最新流式细胞仪分析技术
- 格式:ppt
- 大小:2.97 MB
- 文档页数:81
①细胞生物学:定量分析细胞周期并分选不同细胞周期时相的细胞;分析生物大分子如DNA、RNA、抗原、癌基因表达产物等物质与细胞增殖周期的关系,进行染色体核型分析,并可纯化X或Y染色体。
②肿瘤学:DNA倍体含量测定是鉴别良、恶性肿瘤的特异指标。
近年来已应用DNA倍体测定技术,对白血病、淋巴瘤及肺癌、膀胱癌、前列腺癌等多种实体瘤细胞进行探测。
用单克降抗体技术清除血液中的肿瘤细胞。
③免疫学:研究细胞周期或DNA倍体与细胞表面受体及抗原表达的关系;进行免疫活性细胞的分型与纯化;分析淋巴细胞亚群与疾病的关系;免疫缺陷病如艾滋病的诊断;器官移植后的免疫学监测等。
④血液学:血液细胞的分类、分型,造血细胞分化的研究,血细胞中各种酶的定量分析,如过氧化物酶、非特异性酯酶等;用NBT及DNA双染色法可研究白血病细胞分化成熟与细胞增殖周期变化的关系,检测母体血液中Rh(+)或抗D抗原阳性细胞,以了解胎儿是否可能因Rh血型不合而发生严重溶血;检测血液中循环免疫复合物可以诊断自身免疫性疾病,如红斑狼疮等。
⑤药物学:检测药物在细胞中的分布,研究药的作用机制,亦可用于筛选新药,如化疗药物对肿瘤的凋亡机制,可通过测DNA凋亡峰,Bcl-2凋亡调节蛋白等。
细胞凋亡研究细胞凋亡是细胞在基因控制下的有序死亡,在疾病发生、发展中有重要作用,因而研究细胞凋亡有重要意义。
细胞凋亡检测方法很多,应用流式细胞仪技术可根据细胞在凋亡过程中发生一系列形态、生化变化从多个角度对细胞凋亡进行定性和定量的测定。
1. 细胞形态变化:通过流式细胞仪测定细胞光散射的变化来观察细胞凋亡。
在细胞凋亡早期,细胞前向角光散射的能力显著降低,90°角光散射的能力增加;在细胞凋亡晚期,前向角和90°角光散射的信号均降低。
此方法特异性不强,目前使用较少。
2 细胞膜功能改变:(1)磷脂酰丝氨酸(phosphatidylserine PS)异位:正常情况下,PS位于细胞膜内层,细胞发生凋亡时PS从细胞膜内翻转并暴露在细胞膜外层,是细胞发生凋亡的早期事件。
流式细胞仪分析技术及应用流式细胞术(FCM)是以流式细胞仪为检测手段的一项能快速、精确的对单个细胞理化特性进行多参数定量分析和分选的新技术。
流式细胞仪的发展综合了激光技术、计算机技术、显微荧光光度测定技术、流体喷射技术、分子生物学和免疫学等多门学科的知识。
概述流式细胞仪由液流系统、光学与信号转换测试系统和信号处理及放大的计算机系统三大基本结构组成,可对细胞悬液中的单个细胞或特定细胞或其超微结构进行多参数快速分析。
一、工作原理(了解)基本组成结构1.液流系统由样本和鞘液组成。
待测细胞被制备成单个细胞的悬液,经荧光染料标记的单克隆抗体染色后置入样品管中,在清洁气体压力下进入流动室形成样本流;鞘液是辅助样本流被正常检测的基质液,其主要的作用是包裹在样本流的周围,使其保持处于喷嘴中心位置以保证检测的精确性,同时又防止样本流中细胞靠近喷孔壁而堵塞喷孔。
2.光学系统由激光光源、分光镜、光束成形器、透镜组和光电倍增管组成。
(1)激光光源:现代流式细胞仪采用的多为气冷式氢离子激光器,常用激光束波长为488nm,15mW。
(2)分光镜:作用是反射较长波长的光,通过较短波长的光。
(3)光束成形器:由两个十字交叉放置的圆柱形透镜组成。
(4)透镜组:有3个透镜,作用是将激光和荧光变成平行光,同时除去离散的室内光。
(5)滤片:长通滤片,允许长于设定波长的光通过;短通滤片,允许短于设定波长的光通过;带通滤片,允许一定带宽的波长通过,其他波长的光不能通过。
(6)光电倍增管(PMT):主要作用是检测散射光和荧光,同时将光学信号转换成电脉冲(数字数据)信号。
