例子
若A = {1, 2, 3, 4},B = {3, 4, 5, 6},则A ∪ B = {1, 2, 3, 4, 5, 6}
。
差集
定义
差集是指在一个集合中去掉另 一个集合中的所有元素后得到
的集合。
记号
对于集合A和集合B,它们的差集 记为A — B。
例子
若A = {1, 2, 3, 4},B = {3, 4, 5, 6} ,则A — B = {1, 2}。
方面。
THANKS
谢谢您的观看
集合的概念
xx年xx月xx日
目 录
• 集合的基本定义 • 集合的分类 • 集合的基本运算 • 集合的关系 • 集合在数学中的应用 • 集合在计算机科学中的应用
01
集合的基本定义
集合是什么
1
集合是一种数学结构,用于表示具有某种共同 属性或特征的一组对象。
2
集合中的元素可以是任何类型,如整数、实数 、字符串等。
用途
有限集在数学和实际生活中广 泛存在,例如一个班级的学生 数量、一天中的小时数等。
记号
用花体字母表示有限集,如 A={1,2,3,4,5}。
无限集
定义
包含无限个元素的集合称为无限集。
用途
无限集在数学中有着特殊的作用,例如实数集、自然数集等。
记号
用斜体字母表示无限集,如Q表示有理数集。
03
集合的基本运算
空间关系
空间中的点、线、面之间的位置关系可以用集合 运算进行表示,如包含、相交、平行等。
在统计中的应用
要点一
数据集合
要点二
样本集合
在统计中,常常需要将一组数据看作 是一个集合,对这组数据进行各种统 计分析。