现代信号处理第5章 非平稳信号处理方法
- 格式:ppt
- 大小:1.66 MB
- 文档页数:46
平稳和非平稳振动信号的若干处理方法及发展①丁康(西安交通大学机械工程学院西安,710049)陈健林苏向荣(汕头大学机械电子工程系广东汕头,515063)摘要回顾了稳态或准稳态振动信号处理方法中的离散频谱分析与校正、细化选带频谱分析、解调分析和高阶谱分析,非平稳振动信号处理方法中的转速跟踪分析、短时傅立叶分析、Wi g n e r-V i l l e分布、小波分析和H i l b e r t-H u a n g变换的发展历史,论述了各类方法的原理,分析其特点和在工程中的应用,探讨了发展前景。
关键词:信号处理;频谱校正;解调分析;时频分析中图分类号:T N11.72;T H856概述在很多行业中,对实际测量的振动信号采用各种数字信号处理方法进行分析和处理,提取各种特征,用以参数检测、质量评价、状态监视和故障诊断,所以振动信号的数字处理方法一直是近10年的主要研究方向之一。
振动信号数字处理方法大致分为两类:一类是稳态或准稳态信号的各类处理方法,典型的有离散频谱分析和校正理论、细化选带频谱分析、解调分析和高阶谱分析等;第二类是非平稳信号的各类处理方法,典型的有转速跟踪分析、短时傅立叶分析、Wi g n e r-V i l l e分布、小波分析和H i l b e r t-H u a n g变换等。
近几年来盲信号分离和循环统计量也开始应用于振动信号分析中[1~2]。
1稳态或准稳态振动信号的处理方法稳态振动信号是指频率、幅值和相位不变的动态信号,主要的分析方法有离散频谱分析和校正理论、细化选带频谱分析、高阶谱分析。
对于频率、幅值和相位周期性变化的准稳态信号分析方法主要是解调分析。
1.1离散频谱分析与校正1965年库利-图基在计算数学杂志上首次提出快速傅立叶变换(F F T)以来[3],离散频谱分析实现了信号从时域到频域分析的转变。
F F T成为数字信号分析的基础,广泛应用于工程技术领域,所以F F T是信号处理的一个辉煌的里程碑。
时频分析摘要:随着信息传递速度的提高,信号处理技术要求也在不断提高。
从信号频域可以观测信号特点,但是对于自然中的非平稳信号,仅仅频域观测不能反映信号频率在时间轴上的变化,由此提出了时频分析技术,可以产生时间与频率的联合函数,方便观测信号频率在时间轴上的变化。
在现有的时频分析技术中较为常见的算法有短时傅里叶变换、WVD、线性调频小波等。
本文介绍了以上几种常见的算法和时频分析的相关应用。
关键词:信号处理非平稳信号时频分析一.整体概况在传统的信号处理领域,基于 Fourier 变换的信号频域表示及其能量的频域分布揭示了信号在频域的特征,它们在传统的信号分析与处理的发展史上发挥了极其重要的作用。
但是,Fourier 变换是一种整体变换,即对信号的表征要么完全在时域,要么完全在频域,作为频域表示的功率谱并不能告诉我们其中某种频率分量出现在什么时候及其变化情况。
然而,在许多实际应用场合,信号是非平稳的,其统计量(如相关函数、功率谱等)是时变函数。
这时,只了解信号在时域或频域的全局特性是远远不够的,最希望得到的乃是信号频谱随时间变化的情况。
为此,需要使用时间和频率的联合函数来表示信号,这种表示简称为信号的时频表示。
时频分析的主要研究对象是非平稳信号或时变信号,主要的任务是描述信号的频谱含量是怎样随时间变化的。
时频分析是当今信号处理领域的一个主要研究热点,它的研究始于20世纪40年代,为了得到信号的时变频谱特性,许多学者提出了各种形式的时频分布函数,从短时傅立叶变换到 Cohen 类,各类分布多达几十种。
如今时频分析已经得到了许多有价值的成果,这些成果已在工程、物理、天文学、化学、地球物理学、生物学、医学和数学等领域得到了广泛应用。
时频分析在信号处理领域显示出了巨大的潜力,吸引着越来越多的人去研究并利用它。