3.数据处理系统主要由计算机及其软件组成,进行实验数据的分析、存储、显示,是流式细胞仪组成部件中的重要环节。
二、散射光的测定散射光信号的产生是细胞在液柱中与激光束相交时向周围360°立体角方向散射的光线信号,散射光的强弱与细胞的大小、形状、光学同性、胞内颗粒折射有关,与接收散射光的方向也有关。
流式细胞仪常用的几种检测方法1.细胞计数和生存率检测:流式细胞仪可以通过测定细胞的大小、形状和胞内染色物来实现细胞计数和生存率的检测。
通过自动聚焦和自动获取图像的功能,可以对大量的细胞进行计数和分析,并得出生存率数据。
2.表面标记检测:流式细胞仪可以利用荧光染料或荧光标记抗体对细胞表面的蛋白质、糖类或其他生物分子进行检测。
这种检测方法主要用于检测细胞表面标记的数量和分布情况,例如测定细胞表面特定抗原的表达水平。
3.细胞周期分析:流式细胞仪可以通过染色剂或荧光标记抗体对细胞进行染色,然后分析细胞在不同细胞周期阶段的比例。
这种检测方法可以用于研究细胞的增殖能力、细胞周期调控机制以及细胞周期与疾病发展的关系。
4.细胞凋亡检测:流式细胞仪可以利用染色剂或荧光标记抗体对细胞凋亡的标志物进行检测。
凋亡是细胞死亡的一种形式,通过测定凋亡细胞的数量和凋亡标志物的表达水平,可以研究细胞凋亡的调控机制以及细胞凋亡与疾病的关系。
5.细胞功能检测:流式细胞仪可以通过检测细胞内Ca2+浓度、ROS (活性氧物种)水平、蛋白质磷酸化等细胞功能指标来研究细胞的信号转导和功能活性。
例如,利用荧光染料可以测定细胞内钙离子的浓度变化,以研究细胞响应外界刺激的机制。
此外,流式细胞仪还可以进行细胞分选、多色细胞分析和细胞细胞间相互作用的研究。
细胞分选功能可以根据细胞标记物的表达水平将细胞分离出来,用于研究特定功能细胞的特性。
多色细胞分析可以用于同时检测多种标记物的表达水平,以揭示不同细胞类型的分子特征。
细胞间相互作用的研究可以通过检测细胞间的共聚或共表达标记物来研究细胞间的相互作用和相互影响。
总的来说,流式细胞仪是一种功能强大的实验室设备,常用于细胞生物学和疾病研究。
通过不同的检测方法,可以在细胞水平上研究细胞的数量、表面标记、周期、凋亡、功能以及细胞间相互作用等方面的特征。
流式细胞仪结果分析一、获取数据在进行流式细胞仪结果分析之前,首先需要获取实验数据。
流式细胞仪会输出每个样本细胞的荧光强度、散射性质等参数。
这些参数可以代表细胞的表型特征或者亚细胞结构。
根据实验的需要,可以选择一种或多种指标进行数据分析。
二、数据清洗和预处理由于实验过程中可能会受到一些随机因素的干扰,比如机器灵敏度、噪声等,得到的数据可能存在一些异常值。
因此,在进行数据分析之前,首先需要对数据进行清洗和预处理,以减少这些异常值的干扰。
数据清洗可以通过以下几种方法进行:1.去除非细胞事件:流式细胞仪在采集数据时可能会采集到一些非细胞事件,比如细胞碎片、空白颗粒等,可以通过设置或者后续数据处理来去除这些非细胞事件。
2.去除离群值:根据实验的需要和数据的分布情况,可以使用统计学方法或者软件工具来判断和去除离群值。
3.数据归一化:如果实验中使用了多个荧光探针,不同探针之间的信号强度可能有差异。
可以通过归一化处理来消除这种差异,以确保数据的可比性。
三、统计分析数据清洗和预处理之后,可以进行统计分析来描述和解析数据。
流式细胞仪的数据通常是多维的,可以使用多种统计分析方法来从不同角度揭示数据的特点和规律。
1.基本统计分析:包括均值、标准差、中位数等指标,可以帮助了解数据的集中趋势和离散程度。
2.相关性分析:通过计算各个参数之间的相关系数,可以研究不同指标之间的关系。
例如,可以使用皮尔逊相关系数来衡量两个参数之间的线性相关性。
3.差异分析:比较不同样本或不同组的数据之间的差异。
常用的差异分析方法有t检验、方差分析等。
