相似三角形——比例线段
- 格式:doc
- 大小:366.82 KB
- 文档页数:29
01相似三角形题型之一比例与比例线段比例与比例线段教学目标:1.了解比例中项的概念。
2.会求已知线段的比例中项。
3.通过实例了解黄金分割。
4.利用黄金分割进行简单的计算和作图. 教学重点、难点:教学重点:黄金分割的概念及其简单应用。
教学难点:例5的作图涉及到线段的倍分关系与和差关系,比较复杂,是本节教学的难点。
1.知识点与方法概述A:比例的性质:基本性质:如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d.合比性质:等比性质:如果,那么.B:比例线段:比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比. 那么,这四条线段叫做成比例线段,简称比例线段.设a、b、c、d为线段,如果a:b=c:d,b、c叫比例内项,a、d叫比例外项,d叫做a、b、c的第四比例项;如果a:b=b:c,或b2=ac,那么b叫a、c的比例中项.C:黄金分割:如图,把线段AB分成两条线段AC和BC,所得的对应线段成比例. 推论的扩展:平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.推论的逆定理:如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.E:平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.根据被截的两条直线的位置关系,可以分五种图形情况: 推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰. 已知:在梯形ACFD中,AD//CF,AB=BC 求证:DE=EF 推论2:经过三角形一边的中点与另一边平行的直线必平分第三边. 已知:在△ACF中,BE//CF,AB=BC 求证:AE=EFF:三角形的中位线定理:三角形的中位线:连结三角形两边中点的线段叫做三角形的中位线。
三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。
已知:如图,D、E分别为AB、AC的中点求证:DE//BC,DE?G:梯形的中位线定理梯形的中位线:连结梯形两腰中点的线段叫做梯形的中位线。
三角形的相似比与比例线段在几何学中,三角形的相似比和比例线段是重要的概念,它们在解决三角形的相似性问题和计算边长比例时起到关键作用。
本文将介绍三角形的相似比和比例线段的概念、性质以及应用。
一、相似三角形的定义和相似比相似三角形指的是具有相同形状但不同大小的三角形。
当两个三角形的对应角度相等时,它们被称为相似三角形。
三角形的相似性可以用相似比来描述,相似比是指两个相似三角形对应边长的比值。
设有两个相似三角形ABC和DEF,对应边长的比值可以表示为:AB/DE = BC/EF = AC/DF,其中AB、BC、AC分别表示三角形ABC的三条边长,DE、EF、DF分别表示三角形DEF的三条边长。
相似比可以简记为k(常为正数),即k=AB/DE=BC/EF=AC/DF。
二、相似比的性质1. 相似比的传递性:如果两个三角形ABC和DEF相似,且三角形DEF与另一个三角形XYZ相似,则三角形ABC与三角形XYZ也相似,且它们的相似比相等。
2. 相似比与边长比例关系:若两个三角形相似,对应边的相似比等于对应边长的比例。
3. 相似比与角度比例关系:若两个三角形相似,对应角的角平分线所分割的角度比等于对应边的相似比。
三、比例线段的定义和性质比例线段是指在相似三角形中,各边所对应的线段按相应的比例划分出来的线段。
比例线段在三角形的边上起到了关键作用,它们的比例关系可以帮助我们计算相似三角形的边长。
设有两个相似三角形ABC和DEF,相似比为k,若线段AD和EF 相交于点G,则线段AG和EG、线段GD和FG也满足比例关系:AG/EG = GD/FG = k。
四、应用举例1. 已知两个三角形相似,已知其中一个三角形的两个边长分别为3cm和5cm,求另一个三角形相应边的长度。
解析:如果两个三角形相似,且已知一个三角形的两个边长为3cm 和5cm,设相似比为k,则另一个三角形相应边的长度为3cm*k和5cm*k。
2. 在相似三角形ABC和DEF中,已知AD=6cm,DE=9cm,且AG:GE = 2:3,求GD的长度。
线段的比例和相似三角形在几何学中,线段的比例和相似三角形是基础知识,它们对于解决几何问题和解释世界中的各种现象都起着重要的作用。
本文将深入探讨线段的比例和相似三角形的概念及其应用。
