件是——( )。
5. 已知1211A ⎡⎤=⎢⎥⎣⎦,1121B ⎡⎤=⎢⎥⎣⎦,且3AB C A B +=+,则矩阵C =( )。
6. 每一列元素之和为零的n 阶行列式D 的值等于( )。
7. 设行列式014900716=--k,则=k ( )8. 行列式22357425120403---的元素43a 的代数余子式的值为( )9. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=403212221A ,11k α⎛⎫⎪= ⎪ ⎪⎝⎭,若αA 与α线性相关,则=α( )10. 设A 为3阶矩阵,51=A ,则12--A =( ) 11. 已知:s ααα,,,21 是n 元齐次线性方程组0=Ax 的基础解系,则系数矩阵A 的秩=)(A R ( )12. 多项式)(),(x g x f 互素的充要条件是( ) 13. 多项式)(x f 没有重因式的充要条件是( )14. 若排列n j j j 21的逆序数为k ,则排列11j j j n n -的逆序数为( )15. 当=a ( )时,线性方程组⎪⎩⎪⎨⎧=++=++=++040203221321321x a x x ax x x x x x 有零解。
16. 设A 为n n ⨯矩阵,线性方程组B AX =对任何B 都有解的充要( )17. 设00A X C ⎡⎤=⎢⎥⎣⎦,已知11,A C --存在,求1X -等于( ) 18. 如果齐次线性方程组0=AX 有非零解,则A 的列向量组线性( )关 19. )(x p 为不可约多项式,)(x f 为任意多项式,若1))(),((≠x f x p ,则( ) 20. 设A 为4级方阵,3-=A ,则=A 2( )21. 设m ααα,,,21 是一组n 维向量,如果n m >.,则这组向量线性( )关22. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=403212221A ,11k α⎛⎫⎪= ⎪ ⎪⎝⎭,若αA 与α线性相关,则k=( )。
1A = 1000 ,B = 0001 ,|A +B |=1,|A |=0,|B |=0.|A +B |=|A |+|B |.2A = 0100,A 2=0,A =0.3A (E +A )=E A 4A = 0100 ,B = 1000,AB =0,rank (A )=1,rank (B )=1,A,B 2.1B 2A 3C 4A 5D 6B 7B 8C 9D 10A 11D 12A 13C 14D 15D 16B 17C 18C 19C 20D 21C 22C 23D 24C 25C 26A 27A 28A 1−135,93m ×s,n k =1a jk b ki 4 1b 0001612012001a n1a 20···00...···············000 (1)910411(−1)mn ab12213I n2单元练习:线性方程组部分一、填空题 每空 1分,共 10分1.非齐次线性方程组 AZ = b (A 为 m ×n 矩阵)有唯一解的的充分必要条件是____________。
2.n +1 个 n 维向量,组成的向量组为线性 ____________ 向量组。
3.设向量组 3 2 1 , ,a a a 线性无关,则常数 l , m 满足____________时,向量组 3 1 2 3 1 2 , , a a a a a a -- - m l 线性无关。
4.设 n 阶矩阵 A 的各行元素之和均为零, 且 r (A ) = n -1则 Ax = 0 的通解为________。
5.若向量组 3 2 1 , , a a a 线性无关,则向量组 3 1 2 3 1 2 , , a a a a a a + + + ____________。
高等代数例题第一章 多项式1.44P 2 (1)m 、p 、q 适合什么条件时,有231x mx x px q +-++2.45P 7 设32()(1)22f x x t x x u =++++,3()g x x tx u =++的最大公因式是一个二次多项式,求t 、u 的值。
3.45P 14 证明:如果((),())1f x g x =,那么(()(),()())1f x g x f x g x += 4.45P 18 求多项式3x px q ++有重根的条件。
5.46P 24 证明:如果(1)()n x f x -,那么(1)()n n x f x -6.46P 25 证明:如果23312(1)()()x x f x xf x +++,那么1(1)()x f x -,2(1)()x f x - 7.46P 26 求多项式1nx -在复数域内和实数域内的因式分解。
8.46P 28 (4)多项式1p x px ++ (p 为奇素数)在有理数域上是否可约?9.47P 1 设1()()()f x af x bg x =+,1()()()g x cf x dg x =+,且0ad bc -≠。
求证:11((),())((),())f x g x f x g x =。
