3.变式练在本例条件下,若将条件“-3∈A”改
为“3∈A”,则实数 a 的值为
1
2
5或 或-3
.
解析:因为3∈A,所以3=a-2或3=2a2+5a,所以
1
a=5或a= 或a=-3.
2
当a=5时,a-2=3,2a2+5a=75,满足集合中元素
的互异性,符合题意.
1
当a= 或a=-3时,经检验,符合题意.
答案:B
4.用符号“∈”或“∉”填空.
(1)若集合 P 是由小于 的实数构成的,则
2 ∉ P;
解析:因为2 3= 12> 11,所以2 3∉P.
(2)若集合 Q 是由可表示为 n2+1(n∈N*)的实
数构成的,则 5 ∈ Q.
解析:因为5=22+1,2∈N*,所以5∈Q.
探索点一 元素与集合的相关概念
B.- ∈Q
D.-2∈N
C.π∈Q
解析:对于A项,因为0是一个元素,N是自然数集,所以
3
0∈N,故A项不正确;对于B项,因为Q为有理数集,- 是一
2
3
个有理数,所以- ∈Q,故B项正确;对于C项,因为π是无理
2
数,Q是有理数集,所以π∉Q,故C项不正确;对于D项,-2是
一个负整数,不属于自然数,故D项不正确.
③1,0.5, , 构成的集合含有 4 个元素;
④接近于 0 的数的全体构成一个集合.
解:说法①中的对象是确定的,互异的,所以可构
成一个集合,故说法①正确;
说法②中的“高科技”和说法④中的“接近于 0”
的标准都是不确定的,所以不能构成集合,故说法
②和说法④错误;
说法③中,因为