1. 线段的比例在平面几何中,线段的比例是指两个线段之间的长度比。
设有线段AB和线段CD,它们的比例可以表示为AB:CD。
当且仅当两线段的比例相等时,它们才具有相似的长度关系。
2. 相似三角形的定义相似三角形指的是具有相同的形状,但是尺寸不同的三角形。
若两个三角形的对应角度相等,则它们为相似三角形。
相似三角形的边长比例与角度比例成正比。
3. 线段的相似性质线段具有一些重要的相似性质,如比例段定理和点分段定理。
比例段定理指出,如果在两条平行线上有两个相交线段,则它们所形成的相交线段之间的长度比等于两条平行线上相应线段的长度比。
4. 相似三角形的性质相似三角形具有一些用于求解问题的重要性质。
常见的性质包括相似三角形的边长比例、高的比例、面积比例和周长比例等。
这些性质在解决实际问题时起着重要的作用,如测量高塔的高度、计算远处物体的尺寸等。
5. 应用举例a. 解决测量问题:通过计算相似三角形的边长比例,可以利用已知线段的长度求解未知线段的长度。
例如,当我们知道一栋楼的高度和影子的长度时,我们可以通过相似三角形的性质计算出楼与影子的比例,从而推算出其他未知线段的长度。
b. 设计制图:在地图或建筑设计中,相似三角形的性质可以用于将真实世界的比例缩小到纸上,从而实现精确的绘制和测量。
c. 解决角度问题:通过相似三角形的角度比例,可以计算未知角度的大小。
例如,在航空导航中,利用相似三角形的性质可以准确测算航线和飞机之间的角度。
总结:线段的比例和相似三角形是几何学中重要的概念和工具,它们在解决几何问题和实际应用中发挥着重要的作用。
通过理解线段的比例和相似三角形的性质,我们可以更好地理解和解释世界中的各种现象,同时也可以应用于实际问题的求解和设计制图等领域。
线段比例和相似三角形的性质线段比例和相似三角形是几何学中常见的概念,它们在解决图形问题和推导数学关系时具有重要作用。
本文将详细探讨线段比例和相似三角形的性质,旨在帮助读者更好地理解和应用这些概念。
一、线段比例的概念及性质线段比例用于比较两条线段之间的长度关系。
设有两条线段AB和CD,它们的长度分别为a和b,则线段AB与CD的比值为a:b。
根据线段比例的性质,可以得出以下重要结论:1. 分割比例定理:若一条直线段分割为两段,其中一段的长度与此直线段的长度的比等于另一段的长度与这条直线段的长度的比,则这两段线段成比例。
换句话说,若有线段AC和BD,且满足AD/AB =CD/CB,则可以得出AD与CD、AB与CB成比例。
2. 相似三角形的线段比例性质:若两个三角形相似,则对应两三角形的边的比例相等。
设三角形ABC与三角形DEF相似,则有AB/DE= AC/DF = BC/EF。
这个性质可用于解决各种与相似三角形有关的问题。
二、相似三角形的概念及性质相似三角形指的是具有相同内角的三角形,它们的形状相似但大小不同。
设有两个相似三角形ABC和DEF,它们的对应边分别为AB、AC、BC和DE、DF、EF,则相似三角形具有以下重要性质:1. 对应角相等:相似三角形的对应角互相相等,即∠A = ∠D,∠B = ∠E,∠C = ∠F。
这是相似三角形的定义之一。
2. 边比例相等:相似三角形的对应边成比例,即AB/DE = AC/DF = BC/EF。
这个性质是相似三角形的重要特征,可以用于解决各类与线段比例有关的问题。
3. 高度比例相等:相似三角形的对应高度之比等于对应边之比。
设h1和h2分别为三角形ABC和DEF相应的高度,则有h1/h2 = AB/DE = AC/DF = BC/EF。
这个性质可用于确定相似三角形的高度比例。
4. 面积比例平方相等:相似三角形的面积比例的平方等于对应边之比的平方。
设S1和S2分别为三角形ABC和DEF的面积,则有S1/S2 = (AB/DE)² = (AC/DF)² = (BC/EF)²。
讲义4、如图5.1-2,D、E分别在△ABC的边AB、AC上,ABAD=ACAE=BCDE=32,且△ABC与△ADE的周长之差为15cm,求△ABC与△ADE的周长.8、已知cba+=acb+=bac+=x求x及时训练例1 如图已知BEAB=MEAM=CEAC。
5、已知5:4:2::=cba,且632=+-cba,求cba23-+的值。
6、已知875cba==,且20=++cba,求cba-+2的值。
7、若65432+==+cba且2132=+-cba,试求cba::求证:BC CABCAB++=MEAE2 如图,延长正方形ABCD的一边CB至E,ED与AB相交于点F,过F作FG∥BE交AE于G,求证GF=FB.相似三角形基本定义对应角相等,对应边成比例的两个三角形叫做相似三角形。
互为相似形的三角形叫做相似三角形。