四、数据可视化为了更好地理解和传达数据的结果,可以使用数据可视化技术将数据以图表、图像等形式展示出来。
常用的数据可视化方法包括散点图、条形图、箱线图等。
通过数据可视化,可以帮助研究者直观地观察数据的分布情况、群体几何形状和特征变化趋势等。
五、结果解读在进行流式细胞仪结果分析时,需要根据实验目的和样本特性进行结果的解读。
流式细胞术最新进展及临床应用流式细胞术最新进展及临床应用流式细胞术( F l o w cy t o m e t r y, F C M), 临床上也被称为流式细胞分析,是利用流式细胞仪同时对单个细胞的多个参数进行定性/ 定量( 相对/ 绝对) 分析的生物医学分析技术,检测速度快、通量高、灵敏度高、采集数据量大、节约样本及成本,在临床上已经广泛应用于血液学、免疫学、肿瘤学、精子学等检验领域,是未来临床检验不可替代的检测方法之一。
传统流式细胞术,也被称为荧光流式细胞术,是基于荧光标记及荧光发射光谱检测的一门综合性技术,定量方式多为定性分析,检测参数类型单一、数目有限,数据分析复杂且缺乏标准化分析流程,不同检测中心间数据重现性差,这些都限制了它在临床检验中进一步的推广及应用。
近年来,为克服以上问题,流式细胞术不断突破与创新,从定性检测发展为定量检测;从单参数分析、双参数分析发展成为多参数分析;从检测细胞表面抗原到胞内抗原及分泌到胞外的抗原;从检测蛋白表达水平发展为检测蛋白定位、蛋白功能及蛋白翻译后修饰等;从一维定量检测发展为二维定量定位分析,从体外检测发展为体内检测等;这些突破使得流式细胞术可以实现从单细胞水平去认识细胞在生理或病理状态下的免疫表型、分子表型甚至各种复杂的信号通路变化等,因此将更为广泛应用于临床检测。
1定量流式细胞术定量流式细胞术( Q u a n tit a ti ve fl o w cy t o m e t r y, QFCM),即通过流式细胞仪定量检测细胞或微球上荧光素的中值荧光强度 ( M e d i a n fl u o r e s ce n t i n t e n s it y, M F I ) 或每个细胞结合的抗体单位( A n ti b o d i e s b o und t o p e r ce ll,A BC) 来对生物分子进行相对或绝对定量的流式细胞技术。
定量流式细胞术已被证明是一种功能强大的临床检验技术,但由于M F I缺乏标准化度量方法,容易引起不同检测中心检测结果重现性差,导致诊断和治疗决策的不确定性及不可靠性, 限制了其在临床的推广应用, 因此,标准化M F I测量为流式细胞术实现精确定量分析,在临床广泛应用的必经之路。
第二十二章流式细胞仪分析技术及应用本章要点1.流式细胞仪的分析及分选原理2.数据的显示与分析3.流式细胞仪免疫分析的技术要求4.流式细胞术在免疫学检查中的应用概述:流式细胞术(FCM)是以流式细胞仪为检测手段的一项能快速、精确地对单个细胞理化特性进行多参数定量分析和分选的新技术。
流式细胞仪的发展综合了激光技术、计算机技术、显微荧光光度测定技术、流体喷射技术、分子生物学和免疫学等多门学科的知识。
流式细胞仪:是集光电子物理,光电测量,计算机,细胞荧光化学,单抗技术为一体的高科技细胞分析仪。
第一节流式细胞仪的分析及分选原理流式细胞计的基本结构流式细胞计主要由四部分组成。
它们是:流动室和液流系统;激光源和光学系统;光电管和检测系统;计算机和分析系统。
一、工作原理(一)基本组成结构1.流动室和液流系统:流动室由样品管、鞘液管和喷嘴等组成,常用光学玻璃、石英等透明、稳定的材料制作。
设计和制作均很精细,是液流系统的心脏。
样品管贮放样品,单个细胞悬液在液流压力作用下从样品管射出;鞘液由鞘液管从四周流向喷孔,包围在样品外周后从喷嘴射出。
为了保证液流是稳液,一般限制液流速度<10m/s。