10.48P 5 多项式()m x 称为多项式()f x ,()g x 的一个最小公倍式,如果(1)()()f x m x ,()()g x m x ; (2)()f x ,()g x 的任意一个公倍式都是()m x 的倍式。
我们以[(),()]f x g x 表示首项系数为1的那个最小公倍式。
证明:如果()f x ,()g x 的首项系数都为1,那么()()[(),()]((),())f xg x f x g x f x g x =。
11.设 m 、n 为整数,2()1g x x x =++除33()2mn f x xx =+-所得余式为 。
《高等代数》课程习题第1章行列式习 题 1.11. 计算下列二阶行列式:(1)2345 (2)2163- (3)x x x x cos sin sin cos - (4)11123++-x x x x (5)2232ab b a a (6)ββααcos sin cos sin (7)3log log 1a b b a2. 计算下列三阶行列式:(1)341123312-- (2)00000d c b a (3)d c e ba 0000 (4)zy y x x 00002121(5)369528741 (6)01110111-- 3. 用定义计算行列式:(1)4106705330200100 (2)114300211321221---(3)500000000400030020001000 (4) dc b a 100110011001---. 4.用方程组求解公式解下列方程组:(1) ⎪⎩⎪⎨⎧=-+=--=--0520322321321321x x x x x x x x x (2)⎪⎩⎪⎨⎧=+-=-+=++232120321321321x x x x x x x x x习 题 1.21. 计算下列行列式:(1)123112101 (2)15810644372---- (3)3610285140 (4)655565556 2.计算行列式(1)2341341241231234(2)12114351212734201----- (3)524222425-----a a a(4)322131399298203123- (5)0532004140013202527102135---- 3.用行列式的性质证明:(1)322)(11122b a b b a ab aba -=+(2)3332221113333332222221111112c b a c b a c b a a c c b b a a c c b b a a c c b b a =+++++++++ 4.试求下列方程的根:(1)022223356=-+--λλλ(2)0913251323221321122=--x x5.计算下列行列式(1)8364213131524273------ (2)efcfbfde cd bdae ac ab---(3)2123548677595133634424355---------- (4)111110000000002211n n a a a a a a ---谢谢观赏(5)xaaa x a a a x(6)abb a b a b a 000000000000习 题 1.31. 解下列方程组(1)⎪⎩⎪⎨⎧-=++=+--=++1024305222325321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x2. k 取何值时,下列齐次线性方程组可能有非零:(1) ⎪⎩⎪⎨⎧=+-=++-=++0200321321321x x x x kx x kx x x (2)⎪⎩⎪⎨⎧=+-=++=++0300321321321x x x x kx x x x kx 习 题 五1.41.计算下列行列式(1)3010002113005004, (2)113352063410201-- (3)222111c b a c b a(4)3351110243152113------, (5)nn n n n b a a a a a b a a a a D ++=+212112111112.用克莱姆法则解线性方程(1)⎪⎩⎪⎨⎧=+-=-+=--114231124342321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=++=+-+=+-+=++3322212543143214321321x x x x x x x x x x x x x x3.当λ为何值时,方程组⎪⎩⎪⎨⎧=+-=+-=++0020321321321x x x x x x x x x λλ可能存在非零解?4.证明下列各等式(1) 222)(11122b a b b a a b ab a -=+(2) ))()((4)2()1()2()1()2()1(222222222c b a c a b c c c b b ba a a ---=++++++ (3) ))()()()()()((111144442222d c b a d c d b c b d a c a b a d c b a d c b a d c b a+++------=5.试求一个2次多项式)(x f ,满足1)2(,1)1(,0)1(-==-=f f f .第2章矩阵 习 题 2.21.设 ⎥⎦⎤⎢⎣⎡=530142A , ⎥⎦⎤⎢⎣⎡-=502131B , ⎥⎦⎤⎢⎣⎡--=313210C , 求3A -2B +C 。