判定方法证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。
如果是文字语言的“△ABC与△DEF 相似”,那么就说明这两个三角形的对应顶点没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。
例题演练1、如果:2:3x y =,则下列各式不成立的是( )A35=+y y x B 31=-y x y C 312=y x D 4311=++y x 2、如图:在△ABC 中,若DE ∥BC,AD DB =12,DE=4cm,则BC 的长为( ) A.8cm B.12cm C.11cm D.10cm3、如图:点D 在△ABC 的边AB 上,连接CD ,下列条件:○1B ACD ∠=∠ ○2ACB ADC ∠=∠ ○3AB AD AC ⋅=2 ○4BC AC CD AB ⋅=⋅,其中能 判定△ACD ∽△ABC 的共有( )A 1个B 2个C 3个D 4个4、在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为( ) A 4.8米 B 6.4米 C 9.6米 D 10米及时训练1、如图,E 是□ABCD 的边BA 延长线上一点,连接EC , 交AD 于F .在不添加辅助线的情况下,请找出图中的一 对相似三角形,并说明理由.2、如图,在边长均为1的小正方形网格纸中,△OAB 的顶点O 、A 、B 均在格点上,且O 是直角坐标系的原点,点A 在x 轴上.(1)以O 为位似中心,将△OAB 放大,使得放大后的△11B OA 与△OAB 对应线段的比为2∶1,画出△11B OA (所画△11B OA 与△OAB 在原点两侧). (2)求出线段11B A 所在直线的函数关系式.3、如图:路灯(P 点)距地面8米,身高1.6米的小明从距路灯的底部(O 点 )20米的A 点,沿OA 所在的直线行走14米到B 点时,身影的长度是变长了还是变短了?变长或变短了多少米?4、阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了EAD BC 2题图ABDC3题图PO B N A M以下测量工具:皮尺、标杆、一副三角尺、小平面镜。
线段的比例分割与相似三角形线段的比例分割与相似三角形在数学中属于几何学的分支。
当两个线段分割另外一条线段时,这两个线段的比例关系可以用来推导相似三角形的性质。
本文将详细讲解线段的比例分割与相似三角形之间的关系,并探讨在实际问题中的应用。
一、线段的比例分割原理线段的比例分割是指将一条线段按照一定的比例分为两部分。
设有一条线段AB,C点是该线段上的一个点,将线段AB分为AC和CB两部分,根据线段的比例分割原理,有以下的比例关系:AC/CB = AD/DB其中AD和DB分别表示从点A和点B到点C所划分出的两个线段。
这个比例关系可以推广到更复杂的情况,即当线段AB被多个点分割时,依然成立。
二、相似三角形的性质与线段的比例分割相似三角形是指具有相似形状但大小不同的三角形。
当两个三角形相似时,它们的对应边长成比例。
而线段的比例分割正是相似三角形性质的一种特殊情况。
以线段AB为边的三角形ABC与以线段AC为边的三角形ADE相似,根据相似三角形的性质,有以下的比例关系:AB/AC = BC/CE = CA/AD其中CE和AD分别表示从点C和点A到点E所构成的线段。
这个关系表明,线段的比例分割可以推导出相似三角形的对应边长比例关系。
三、线段的比例分割与相似三角形的应用线段的比例分割与相似三角形在几何学中有广泛的应用。
它们可以用于解决各种问题,例如测量无法直接获得的长度、计算图形的面积以及解决实际生活中的几何问题等。
1.测量无法直接获得的长度在实际情况中,有时候我们无法直接测量一个线段的长度,但我们可以利用已知线段的比例分割关系来计算。
例如,我们知道一根棍子被两个点分割成三段,其中两段的比例为2:3,而总长度为60厘米。
那么我们可以利用线段的比例分割来计算每段的长度,进一步解决问题。
2.计算图形的面积通过线段的比例分割与相似三角形,可以推导出各种图形的面积比例关系。
例如,在两个相似三角形中,它们的面积的比例等于边长的比例的平方。
线段比例与相似三角形线段比例与相似三角形是几何学中重要的概念。
在这篇文章中,我们将探讨线段比例与相似三角形之间的关系,并解释它们在几何学中的应用。
一、线段比例的定义与性质线段比例是指两个线段之间的长度关系。
假设有两个线段AB和CD,它们的长度分别为a和b。
如果这两个线段之间存在比例关系,即a:b为一个确定的数值k,那么我们可以记作AB:CD = a:b = k。