由于鞘液的作用,被检测细胞被限制在液流的轴线上。
流动室上装有压电晶体,受到振荡信号可发生振动。
2.激光源和光学系统:经特异荧光染色的细胞需要合适的光源照射激发才能发出荧光供收集检测。
常用的光源有弧光灯和激光;激光器又以氩离子激光器为普遍,也有配合氪离子激光器或染料激光器。
光源的选择主要根据被激发物质的激发光谱而定。
氩离子激光器的发射光谱中,绿光514nm和蓝光488nm的谱线最强,约占总光强的80%;氪离子激光器光谱多集中在可见光部分,以647nm较强。
免疫学上使用的一些荧光染料激发光波长在550nm以上,可使用染料激光器。
将有机染料做为激光器泵浦的一种成份,可使原激光器的光谱发生改变以适应需要即构成染料激光器。
例如用氩离子激光器的绿光泵浦含有Rhodamine 6G水溶液的染料激光器,则可得到550~650nm连续可调的激光,尤在590nm处转换效率最高,约可占到一半。
细胞生物学流式细胞仪分析技术研究细胞生物学是生物学的一个分支,主要研究细胞的结构、功能和活动。
随着科学技术的进步,越来越多的细胞生物学研究利用流式细胞仪分析技术,这项技术已成为现代细胞生物学研究的重要手段之一。
一、什么是流式细胞仪?流式细胞仪是一种现代化的细胞生物学技术,通过细胞的物理特性分离和分析细胞,使得细胞间的差异得以更加细致地研究。
通俗来说,流式细胞术就是将需要研究的细胞通过某种方式变成单个细胞,然后运用指定的设备将这些单个细胞分类。
二、流式细胞仪有什么特点?流式细胞仪在细胞分析中的作用主要体现在如下几个方面:1、高速度:流式细胞仪一般能够分析数百个或者数千个细胞,但是也有少量最高能够同时分析几十万个细胞的超大型仪器,分析速度极快。
速度快意味着样本优选几次,可以在非常短的时间内分析出大量的样本,从而追踪细胞分析对结果的影响。
2、高精度:流式细胞仪分析的样本极具目测性,同时将数据处理相当精确,因此流式细胞仪可以准确地分析不同的细胞质、核形态及染色体。
3、多参数同时分析:流式细胞仪可以对许多参数获得同时数据。
不仅能够分解及分析荧光染料的强度及频率,这项技术还可以同时测量多个分子。
三、流式细胞仪常用于哪些领域?流式细胞仪分析技术被广泛应用于不同的研究领域和实践环境中。
其中一些领域有:1、生物医学研究:流式细胞仪在生物医学研究领域中,是一种非常有用的手段,用于分析细胞的数量和特征。
2、病毒学研究:流式细胞仪也可以应用于抗病毒抵抗性和治疗策略的研究。
3、肿瘤学研究:利用流式细胞仪可以分析癌细胞繁殖性、凋亡率、侵袭性等细胞特性,为癌症的预后及治疗方案提供有用的信息。
四、流式细胞仪实验该如何进行?流式细胞仪实验一般需要分为以下几个步骤:1、准备细胞悬液:通常使用生长良好的单细胞悬液作为分析样品。
样品为新鲜的活细胞,一般从培养物、外周血或组织雾化制得。
2、细胞净化:细胞悬液需要通过漂浮中和负离子小珠、葡聚糖或其他分离方式,使其具有悬浮性,然后进行进一步处理。
流式细胞仪分析技术流式细胞仪(Flow cytometry)是一种广泛应用于细胞学和免疫学研究的分析技术。
它结合了光学、生物技术和数字技术,可以迅速、准确地分析单个细胞的形态特征、生理状态、分子表达和细胞功能等。
流式细胞仪分析技术与传统的显微镜观察方法相比,具有高通量、高灵敏度、高分辨率、高准确性和自动化等优势。
流式细胞仪分析技术的原理是基于细胞在流体中的特性和细胞与激发光交互作用时所产生的光信号。
具体而言,流式细胞仪通过光源产生一束激发光,并经过一系列的光路元件,将光束聚焦在细胞悬液中的细胞上。
细胞在激发光的作用下,会发出散射光和荧光光,然后通过一系列的光学滤波器和光学器件,将光信号转化为电信号,并通过光敏器件转化为数字信号。
最终,这些数字信号可以被计算机采集和分析,从而得到细胞的相关参数和信息。