高等代数习题第一章基本概念§1.1 集合1、设Z是一切整数的集合,X是一切不等于零的有理数的集合.Z是不是X的子集?2、设a是集A的一个元素。
记号{a}表示什么? {a} A是否正确?3、设写出和。
4、写出含有四个元素的集合{}的一切子集.5、设A是含有n个元素的集合.A中含有k个元素的子集共有多少个?6、下列论断那些是对的,那些是错的?错的举出反例,并且进行改正.(i)(ii)(iii)(iv)7.证明下列等式:(i)(ii)(iii)§1。
2映射1、设A是前100个正整数所成的集合.找一个A到自身的映射,但不是满射.2、找一个全体实数集到全体正实数集的双射.3、是不是全体实数集到自身的映射?4.设f定义如下:f是不是R到R的映射?是不是单射?是不是满射?5、令A={1,2,3}。
写出A到自身的一切映射。
在这些映射中那些是双射?6、设a ,b是任意两个实数且a<b。
试找出一个[0,1]到[a ,b]的双射。
7、举例说明,对于一个集合A到自身的两个映射f和g来说,fg与gf一般不相等.8、设A是全体正实数所成的集合。
令(i)g是不是A到A的双射?(ii)g是不是f的逆映射?(iii)如果g有逆映射,g的逆映射是什么?9、设是映射,又令,证明(i)如果是单射,那么也是单射;(ii )如果是满射,那么也是满射;(iii )如果都是双射,那么也是双射,并且10.判断下列规则是不是所给的集合A的代数运算:集合 A 规则1234 全体整数全体整数全体有理数全体实数baba+→|),(§1。
3数学归纳法1、证明:2、设是一个正整数.证明,是任意自然数.3、证明二项式定理:这里,是个元素中取个的组合数.4、证明第二数学归纳法原理。
5、证明,含有个元素的集合的一切子集的个数等于。
§1.4整数的一些整除性质1、对于下列的整数,分别求出以除所得的商和余数:;;; .2、设是整数且不全为0,而,,。
练习题一一、单项选择题1.设A为3阶方阵, 数λ =-2, |A| =3, 则|λA| =()A.24; B.-24; C.6; D.-6.2.设A为n阶方阵, n1+n2+n3=n, 且|A|≠0, 即123AA AA⎛⎫⎪= ⎪⎪⎝⎭, 则A-1=( )A111213AA AA---⎛⎫⎪= ⎪⎪⎝⎭; B111213AA AA---⎛⎫⎪= ⎪⎪⎝⎭;C131211AA AA---⎛⎫⎪= ⎪⎪⎝⎭; D131211AA AA---⎛⎫⎪= ⎪⎪⎝⎭.3.设A为n阶方阵, A的秩R(A)=r<n, 那么在A的n个列向量中()A.必有r个列向量线性无关;B.任意r个列向量线性无关;C.任意r个列向量都构成最大线性无关组;D.任何一个列向量都可以由其它r个列向量线性表出.4.若方程组AX=0有非零解, 则AX=β(≠0)()A.必有无穷多组解;B.必有唯一解;C.必定没有解;D.A、B、C都不对.5. 设A、B均为3阶方阵, 且A与B相似, A的特征值为1, 2, 3, 则(2B)-1特征值为( )A.2, 1, 32; B.12,14,16; C.1, 2, 3; D.2, 1,23.6. 设A,B为n 阶矩阵,且R(A)=R(B),则()A.AB=BA;B.存在可逆矩阵P, 使P-1AP=B;C.存在可逆矩阵C, 使CTAC=B;D.存在可逆矩阵P、Q,使PAQ=B.7.实二次型()2123222132122,,xxxxxxxxf-++=是()A.正定二次型; B.半正定二次型; C.半负定二次型;D .不定二次型.8.设A, B 为满足AB=0的任意两个非零矩阵,则必有( ) A .A 的列向量线性相关,B 的行向量线性相关; B .A 的列向量线性相关,B 的列向量线性相关; C .A 的行向量线性相关,B 的行向量线性相关; D .A 的行向量线性相关,B 的列向量线性相关. 二、填空题⒈若行列式的每一行(或每一列)元素之和全为零,则行列式的值等于_______________; 2.设n 阶矩阵A 满足A2-2A+3E=O ,则A-1=_______________;3设1230,3,1,2,1,1,2,4,3,0,7,13TT Tααα⎛⎫⎛⎫⎛⎫==-= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,则321,,ααα的一个最大线性无关组为___________________________; 4. 设0γ是非齐次方程组AX=b 的一个解向量,r n -ααα,,,21 是对应的齐次方程组AX=0的一个基础解系,则0γ,,1α,,2 αr n -α线性__________;5. 设λ1 , λ2 为n 阶方阵A 的两个互不相等的特征值,与之对应的特征向量分别为X1,X2,则X1+X2_________________________矩阵A 的特征向量。