1.1基本思想时频分布让我们能够同时观察一个讯号在时域和频域上的相关资讯,而时频分析就是在分析时频分布。
传统上,我们常用傅里叶变换来观察一个讯号的频谱。
平稳和非平稳振动信号的处理方法周景成(东华大学机械工程学院,上海 201620)摘要:本文主要综述了当前对于平稳和非平稳振动信号的处理方法及其优缺点,同时列举了目前振动信号处理的研究热点和方向。
关键词:稳态非稳态振动信号处理;方法;优缺点。
1.稳态与非稳态振动信号的界定稳态振动信号是指频率、幅值和相位不变的动态信号,频率、幅值和相位做周期性变化的信号称为准稳态信号,而对于频率、幅值和相位做随机变化的信号则称为非稳态信号。
2. 稳态或准稳态振动信号的主要处理方法及其优势与局限对于稳态振动信号,主要的分析方法有离散频谱分析和校正理论、细化选带频谱分析和高阶谱分析。
对于准稳态信号主要采用的是解调分析。
对于非稳态振动信号主要采用加Hanning窗转速跟踪分析、短时傅里叶变换、Wigner-Ville 分布和小波变换等。
对于任一种信号处理方法都有其优势和劣势,没有完美的,具体在工程实际中采用哪一种分析方法得看具体的工程情况而定,不能一概而论。
2. 1 离散频谱分析与校正离散频谱分析是处理稳态振动信号的常用方法,离散频谱分析实现了信号从时域到频域分析的转变。
FFT成为数字信号分析的基础,广泛应用于工程技术领域。
通过离散傅里叶变换将振动信号从时域变换到频域上将会获得信号更多的信息。
对于这一方法,提高信号处理的速度和精度是当下两个主要的研究方向。
由于计算机只能对有限多个样本进行运算,FFT 和谱分析也只能在有限区间内进行,这就不可避免地存在由于时域截断产生的能量泄漏,离散频谱的幅值、相位和频率都可能产生较大的误差,所以提高精度成为近一段时间主要的研究方向。
上世纪70年代中期,有关学者开始致力于离散频谱校正方法的研究。
目前国内外有四种对幅值谱或功率谱进行校正的方法:(1)比值校正法(内插法);(2)能量重心校正法;(3)FFT+FT谱连续细化分析傅立叶变换法;(4)相位差法。
四种校正方法的原理和特点见表1[1].从理论上分析,在不含噪声的情况下,比值法和相位差法是精确的校正法,而能量重心法和FFT+FT谱连续细化分析傅立叶变换法是精度很高的近似方法。
┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊非平稳信号处理读书报告1130922 机械设计及理论顾嘉运1 非平稳信号的处理1.1 非平稳信号随机信号可以分成平稳随机信号和非平稳随机信号。
所谓非平稳随机信号亦即其统计特性是时间的函数。
严格地说,许多实际信号都是属于非平稳随机信号,基于平稳过程与线性过程的传统信号处理理论难以发挥作用,这种情况下就需要能处理非平稳与非线性信号的时频分析方法。
但是由于受理论条件的限制,在80年代以前,人们对于信号进行分析仅仅局限于平稳的情况,进入80年代以后,随着时频分析理论与应用的发展,对于非平稳随机信号分析与处理的研究逐渐受到人们的广泛关注,并日益发展起来。
工程中获得的动态信号,它们的平稳性是相对的、局部的,而非平稳性是绝对的,广泛的。
针对信号的非平稳特性,人们研究了多种方法来提取其特征。
目前,非平稳信号处理方法大致有短时傅立叶变换(STFT),Hilbert-Huang变换,小波分析,局部均值分解和奇异值分解技术等。
1.2 加窗傅里叶变换基于Fourier 变换的传统信号处理方法只能分析信号的统计平均结果, 无法处理非平稳信号。
Dennis Gabor于1946年引入了短时傅立叶变换(Short-time Fourier Transform)。
短时傅立叶变换的基本思想是:把信号分成许多小的时间隔,用傅立叶变换分析每一个时间间隔,以便确定该时间间隔存在的频率。