1.细胞计数和细胞大小测量:流式细胞仪可以通过细胞的散射光信号,计算细胞的浓度和大小。
这对于确定细胞的增殖状态、细胞密度和细胞生长速度等具有重要意义。
2.细胞凋亡分析:流式细胞仪可以通过荧光标记技术,检测细胞凋亡相关的标志物,如细胞膜外磷脂翻转和DNA断裂等。
这对于研究细胞凋亡的发生和调控机制非常重要。
3.细胞表面标记物检测:流式细胞仪可以利用荧光标记的抗体,检测细胞表面的特定抗原或受体,从而研究细胞的分型、功能和相互作用等。
这对于免疫细胞的表型分析和免疫细胞亚群的鉴定非常有价值。
4.荧光蛋白标记检测:流式细胞仪可以利用荧光蛋白标记,检测细胞内特定蛋白的表达水平和分布情况。
这对于研究基因表达调控和蛋白质相互作用等具有重要意义。
总之,流式细胞仪分析技术在生命科学研究中起到了重要的作用。
它可以为研究人员提供关于细胞数量、大小、形态、生理状态、分子表达和细胞功能等多样化信息,为细胞学和免疫学的基础研究、新药研发和临床诊断等方向提供有力的支持。
随着技术的不断发展和改进,流式细胞仪分析技术将在未来发展得更加成熟和广泛应用。
流式细胞仪检测技术与质量控制-文档资料介绍流式细胞仪是一种常见的生物学实验仪器,可用于快速分析、定量和分选单个细胞。
它以极高的灵敏性和精度,使其成为现代生命科学中最重要的工具之一。
流式细胞仪的应用范围非常广,包括细胞免疫学、药理学、细胞周期分析、基因表达分析等等。
本文档旨在介绍流式细胞仪的基本工作原理、检测技术和质量控制方法。
工作原理流式细胞仪通过吸收、散射和荧光等特定光学信号来检测和分析细胞。
它的核心组成部分是荧光染料和激发光源,荧光染料可以与特定的细胞分子结合,形成能够发射荧光的复合物,激发光源可以激活荧光染料的荧光信号。
当样品通过流式细胞仪时,细胞和细胞复合物被单独地呈现在流体中,并且被一个聚光镜系列扫描,采集特定的光学信号。
通过分析该信号,流式细胞仪可以确定每个单一细胞的荧光特性。
检测技术荧光检测流式细胞仪常用的检测方法是荧光检测。
它需要将荧光染料与特定的细胞分子结合,形成能够发射荧光的复合物。
流式细胞仪将样品置于聚光镜下,激发光源激活荧光染料的荧光信号,然后通过聚光镜采集荧光信号。
荧光检测既可以用来鉴定单个表面标记物,也可以用于检测内部标记。
散射检测散射检测是流式细胞仪的另一种找出单个细胞的方式。
散射检测基于细胞对激光束的散射表现,散射强度既可以用来区分不同类型的细胞,也可以用于估计细胞的大小、形状和结构。
生物素-亲合素检测生物素-亲合素检测是流式细胞仪常用的一种检测方法。
生物素-亲合素检测通过不同的化学偶联对荧光染料进行标记,使得检测定量更加精确。
质量控制流式细胞仪的检测结果受多种因素的影响,因此需要严格的质量控制程序来保证检测结果的准确性和可靠性。
质量控制程序包括实验前的设备校准和实验后的数据分析。
设备校准设备校准是流式细胞仪保证检测结果准确性和可靠性的关键。
光学器件需要定期校准,以确保检测的性能和准确性。
每个荧光探针必须进行校准,以确保正确的基线水平和探针强度。
数据分析数据分析是流式细胞仪质量控制的另一关键步骤。
流式细胞术最新进展及临床应用流式细胞术( F l o w cy t o m e t r y, F C M), 临床上也被称为流式细胞分析,是利用流式细胞仪同时对单个细胞的多个参数进行定性/ 定量( 相对/ 绝对) 分析的生物医学分析技术,检测速度快、通量高、灵敏度高、采集数据量大、节约样本及成本,在临床上已经广泛应用于血液学、免疫学、肿瘤学、精子学等检验领域,是未来临床检验不可替代的检测方法之一。
传统流式细胞术,也被称为荧光流式细胞术,是基于荧光标记及荧光发射光谱检测的一门综合性技术,定量方式多为定性分析,检测参数类型单一、数目有限,数据分析复杂且缺乏标准化分析流程,不同检测中心间数据重现性差,这些都限制了它在临床检验中进一步的推广及应用。