感谢你的观看《高等代数》课程习题第1章行列式习 题 1.11. 计算下列二阶行列式:(1)2345 (2)2163- (3)x x x x cos sin sin cos - (4)11123++-x x x x (5)2232ab b a a (6)ββααcos sin cos sin (7)3log log 1a b b a2. 计算下列三阶行列式:(1)341123312-- (2)00000d c b a (3)d c e ba 0000 (4)zy y x x 00002121(5)369528741 (6)01110111-- 3. 用定义计算行列式:(1)4106705330200100 (2)114300211321221---(3)500000000400030020001000 (4) dc b a 100110011001---. 4.用方程组求解公式解下列方程组:(1) ⎪⎩⎪⎨⎧=-+=--=--0520322321321321x x x x x x x x x (2)⎪⎩⎪⎨⎧=+-=-+=++232120321321321x x x x x x x x x习 题 1.21. 计算下列行列式:感谢你的观看(1)123112101 (2)15810644372---- (3)3610285140 (4)655565556 2.计算行列式(1)2341341241231234(2)12114351212734201----- (3)524222425-----a a a(4)322131399298203123- (5)0532004140013202527102135---- 3.用行列式的性质证明:(1)322)(11122b a b b a a b ab a -=+(2)3332221113333332222221111112c b a c b a c b a a c c b b a a c c b b a a c c b b a =+++++++++ 4.试求下列方程的根:(1)022223356=-+--λλλ(2)0913251323221321122=--x x5.计算下列行列式(1)8364213131524273------ (2)efcfbfde cd bdae ac ab---(3)2123548677595133634424355---------- (4)111110000000002211ΛΛΛΛΛΛΛΛΛΛn n a a a a a a ---感谢你的观看(5)xaaa x a a a xΛΛΛΛΛΛΛ (6)abb a b a b a 000000000000ΛΛΛΛΛΛΛΛΛΛ 习 题 1.31. 解下列方程组(1)⎪⎩⎪⎨⎧-=++=+--=++1024305222325321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x2. k 取何值时,下列齐次线性方程组可能有非零:(1) ⎪⎩⎪⎨⎧=+-=++-=++0200321321321x x x x kx x kx x x (2)⎪⎩⎪⎨⎧=+-=++=++0300321321321x x x x kx x x x kx 习 题 五1.41.计算下列行列式(1)3010002113005004, (2)113352063410201-- (3)222111c b a c b a(4)3351110243152113------, (5)nn n n n b a a a a a b a a a a D ++=+ΛΛΛΛΛΛΛΛ212112111112.用克莱姆法则解线性方程(1)⎪⎩⎪⎨⎧=+-=-+=--114231124342321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=++=+-+=+-+=++3322212543143214321321x x x x x x x x x x x x x x3.当λ为何值时,方程组⎪⎩⎪⎨⎧=+-=+-=++0020321321321x x x x x x x x x λλ可能存在非零解?4.证明下列各等式(1) 222)(11122b a b b a a b ab a -=+(2) ))()((4)2()1()2()1()2()1(222222222c b a c a b c c c b b ba a a ---=++++++ (3) ))()()()()()((111144442222d c b a d c d b c b d a c a b a d c b a d c b a d c b a+++------=5.试求一个2次多项式)(x f ,满足1)2(,1)1(,0)1(-==-=f f f .第2章矩阵 习 题 2.21.设 ⎥⎦⎤⎢⎣⎡=530142A , ⎥⎦⎤⎢⎣⎡-=502131B , ⎥⎦⎤⎢⎣⎡--=313210C , 求3A -2B +C 。