其表达式为:.)()(),(dtetgtfS t ifωττω-∞∞--=⎰其中,g(t)为一窗口函数,它一般是一光滑的低通函数,只在τ的附近有值,在其余处迅速衰减掉。
这样,我们便得到函数在时刻τ附近的频率信息。
随着时间τ的变化,g(t)所确定的窗函数在时间轴上移动,对f(t)逐渐进行分析。
这样信号在窗函数上的展开就可以表示为],[δτδτ+-、],[εωεω+-这一区域内的状态,并把这一区域称为窗口,δ和ε分别称为窗口的时宽和频宽,表示时频分析中的分辨率,窗宽越小则分辨率就越高。
非平稳信号处理方法非平稳信号处理是指由多种频率、幅度和相位混合而成的信号,在时间上不具有稳定性,随着时间的推移,信号的性质会发生变化。
在实际应用中,非平稳信号处理在各行各业都有广泛的应用,比如金融市场、医疗诊断、地震探测等领域。
然而,由于非平稳信号随着时间的推移而发生变化,使得传统的信号处理技术难以处理这种信号。
因此,出现了一些新的信号处理方法,用于处理非平稳信号,这些方法可以帮助我们更好地理解信号的本质和特点。
一、小波分析小波分析是一种用于时间-频率分析的信号处理工具,它在分析非平稳信号方面极为有效。
首先,将非平稳信号分解为多个频带,并对每个信号分别进行小波分析,以进行时间-频率分析。
小波分析具有局部性,可以更好地提取非平稳信号的特征,比如瞬时频率和瞬时振幅等信息。
此外,小波分析可以将非平稳信号转换为时频表示,这样便于将信号的动态特性可视化并进行更深入的分析。
小波分析可以应用于各种领域,比如金融分析、医学诊断、图像处理等。
二、经验模态分解(EMD)经验模态分解是一种信号处理方法,它可以将非平稳信号分解成若干个固有模态函数,每个固有模态函数都与信号的不同频率和振幅成分相对应。
经验模态分解是一种自适应方法,因此可以应对信号的不同特征,处理结果更加准确和可靠。
一般而言,经验模态分解分为两个步骤,分别为求得固有模态函数和提取高频部分。
经验模态分解的输出结果可以用于确定信号的动态行为和预测未来。
经验模态分解在金融市场、生物医学、地震预测等领域中都有广泛的应用。
三、时序数据挖掘时序数据挖掘是一种用于处理时间序列数据的算法。
通过对时间序列数据的分析,最终找到它们之间的关联性和模式,并实现基于时间序列模型的预测和分类。
时序数据可以通过将其分解为周期性和非周期性成分,进而实现数据的降维和去噪。
时序数据挖掘可以应用于各种领域,比如工业生产、金融分析、交通管理等,这些领域中的各种时序数据都可以通过时序数据挖掘得到更精确的预测和分析结果。
平稳和非平稳振动信号的处理方法周景成(东华大学机械工程学院,上海 201620)摘要:本文主要综述了当前对于平稳和非平稳振动信号的处理方法及其优缺点,同时列举了目前振动信号处理的研究热点和方向。
关键词:稳态非稳态振动信号处理;方法;优缺点。
1.稳态与非稳态振动信号的界定稳态振动信号是指频率、幅值和相位不变的动态信号,频率、幅值和相位做周期性变化的信号称为准稳态信号,而对于频率、幅值和相位做随机变化的信号则称为非稳态信号。
2. 稳态或准稳态振动信号的主要处理方法及其优势与局限对于稳态振动信号,主要的分析方法有离散频谱分析和校正理论、细化选带频谱分析和高阶谱分析。
对于准稳态信号主要采用的是解调分析。
对于非稳态振动信号主要采用加Hanning窗转速跟踪分析、短时傅里叶变换、Wigner-Ville 分布和小波变换等。
对于任一种信号处理方法都有其优势和劣势,没有完美的,具体在工程实际中采用哪一种分析方法得看具体的工程情况而定,不能一概而论。
2. 1 离散频谱分析与校正离散频谱分析是处理稳态振动信号的常用方法,离散频谱分析实现了信号从时域到频域分析的转变。
FFT成为数字信号分析的基础,广泛应用于工程技术领域。
通过离散傅里叶变换将振动信号从时域变换到频域上将会获得信号更多的信息。
对于这一方法,提高信号处理的速度和精度是当下两个主要的研究方向。