近年来,为克服以上问题,流式细胞术不断突破与创新,从定性检测发展为定量检测;从单参数分析、双参数分析发展成为多参数分析;从检测细胞表面抗原到胞内抗原及分泌到胞外的抗原;从检测蛋白表达水平发展为检测蛋白定位、蛋白功能及蛋白翻译后修饰等;从一维定量检测发展为二维定量定位分析,从体外检测发展为体内检测等;这些突破使得流式细胞术可以实现从单细胞水平去认识细胞在生理或病理状态下的免疫表型、分子表型甚至各种复杂的信号通路变化等,因此将更为广泛应用于临床检测。
1定量流式细胞术定量流式细胞术( Q u a n tit a ti ve fl o w cy t o m e t r y, QFCM),即通过流式细胞仪定量检测细胞或微球上荧光素的中值荧光强度 ( M e d i a n fl u o r e s ce n t i n t e n s it y, M F I ) 或每个细胞结合的抗体单位( A n ti b o d i e s b o und t o p e r ce ll,A BC) 来对生物分子进行相对或绝对定量的流式细胞技术。
定量流式细胞术已被证明是一种功能强大的临床检验技术,但由于M F I缺乏标准化度量方法,容易引起不同检测中心检测结果重现性差,导致诊断和治疗决策的不确定性及不可靠性, 限制了其在临床的推广应用, 因此,标准化M F I测量为流式细胞术实现精确定量分析,在临床广泛应用的必经之路。
流式细胞仪技术要点学习流式细胞仪这么久,今天来说说关键要点。
首先呢,我理解流式细胞仪最基本的一个要点就是它的样本制备。
这个可得特别小心。
样本要是没弄好呀,后面那些高大上的检测啥的全白搭了。
就好比你要做饭,食材没洗干净或者没切对,那做出来的菜肯定不好吃。
在制备样本的时候,细胞得是分散的单个状态,不能有成团的现象。
我之前就老把这个搞砸,要么细胞太密集了,要么就有杂质,搞得检测出来的数据乱七八糟的。
我总结了个小技巧,在处理样本的时候啊,每一个步骤都要很轻柔很仔细,就像对待稀世珍宝一样。
另外,流式细胞仪的荧光标记这部分也超重要。
不同的荧光染料对应检测不同的细胞特性。
我记得我一开始总是搞混几种染料的用途,后来我就专门找了个小本子,把每一种常用的荧光染料对应的功能都抄下来,闲的时候就拿出来看看加强记忆。
这就像背单词似的,多重复才能记得住。
我理解这个荧光标记就像是给细胞穿上不同颜色的衣服,这样仪器就能识别不同类型的细胞了。
比如说你标记了绿色荧光的染料在某种细胞上,在仪器检测下,那种细胞就会显示出绿色的信号。
还有还有,参数的设置也是个难点啊。
好多个参数在那儿,什么散射光参数、荧光强度参数之类的。
我有时候看着那些参数就懵,不知道从哪儿下手。
后来我就慢慢一个个地去了解每个参数的意义,多试几次不同的设置,看看检测结果有啥变化。
就类似调整相机的参数来拍出不同效果的照片一样,这个参数设置错了,可能得出来的图像就很模糊或者根本看不出关键信息。
对了还有个要点,那就是仪器的校准。
我觉得这是很容易被忽视的一点。
校准没做好,准确性就无从谈起了。
这就跟秤没校准则称东西不准是一个道理。
要准确地使用标准微球等来校准仪器,这样检测的数据才有说服力。
我知道我对流式细胞仪的技术要点理解还不是非常全面,但这些都是我实打实学习过程中的一些经验分享。
我也是在不断学习摸索。
如果想要更深入精确的知识,可以去看一些专业的书籍,像《流式细胞术原理与应用》就很不错,还有很多相关的专业论文在知网上也能找到参考。
一、流式细胞仪技术参数1 工作条件:1.1 电源要求: 220V (±10%)、50-60HZ1.2 环境温度:16-30℃1.3 湿度:20-80%2 用途:免疫分析、淋巴细胞亚群分析;细胞周期分析、凋亡分析;感染分析、肿瘤细胞分析;多重细胞因子分析等。
