谐振动分析(三)两个同方向同频率简谐运动的合成
- 格式:ppt
- 大小:1.02 MB
- 文档页数:34
第三十二讲 §8.2 简谐振动的合成一、两个同方向同频率简谐振动的合成1、合振动仍然为简谐振动简谐振动1:()111cos ϕω+=t A x 简谐振动2:()222cos ϕω+=t A x合振动:()()()ϕωϕωϕω+=+++=+=t A t A t A x x x cos cos cos 2211212、合振动的振幅:()()22211222112sin sin cos cos A ϕϕϕϕA A A A +++=()1212212221sin sin cos cos 2ϕϕϕϕ+++=A A A A ()12212221cos 2ϕϕ-++=A A A A 3、合振动的初相位:22112211cos cos sin sin tan ϕϕϕϕϕA A A A ++==邻边对边 4、合振动的最大值,相长的条件:两分振动相位相同,相位差:() 3,2,1,0212=±=-=∆k k πϕϕϕ⇒()1cos 12=-ϕϕ ⇒ 212122212A A A A A A A +=++=5、合振动的最小值,相消的条件:两分振动相位相反,相位差:() 3,2,1,01212=+±=-=∆k k πϕϕϕ)( ⇒()1cos 12-=-ϕϕ ⇒ 212122212A A A A A A A -=-+= 其他值:2121A A A A A +-练习题1. 一物体同时参与两个同方向的简谐振动:)212c o s (04.01π+π=t x (SI), )2cos(03.02π+π=t x (SI) 求此物体的振动方程.解:设合成运动(简谐振动)的振动方程为 )cos(φω+=t A x则 )c o s(2122122212φφ-++=A A A A A ①以 A 1 = 4 cm ,A 2 = 3 cm ,π=π-π=-212112φφ代入①式,得5cm 3422=+=A cm 2分又 22112211c o s c o s s i n s i n a r c t gφφφφφA A A A ++= ② ≈127°≈2.22 rad 2分 ∴)22.22cos(05.0+π=t x (SI) 1分练习题2. 两个同方向简谐振动的振动方程分别为 )4310cos(10521π+⨯=-t x (SI), )4110cos(10622π+⨯=-t x (SI) 求合振动方程.解:依合振动的振幅及初相公式可得φ∆++=c o s 2212221A A A A A 22210)4143cos(65265-⨯π-π⨯⨯⨯++= m 21081.7-⨯= m 2分)4/c o s (6)4/3c o s (5)4/s i n (6)4/3s i n (5a r c t gπ+ππ+π=φ = 84.8°=1.48 rad 2分则所求的合成振动方程为 )48.110cos(1081.72+⨯=-t x (SI)1分练习题3. 两个同方向的简谐振动的振动方程分别为x 1 = 4×10-2cos2π)81(+t (SI), x 2 = 3×10-2cos2π)41(+t (SI) 求合振动方程.解:由题意 x 1 = 4×10-2cos)42(π+πt (SI)x 2 =3×10-2cos)22(π+πt (SI) 按合成振动公式代入已知量,可得合振幅及初相为22210)4/2/cos(2434-⨯π-π++=A m= 6.48×10-2 m 2分)2/cos(3)4/cos(4)2/sin(3)4/sin(4arctgπ+ππ+π=φ=1.12 rad 2分 合振动方程为 x = 6.48×10-2 cos(2πt +1.12) (SI) 1分练习题4. 一质点同时参与两个同方向的简谐振动,其振动方程分别为 x 1 =5×10-2cos(4t + π/3) (SI) , x 2 =3×10-2sin(4t - π/6) (SI) 画出两振动的旋转矢量图,并求合振动的振动方程.解: x 2 = 3×10-2 sin(4t - π/6)= 3×10-2cos(4t - π/6- π/2)= 3×10-2cos(4t - 2π/3).作两振动的旋转矢量图,如图所示. 图2分由图得:合振动的振幅和初相分别为A = (5-3)cm = 2 cm ,φ = π/3. 2分合振动方程为 x = 2×10-2cos(4t + π/3) (SI)1分小结:简谐振动的合成,与旋转矢量的解法作业:P33 8—16;8—17;预习:§8—2二、两个同方向不同频率简谐振动的合成 拍频三、相互垂直的简谐振动的合成1、同频率的相互垂直的简谐振动的合成2、不同频率的相互垂直的简谐振动的合成第三十二讲 §8.2 简谐振动的合成 8-16 解:设两质点的振动表达式分别为:)cos()cos(2211ϕωϕω+=+=t A x t A x 由图题可知,一质点在21A x =处时对应的相位为: 32/arccos 1πϕω==+A A t 同理:另一质点在相遇处时,对应的相位为:352/arccos2πϕω==+A A t 故相位差)()(12ϕωϕωϕ∆+-+=t t πππϕϕ3433512=-=-= 若21υυ与的方向与上述情况相反,故用同样的方法,可得:πππϕϕϕ∆32)3(312=--=-= 8-17 解:由图题8-17(图在课本上P 200)所示曲线可以看出,两个简谐振动的振幅相同,即m 05.021==A A ,周期均匀s 1.0=T ,因而圆频率为:ππω202==T 由x -t 曲线可知,简谐振动1在t=0时,,010=x 且010>υ,故可求得振动1的初位相πϕ2310=. 同样,简谐振动2在t=0时,πϕυ==-=202020,0,05.0可知m x 故简谐振动1、2的振动表达式分别为: mt x t x )20cos(05.0)2320cos(05.021ππππ+=+=因此,合振动的振幅和初相位分别为:m A A A A A 210202122211025)cos(2-⨯=-++=ϕϕ 2021012021010cos cos sin sin arctan ϕϕϕϕϕA A A A ++= ππ4541a r c t a n 或== 但由x-t 曲线知,t=0时,πϕ45,05.021应取因此-=+=x x x . 故合振动的振动表达式:m t x )4520cos(10252ππ+⨯=-习题8-16图。