高等代数1考试题及答案一、单项选择题(每题3分,共30分)1. 矩阵A的行列式为0,则矩阵A是()A. 可逆的B. 不可逆的C. 正定的D. 负定的2. 线性方程组的解集是()A. 一个点B. 一条直线C. 一个平面D. 一个空集3. 向量空间的基是()A. 一组线性无关的向量B. 一组线性相关的向量C. 一组向量,但不一定线性无关D. 一组向量,但不一定线性相关4. 矩阵A和B可以相乘的条件是()A. A的行数等于B的列数B. A的列数等于B的行数C. A的行数等于B的行数D. A的列数等于B的列数5. 矩阵的秩是指()A. 矩阵中非零行的最大数量B. 矩阵中非零列的最大数量C. 矩阵中非零行和列的最大数量D. 矩阵中零行和零列的最大数量6. 线性变换的特征值是()A. 变换后向量的长度B. 变换后向量的方向C. 变换后向量长度的缩放因子D. 变换后向量方向的旋转角度7. 二次型可以表示为()A. 一个对称矩阵B. 一个斜对称矩阵C. 一个正定矩阵D. 一个负定矩阵8. 线性方程组的增广矩阵是()A. 系数矩阵和常数项的组合B. 系数矩阵和变量的组合C. 常数项和变量的组合D. 系数矩阵和变量的组合9. 矩阵的迹是指()A. 矩阵对角线元素的和B. 矩阵非对角线元素的和C. 矩阵所有元素的和D. 矩阵所有元素的乘积10. 线性方程组有无穷多解的条件是()A. 系数矩阵的秩等于增广矩阵的秩,且小于变量的个数B. 系数矩阵的秩小于增广矩阵的秩C. 系数矩阵的秩大于增广矩阵的秩D. 系数矩阵的秩等于增广矩阵的秩,且等于变量的个数二、填空题(每题4分,共40分)1. 如果矩阵A的行列式为1,则矩阵A是_________的。
2. 线性方程组的解集是空集,说明该方程组是_________的。
3. 向量空间的基是一组_________的向量。
4. 矩阵A和B可以相乘的条件是A的_________等于B的_________。
⾼等代数例题(全部)⾼等代数例题第⼀章多项式1.44P 2 (1)m 、p 、q 适合什么条件时,有231x mx x px q +-++2.45P 7 设32()(1)22f x x t x x u =++++,3()g x x tx u =++的最⼤公因式是⼀个⼆次多项式,求t 、u 的值。
3.45P 14 证明:如果((),())1f x g x =,那么(()(),()())1f x g x f x g x += 4.45P 18 求多项式3x px q ++有重根的条件。
5.46P 24 证明:如果(1)()n x f x -,那么(1)()n n x f x -6.46P 25 证明:如果23312(1)()()x x f x xf x +++,那么1(1)()x f x -,2(1)()x f x - 7.46P 26 求多项式1nx -在复数域内和实数域内的因式分解。
8.46P 28 (4)多项式1p x px ++ (p 为奇素数)在有理数域上是否可约?9.47P 1 设1()()()f x af x bg x =+,1()()()g x cf x dg x =+,且0ad bc -≠。
求证:11((),())((),())f x g x f x g x =。
10.48P 5 多项式()m x 称为多项式()f x ,()g x 的⼀个最⼩公倍式,如果(1)()()f x m x ,()()g x m x ;(2)()f x ,()g x 的任意⼀个公倍式都是()m x 的倍式。
我们以[(),()]f x g x 表⽰⾸项系数为1的那个最⼩公倍式。
证明:如果()f x ,()g x 的⾸项系数都为1,那么()()[(),()]((),())f xg x f x g x f x g x =。
11.设 m 、n 为整数,2()1g x x x =++除33()2mn f x xx =+-所得余式为。
高等代数第三版习题答案高等代数是一门研究线性代数、多项式、群、环、域等代数结构及其性质的数学分支。
第三版的高等代数教材通常会包含大量的习题,旨在帮助学生更好地理解和掌握代数的基本概念和技巧。
以下是一些习题的答案示例,请注意,这些答案仅为示例,具体习题的答案需要根据实际的题目来确定。
第一章:线性空间习题1:判断下列集合是否构成线性空间,并说明理由。
- 解:集合\{(x, y) ∈ R^2 | x + y = 1\}不构成线性空间,因为它不满足加法封闭性。
例如,取两个元素(1, 0)和(0, 1),它们的和(1, 1)不在集合中。
习题2:证明线性空间的基具有唯一性。
- 解:设{v1, v2, ..., vn}和{w1, w2, ..., wm}是线性空间V的两个基。
根据基的定义,任何向量v ∈ V都可以唯一地表示为v =c1*v1 + c2*v2 + ... + cn*vn和v = d1*w1 + d2*w2 + ... + dm*wm。
由于表示是唯一的,我们可以得出n = m,并且存在一个可逆矩阵P,使得[v1, v2, ..., vn] = [w1, w2, ..., wn]P。