3 技术规格和参数3.1 激发系统:3.1.1 激发光源:405nm紫色固态激光器、488nm蓝色固态激光器和640nm红色固态激光器,固定光路,空间立体激发。
3.1.2 激光塑形:自动的多棱镜塑形系统,光斑大小:9x65um椭圆形光斑3.1.3 流动室规格:180x430μm3.2 荧光收集和检测3.2.1 光胶耦合物镜,数值孔径1.2,大面积收集发射荧光。
3.2.2 每一激发激光对应一个独立检测单元,光胶耦合物镜自动分开汇集每一激光激发的发射荧光进入相对应检测单元,避免光谱交叉。
*3.2.3 配备1个独立八角型全反射检测系统、2个独立三角型全反射检测系统3.2.4 光学检测系统内部采用全反射检测光路系统,荧光信号到达检测器只经过一个长通滤光片,信号能量损失最小。
3.2.5 检测系统依次优先检测易衰减的长波长信号,保证弱信号灵敏度。
*3.2.6 共计12个信号检测器,包括10个光电倍增和和2个散射光探测器。
3.2.7 荧光通道组合:405nm紫色激光器对应3个检测通道,滤光片包括450/50nm、 525/50nm、 605/40 nm;488nm蓝色激光器对应4个检测通道滤光片包括530/30nm、 575/25nm、695/40nm、780/60 nm; 640nm 红色激光器对应3个检测通道,检测滤光片包括:670/30nm、712/21nm、780/60 nm。
通道之间最低光谱交叉,滤光片带有智能芯片,直接插拔,自动识别。
*3.2.8 荧光检测灵敏: FITC<100MESF,PE<50MESF(提供英文原版参数);CFDA检测结果FITC<5MESF,PE<5MESF(提供检测报告)。
guava 流式细胞仪技术参数Guava流式细胞仪技术参数引言:Guava流式细胞仪是一种常用的生物实验仪器,用于细胞分析和排序。
它具有高灵敏度、高通量和快速分析的特点,被广泛应用于生物医学研究、临床诊断和药物筛选等领域。
本文将介绍Guava流式细胞仪的主要技术参数,包括仪器结构、性能指标和应用范围等方面。
一、仪器结构Guava流式细胞仪由光学系统、流体系统、电子系统和数据分析系统等几个部分组成。
1. 光学系统:包括激光源、光栅和光电探测器等。
激光源产生激光束,光栅用于分光,光电探测器用于接收散射光、荧光信号等。
2. 流体系统:包括进样系统、流体控制系统和废液处理系统等。
进样系统用于将待测样品引入流式细胞仪,流体控制系统用于控制进样速度和流速,废液处理系统用于排除已经分析过的样品。
3. 电子系统:包括信号放大器、数据采集器和控制器等。
信号放大器将光电探测器接收到的微弱光信号放大,数据采集器将放大后的信号转换为数字信号,控制器控制整个流式细胞仪的运行。
4. 数据分析系统:包括数据处理软件和结果展示界面等。
数据处理软件用于对采集到的数据进行分析和处理,结果展示界面用于显示实验结果。
二、性能指标Guava流式细胞仪的主要性能指标包括散射信号检测范围、荧光信号检测范围、灵敏度、分辨率和通量等。
1. 散射信号检测范围:指流式细胞仪可以检测到的散射光信号的范围。
通常分为前向散射、侧向散射和反向散射三个方向。
2. 荧光信号检测范围:指流式细胞仪可以检测到的荧光信号的范围。
不同的荧光染料具有不同的发射波长,流式细胞仪需要具备相应的波长范围的荧光探测器。
3. 灵敏度:指流式细胞仪可以检测到的最低浓度的样品。
灵敏度越高,可以检测到更低浓度的样品。
4. 分辨率:指流式细胞仪可以区分的最小粒径差异。
分辨率越高,可以区分更小的粒径差异。
5. 通量:指流式细胞仪每小时可以分析的样品数量。
通量越高,分析速度越快。
三、应用范围Guava流式细胞仪广泛应用于细胞学、免疫学、生物医学研究等领域。