由于计算机只能对有限多个样本进行运算,FFT 和谱分析也只能在有限区间内进行,这就不可避免地存在由于时域截断产生的能量泄漏,离散频谱的幅值、相位和频率都可能产生较大的误差,所以提高精度成为近一段时间主要的研究方向。
上世纪70年代中期,有关学者开始致力于离散频谱校正方法的研究。
目前国内外有四种对幅值谱或功率谱进行校正的方法:(1)比值校正法(内插法);(2)能量重心校正法;(3)FFT+FT谱连续细化分析傅立叶变换法;(4)相位差法。
四种校正方法的原理和特点见表1[1].从理论上分析,在不含噪声的情况下,比值法和相位差法是精确的校正法,而能量重心法和FFT+FT谱连续细化分析傅立叶变换法是精度很高的近似方法。
数码相机定位摘要摘要在摘要的写作中一定要花3个小时以上,反复修改,一定要修改修改再修改,修改个10几稿才能过关。
在摘要中一定要突出方法,算法,结论,创新点,特色,不要有废话,一定要突出重点,让人一看就知道这篇论文是关于什么的,做了什么工作,用的什么方法,得到了什么效果,有什么创新和特色。
一定要精悍,字字珠玑,闪闪发光,一看就被吸引。
这样的摘要才是成功的。
非平稳信号分析与处理被广泛用于消噪、特征提取、状态识别、故障诊断等。
一般方法有时域分析、频域分析、时频联合分析。
本文先从统计特性简述非平稳信号的原理,以雷达信号为例研究非平稳信号的形式和特点。
然后对其中时域分析的时变参数自回归(AR)法做了深入研究。
基于经验模式分解法,对非平稳信号做平稳化处理,把非平稳信号分解成几个平稳的固有模式分量,在此基础上建立起我们的时变参数自回归(AR)模型。
分析经验模式分解法中端点不是极值点时对拟合包络线的误差影响。
对局部极值点集做平稳处理后,建立自回归(AR)模型,预测出端点附近的临近一个局部极值点,然后再做拟合和分解,削弱端点效应。
对模型的各项参数进行了检验和灵敏度分析,得到扩展维数对模型的阶数没有太大影响,并且模型阶数到达某一值后,阶数的增加不减小模型的误差。
最后分析评价模型对非平稳信号的分析和处理,提出了GM(1,1)对短数据信号的改进。
关键词:经验模式分解、时变参数自回归(AR)模型、功率谱、端点效应目录摘要 (1)1问题重述 (3)2问题分析 (3)3模型假设 (4)4符号说明 (4)5模型的建立与求解 (4)5.1问题一 (4)5.2问题二 (5)5.2.1模型一的准备 (5)5.2.2模型一的建立 (5)5.2.3模型一的仿真分析 (9)5.3模型二 (11)5.3.1建立模型二的基本步骤 (11)5.3.2去除端点效应的必要性分析 (12)6模型的检验 (14)7模型的灵敏度分析 (15)8模型评价与改进 (15)8.1模型的分析评价 (15)8.2模型改进 (15)9模型的应用前景 (16)10参考文献 (16)附录 (17)1问题重述信号的分析与处理是信息科学中发展最为迅速的学科之一。
现代信号处理研究方向
现代信号处理是一个广泛的研究领域,包括许多不同的研究方向。
以下是一些常见的现代信号处理研究方向:
1. 信号压缩和编码:这是一种将信号压缩成更小的数据集的技术,以便更有效地存储和传输信号。
这可以通过使用小波变换、离散余弦变换等技术来实现。
2. 信号滤波和降噪:这是一种去除信号中的噪声和干扰的技术,以便更好地提取有用的信号信息。
这可以通过使用滤波器设计、小波分析等技术来实现。
3. 信号特征提取和分类:这是一种从信号中提取有用特征并将其用于分类或识别的技术。
这可以通过使用支持向量机、人工神经网络等技术来实现。
4. 信号处理算法优化:这是一种优化信号处理算法的技术,以便更快地计算和更高效地运行。
这可以通过使用并行计算、数值优化等技术来实现。
5. 非线性和非平稳信号处理:这是一种处理非线性和非平稳信号的技术,这些信号难以用传统的线性和平稳信号处理方法来处理。