这意味着两个基是等价的,从而证明了基的唯一性。
第二章:线性变换习题1:确定线性变换T: R^3 → R^3,定义为T(x, y, z) = (x + y, x - y, z)的核和像。
- 解:核N(T)是所有满足T(v) = 0的向量的集合。
设(x, y, z) ∈ N(T),则(x + y, x - y, z) = (0, 0, 0)。
解这个方程组,我们得到x = 0,y = 0,z可以是任意实数。
因此,核是一维的,由向量(0, 0, 1)生成。
习题2:证明线性变换的复合是线性的。
- 解:设T: V → W和S: W → X是两个线性变换。
对于任意的v1, v2 ∈ V和任意的标量c,我们需要证明(S ∘ T)(cv1 + v2) = c(S∘ T)(v1) + (S ∘ T)(v2)。
高等代数复习题一、选择题1. 设A是一个实矩阵,如果A的伴随矩阵B满足BB^T=A^3,那么A的秩一定是多少?A. 0B. 1C. 2D. 32. 已知复数z满足|z-1-2i|=4和|z+3+4i|=5,那么z的实部和虚部之和是多少?A. 5B. 6C. 7D. 83. 设A是一个n阶方阵,如果n=3且|A|=2,那么|3A^T|等于多少?A. 6B. 12C. 18D. 36二、填空题1. 设A是一个3×3的矩阵,A的特征值为1,2,3,则A^2的特征值之和是________。
2. 已知复数z满足|z-2-3i|=7,那么z的共轭复数为________。
3. 设A是一个2×2的矩阵,若A^2+2A+3I=0,则A的行列式|A|的值为________。
三、解答题1. (a) 证明:对于任意正整数n,下列等式成立:(1+3+5+...+(2n-1))=n^2。
(b) 利用数学归纳法证明上述结论。
2. 设A和B分别是n阶方阵,证明:det(AB)=det(A)det(B)。
3. 已知矩阵A=[1 2 -1; 3 1 4; -2 3 2]和B=[-2; 5; 1],求矩阵方程AX=B的解X。
四、应用题某公司生产两种产品A和B,已知每生产一台产品A需耗费2个工时,每生产一台产品B需耗费3个工时。
设生产一台产品A的利润为200元,生产一台产品B的利润为300元。
设该公司决定在一定时间内生产这两种产品,且总共可用的工时为300个。
问:1. 该公司最多能生产多少台产品A和多少台产品B?2. 并求出此时的最大利润。
以上为高等代数的复习题,希望你能按照题目要求进行解答。
高等代数试卷一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、)(x p 若是数域F 上的不可约多项式,那么)(x p 在F 中必定没有根。
( )2、若线性方程组的系数行列式为零,由克莱姆法则知,这个线性方程组一定是无解的。
( )3、实二次型),,,(21n x x x f 正定的充要条件是它的符号差为n 。
( )4、(){}321321;3,2,1,,,x x x i R x x x x W i ===∈=是线性空间3R 的一个子空间。
( )5、数域F 上的每一个线性空间都有基和维数。
( )6、两个n 元实二次型能够用满秩线性变换互相转化的充要条件是它们有相同的正惯性指数和负惯性指数。
( )7、零变换和单位变换都是数乘变换。
( ) 8、线性变换σ的属于特征根0λ的特征向量只有有限个。
( ) 9、欧氏空间V 上的线性变换σ是对称变换的充要条件为σ关于标准正交基的矩阵为实对称矩阵。
( )10、若{}n ααα,,,21 是欧氏空间V 的标准正交基,且∑==ni i i x 1αβ,那么∑==ni ix12β。
( )二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。
答案选错或未作选择者,该题无分。
每小题1分,共10分) 1、关于多项式的最大公因式的下列命题中,错误的是( ) ①()()()()()()n n nx g x f x g x f,,=;②()()()n j i j i f f f f f j i n ,,2,1,,,1,1,,,21 =≠=⇔=; ③()()()()()()()x g x g x f x g x f ,,+=;④若()()()()()()()()1,1,=-+⇒=x g x f x g x f x g x f 。
2、设D 是一个n 阶行列式,那么( )①行列式与它的转置行列式相等; ②D 中两行互换,则行列式不变符号; ③若0=D ,则D 中必有一行全是零; ④若0=D ,则D 中必有两行成比例。
高等代数习题第一章基本概念§1.1 集合1、设Z是一切整数的集合,X是一切不等于零的有理数的集合.Z是不是X的子集?2、设a是集A的一个元素。
记号{a}表示什么? {a} A是否正确?3、设写出和 .4、写出含有四个元素的集合{ }的一切子集.5、设A是含有n个元素的集合.A中含有k个元素的子集共有多少个?6、下列论断那些是对的,那些是错的?错的举出反例,并且进行改正.(i)(ii)(iii)(iv)7.证明下列等式:(i)(ii)(iii)§1.2映射1、设A是前100个正整数所成的集合.找一个A到自身的映射,但不是满射.2、找一个全体实数集到全体正实数集的双射.3、是不是全体实数集到自身的映射?4.设f定义如下:f是不是R到R的映射?是不是单射?是不是满射?5、令A={1,2,3}.写出A到自身的一切映射.在这些映射中那些是双射?6、设a ,b是任意两个实数且a<b.试找出一个[0,1]到[a ,b]的双射.7、举例说明,对于一个集合A到自身的两个映射f和g来说,f g与g f一般不相等。
8、设A是全体正实数所成的集合。
令(i)g是不是A到A的双射?(ii)g是不是f的逆映射?(iii)如果g有逆映射,g的逆映射是什么?9、设是映射,又令,证明(i)如果是单射,那么也是单射;(ii)如果是满射,那么也是满射;(iii)如果都是双射,那么也是双射,并且10.判断下列规则是不是所给的集合A的代数运算:集合 A 规则1234全体整数全体整数全体有理数全体实数baba+→|),(§1.3数学归纳法1、证明:2、设是一个正整数.证明 ,是任意自然数.3、证明二项式定理:这里,是个元素中取个的组合数.4、证明第二数学归纳法原理.5、证明,含有个元素的集合的一切子集的个数等于。
§1.4整数的一些整除性质1、对于下列的整数 ,分别求出以除所得的商和余数:; ;; .2、设是整数且不全为0,而 , , .证明,的一个最大公因数必要且只要 .3、设是不等于零的整数.满足下列两个条件的正整数叫做与的最小公倍数:;如果且 ,则 .证明: 任意两个不等于零的整数都有唯一的最小公倍数;令是与的最小公倍数而 ,则 .4、设是一个大于1的整数且具有以下性质:对于任意整数 ,如果 ,则或 .证明,是一个素数(定理1.4.5的逆命题).5、设是两两不相同的素数,而 .证明 ;利用证明,素数有无限多个.§1.5数环和数域1.证明,如果一个数环那么含有无限多个数.2.证明,是数域.3.证明,是一个数环,是不是数域?4.证明,两个数环的交还是一个数环;两个数域的交还是一个数域.两个数环的并是不是数环?5.设是一整数,令由例1,是一个数环.设 ,记.证明: 是一个数环..,这里是与的最大公因数..第二章多项式§2.1一元多项式的定义和运算1.设和是实数域上的多项式.证明:若是(6) ,那么2.求一组满足(6)式的不全为零的复系数多项式和3.证明:§2.2 多项式的整除性1.求被除所得的商式和余式:( i )(ii)2.证明:必要且只要3.令都是数域F上的多项式,其中且证明:4.实数满足什么条件时,多项式能够整除多项式5.设F是一个数域,证明:整除6.考虑有理数域上多项式这里和都是非负整数.证明:7.证明:整除必要且只要整除§2.3 多项式的最大公因式1.计算以下各组多项式的最大公因式:( i )(ii)2.设证明:若且和不全为零,则反之,若则是与的一个最大公因式.3.令与是的多项式,而是中的数,并且证明:4.证明:(i)是和的最大公因式;(ii)此处等都是的多项式。
5.设都是有理数域Q上的多项式。
求使得6.设令是任意正整数,证明:由此进一步证明,对于任意正整数,都有7.设证明:8.证明:对于任意正整数都有9.证明:若是与互素,并且与的次数都大于0,那么定理里的与可以如此选取,使得的次数低于的次数,的次数低于的次数,并且这样的与是唯一的。
10.决定,使与的最大公因式是一次的。
11.证明:如果那么对于任意正整数,12.设是数域F上的多项式。
与的最小公倍式指的是F[x]中满足以下条件的一个多项式:且;如果∈F[x]且,那么证明:F[x]中任意两个多项式都有最小公倍式,并且除了可能的零次因式的差别外,是唯一的。
设都是最高次项系数是1的多项式,令表示和的最高次项系数是1的那个最小公倍式。
证明13.设并且证明:14.设证明:互素的充要条件是存在多项式使得15.设令比照定理1.4.2,证明:有最大公因式.[提示:如果不全为零,取是I中次数最低的一个多项式,则就是的一个最大公因式.]§2.4 多项式的分解1.在有理数域上分解以下多项式为不可约多项式的乘积:2.分别在复数域,实数域,有理数域上分解多项式为不可约因式的乘积.3.证明:当且仅当4.求在内的典型分解式;求在内的典型分解式5.证明:数域F上一个次数大于零的多项式是中某一不可约多项式的幂的充分且必要条件是对于任意或者或者存在一个正整数使得6.设是中一个次数大于零的多项式.如果对于任意只要就有或那么不可约.§2.5 重因式1.证明下列关于多项式的导数的公式:2.设是的导数的重因式.证明:未必是的重因式;是的重因式的充分且必要条件是3. 证明有理系数多项式没有重因式.4. 应该满足什么条件,下列的有理系数多项式才能有重因式?5. 证明:数域F上的一个次多项式能被它的导数整除的充分且必要条件是,这里的是F中的数。