这可以通过使用非线性变换、小波包分析等技术来实现。
6. 信号处理在生物医学中的应用:这是一种将信号处理应用于生物医学领域的技术,例如心电图、脑电图、医学成
像等。
7. 信号处理在通信中的应用:这是一种将信号处理应用于通信领域的技术,例如数字通信、无线通信、卫星通信等。
总之,现代信号处理研究方向非常广泛,涉及许多不同的应用领域,并且随着技术的不断发展,还将不断涌现新的研究方向。
非平稳信号的处理方法
非平稳信号是指在时间上存在变化的信号,这种信号在实际应用中非常常见,例如心电图、语音信号、股票价格等。
由于其时间上的变化,非平稳信号的处理方法与平稳信号有所不同。
对于非平稳信号,我们需要进行信号分析,以了解其时间上的变化规律。
常用的信号分析方法包括小波变换、时频分析等。
小波变换可以将信号分解成不同频率的子信号,从而更好地了解信号的频率特征。
时频分析则可以将信号在时间和频率上进行分析,以了解信号的瞬时频率和能量分布情况。
对于非平稳信号的处理,我们需要考虑信号的局部特征。
由于非平稳信号在时间上存在变化,因此其局部特征可能会发生变化。
例如,在语音信号中,不同的音节具有不同的频率和能量特征,因此我们需要对不同的音节进行不同的处理。
在股票价格中,不同的时间段可能会出现不同的趋势,因此我们需要对不同的时间段进行不同的分析和预测。
对于非平稳信号的处理,我们需要考虑信号的噪声和干扰。
由于非平稳信号在时间上存在变化,因此其噪声和干扰也可能会发生变化。
例如,在心电图中,信号可能会受到肌肉运动和呼吸运动的干扰,因此我们需要对这些干扰进行滤波处理。
在语音信号中,信号可能会受到环境噪声和语音失真的影响,因此我们需要对这些噪声和失真进行去除和修复。
非平稳信号的处理方法需要考虑信号的时间变化、局部特征、噪声和干扰等因素。
通过合理的信号分析和处理方法,我们可以更好地了解和利用非平稳信号,为实际应用提供更好的支持和服务。
第一章 绪论1、 试举例说明信号与信息这两个概念的区别与联系。
信息反映了一个物理系统的状态或特性,是自然界、人类社会和人类思维活动中普遍存在的物质和事物的属性。
信号是传载信息的物理量是信息的表现形式,如文字、语言、图像等。
如人们常用qq 聊天,即是用文字形式的信号将所要表达的信息传递给别人。
2、 什么是信号的正交分解?如何理解正交分解在机械故障诊断中的重要价值?P9正交函数的定义信号的正交分解如傅里叶变换、小波分解等,即将信号分解成多个独立的相互正交的信号的叠加。
从而将信号独立的分解到不同空间中去,通常指滤波器频域内正交以便于故障分析和故障特征的提取。
傅里叶变换将信号分解成各个正交的傅里叶级数,将信号从时域转换到频域从而得到信号中的各个信号的频率。
正交小波变换能够将任意信号(平稳或非平稳)分解到各自独立的频带中;正交性保证了这些独立频带中状态信息无冗余、无疏漏,排除了干扰,浓缩了了动态分析与监测诊断的信息。
3、 为什么要从内积变换的角度来认识常见的几种信号处理方法?如何选择合适的信号处理方法? 在信号处理各种运算中内积变换发挥了重要作用。
内积变换可视为信号与基函数关系紧密程度或相似性的一种度量。
对于平稳信号,是利用傅里叶变换将信号从时域变为频域函数实现的方式是信号函数x (t )与基函数i t e ω 通过内积运算。
匹配出信号x (t )中圆频率为w 的正弦波.而非平稳信号一般会用快速傅里叶变换、离散小波变换、连续小波变换等这些小波变换的内积变换内积运算旨在探求信号x (t )中包含与小波基函数最相关或最相似的分量。
“特征波形基函数信号分解”旨在灵活运用小波基函数 去更好地处理信号、提取故障特征。
用特定的基函数分解信号是为了获得具有不同物理意义的分类信息。
不同类型的机械故障会在动态信号中反应出不同的特征波形,如旋转机械失衡振动的波形与正弦波形有关,内燃机爆燃振动波形是具有钟形包络的高频波;齿轮轴承等机械零部件出现剥落。