§2.6 多项式函数多项式的根1.设 ,求 .2.数环R的一个数说是的一个重根,如果可以被整除,但不能被整除.判断5是不是多项式的根.如果是的话,是几重根?3.设求[提示:应用综合除法.]4.将下列多项式表成的多项式.; .5.求一个次数小于4的多项式 ,使6.求一个2次多项式,使它在处与函数有相同的值.7.令是两个多项式,并且可以被整除.证明8.令是一个复数,并且是中一个非零多项式的根,令证明:在J中存在唯一的最高次项系数是1的多项式 ,使得中每一多项式都可以写成的形式,这里 .在中不可约. 如果 ,求上述的[提示:取是J中次数最低的、最高次项系数是1的多项式.] 9.设中多项式且 ,是一个大于1的整数.证明:的根只能是零或单位根.[提示:如果是的根,那么都是的根.]§2.7 复数和实数域上多项式1.设次多项式的根是 .求以为根的多项式,这里是一个数。
(ii)以11α,21α,…,nα1(假定都不等于零)为根的多项式.2.设是一个多项式,用表示把的系数分别换成它们的共轭数后所得多项式.证明:若是g,那么 ;若是是和的一个最大公因式,并且的最高次项系数是1,那么是一个实系数多项式).3.给出实系数四次多项式在实数域上所有不同类型的典型分解式.4.在复数和实数域上,分解为不可约因式的乘积.5.证明:数域F上任意一个不可约多项式在复数域内没有重根.§2.8 有理数域上多项式1.证明以下多项式在有理数域上不可约:;;.2.利用艾森斯坦判断法,证明:若是是个不相同的素数而是一个大于1的整数,那么是一个无理数.3.设是一个整系数多项式.证明:若是和都是奇数,那么不能有整数根.4.求以下多项式的有理根:;;.第三章行列式§3.1 线性方程组和行列式§3.2 排列1.计算下列排列的反序数:523146879;2.假设n个数码的排列的反序数是k,那么排列的反序数是多少?3.写出4个数码的一切排列.§3.3 阶行列式1.确定六阶行列式D=中以下各乘积的符号:2.写出下列四阶行列式中一切带有负号且含元素的项。
3.证明:阶行列式4.考察下列行列式:,,其中是这个数码的一个排列。
这两个行列式间有什么关系?5.计算阶行列式6.计算行列式7.证明:行列式8.设在阶行列式中,§3.4 子式和代数余式行列式的依行依列展开1.把行列式依第三行展开,然后加以计算.2.计算以下行列式:提示:把第一列的元素看成两项的和,然后把行列式拆成两个行列式的和。
3.令计算行列式。
§3.5 克拉默规则1.解以下线性方程组:2.设是个不同的数, 是任意个数,而多项式有以下性质: , .用线性方程组的理论证明, 的系数是唯一确定的,并且对的情形导出拉格朗日插值公式.3.设 .用线性方程组的理论证明,若是有个不同的根,那么是零多项式.第四章线性方程组§4.1 消元法1.解以下线性方程组:2.证明:对矩阵施行第一种行初等变换相当于对它连续施行若干次第二和第三种行初等变换。
3.设阶行列式0.证明:用行初等变换能把行列矩阵化为。
4.证明:在前一题的假设下,可以通过若干次第三种初等变换把化为.§4.2 矩阵的秩线性方程组可解的判别法1.对第一和第二种行初等变换证明定理4.2.1.2.利用初等变换求下列矩阵的秩:有解的必要条件是行列式这个条件不是充分的,试举一反例.5.有解?6.取怎样的数值时,线性方程组有唯一解,没有解,有无穷多解?§4.3 线性方程组的公式解1.考虑线性方程组:这里.2.3.设线性方程组:(9)有解,并且添加一个方程:于方程组(9)所得的方程组与(9)同解.证明:添加的方程是(9)中个方程的结果.4.设齐次线性方程组的系数行列式,而中某一元素的代数余子式.证明:这个方程组的解都可以写成的形式,此处k是任意数.5.设行列式令是元素的代数余子式.证明:矩阵的秩.第五章矩阵§5.1 矩阵的运算1.计算;;;;.2.证明,两个矩阵A与B的乘积AB的第i行等于A的第i行右乘以B,第j列等于B的第j列左乘以A.3.可以按下列步骤证明矩阵的乘法满足结合律:(i) 设B=()是一个n p 矩阵.令=是B的第j 列,j=1,2,…,p.又设是任意一个p1矩阵.证明:B =.(ii)设A是一个m n矩阵.利用(i)及习题2的结果,证明:A(B )=(AB).(iii)设C是一个pxq矩阵.利用(ii),证明: A(BC)=(AB)C.4.设A=证明:当且仅当B=时,AB=BA。
5.令是第i 行第j列的元素是1而其余元素都是零的n阶矩阵.求.6.求满足以下条件的所有n阶矩阵A(i)i,j=1,2,…,n,(ii)AB=BA ;这里B是任意n阶矩阵。
7.举例证明,当AB=AC时,未必B=C.8.证明,对任意n阶矩阵A和B,都有AB-BA≠I.[提示,考虑AB-BA的主对角线上的元素的和]9.令A是任意n阶矩阵,而I是n阶单位矩阵,证明:()()=10.对任意n阶矩阵A,必有n阶矩阵B和C,使A=B+C,并且§5.2 可逆矩阵矩阵乘积的行列式1.设对5阶矩阵实行以下两个初等变换:把第二行的3倍加到第三行,把第二列的3倍加到第三列,相当于这两个初等变换的初等矩阵是什么?2.证明:一个可逆矩阵可以通过列初等变换化为单位矩阵.3.求下列矩阵的逆矩阵:4.设 A是一个n阶矩阵,并且存在一个正整数m 使得(i) 证明可逆,并且(ii)求下列矩阵的逆矩阵。