线段比例具有以下性质:1. 如果线段AB与CD之间存在比例关系,那么它们与其他平行线段的任意两个对应部分也满足比例关系。
2. 如果线段AB与CD之间存在比例关系,那么它们与其他平行线段的任意两个相似三角形的对应边也满足比例关系。
3. 如果线段AB与CD之间的比例关系为a:b = k,且线段BC与DE之间的比例关系为b:c = k,那么线段AC与DE之间的比例关系为a:c = k。
二、相似三角形的定义与性质相似三角形是指具有相似形状但不一定相等的三角形。
两个三角形相似的条件为它们对应角相等,并且对应边成比例。
如果有两个相似三角形ABC和DEF,我们可以记作ΔABC ∽ ΔDEF。
相似三角形具有以下性质:1. 相似三角形的对应边成比例,即AB:DE = BC:EF = AC:DF。
2. 相似三角形的对应角相等,即∠A = ∠D,∠B = ∠E,∠C = ∠F。
3. 如果两个三角形的两个角相等,并且一对对应边成比例,那么它们是相似三角形。
4. 相似三角形的比例因子等于两个相似三角形任意两对成比例边的比值。
三、线段比例与相似三角形的关系线段比例与相似三角形之间存在紧密的联系。
当两个线段之间满足比例关系时,它们所在的三角形也是相似的。
具体而言,如果两条平行线段AB和CD之间的线段比例为a:b = k,那么通过连接这两个线段与CD的两个端点,我们可以构成两个相似三角形ABC和CDE,其中∠A = ∠C,∠B = ∠D。
这个性质也被称为对应角的性质。
根据相似三角形的性质,在相似三角形ABC和CDE中,对应边也成比例,即AB:CD = BC:DE = AC:CE = a:b = k。
相似三角形一一比例线段教学过程-、课堂导入1举例说明生活中存在形状相同,但大小不同的图形。
如:照片、放电影中的底片中的图与银幕的象、不同大小的国旗、两把不同大小都含有30角的三角尺等。
2、美丽的蝴蝶身长与双翅展开后的长度之比约为0.618.一些长方形的画框,宽与长之比也设计成0.618,许多美丽的形状都与0.618 这个比值有关。
你知道0.618 这个比值的来历吗?二、复习预习1、什么是两个数的比?2与一3的比;一4与6的比,如何表示?其比值相等吗?用小学学过的方法可说成为什么?可写成什么形式?2、比与比例有什么区别?3、用字母a,b,c,d表示数,上述四个数成比例可写成怎样的形式?你知道内项、外项的概念吗?2 4 2 2 —4答案:1、2:(—3)=—3 ;—4:6= —6 =—3 ; 3 = 6 ,2,—3,—4,6 四个数成比例。
注意四个数字的书写顺序。
2、比是一个值;比例是一个等式。
a c3、a:b=c:d即b =d ,a,d叫做比例外项,b,c叫做比例内项。
三、知识讲解考点1比例线段a c一般地,四条线段a、b、c、d中,如果a与b的比等于c与d比,即b =d,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段。
a _ c注意:线段的比有顺序性,四条线段成比例也有顺序性•如d是线段a、b、c、d成比例,而不是线段a、c、b、d成比例。
考点2比例的性质1、 比例的基本性质: 比例式化积、积化比例式a c ad =bcb d2、 合比性质:分子加(减)分母,分母不变。
c a kb c kd匚厂— 心、2 3…)3、等比性质:分子分母分别相加,比值不变a b 4、比例中项:若一二-即b 2 =a G 则b 是a,c 的比例中项。
b c= m (b d f 一一 七n =0)则 n若—-b d考点3AC _ BC在线段AB上,点C把线段分成两条线段AC和BC,如果AB「AC,那么称线段AB 被点C分割,点C叫做线段AB的黄金分割点,AC与AB的比叫黄金分割比。
学科教师辅导讲义六.三角形重心的定义:证(解)题规律、辅助线1.“等积”变“比例”,“比例”找“相似”。
2.找相似找不到,找中间比。
方法:将等式左右两边的比表示出来。
⑴)(,为中间比nm n m d c n m b a == ⑵'',,n n nm d c n m b a === ⑶),(,''''''nm n m n n m m n m d c n m b a =====或 3.添加辅助平行线是获得成比例线段和相似三角形的重要途径。
4.对比例问题,常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k 。
5.对于复杂的几何图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理。
例题分析:例1:如图 4-85. AB ⊥于l. CD ⊥l 于 C,E 为 AD 中点.求证:△EBC 是等腰三角形.例2:如图4-86,CB ⊥AB ,DA ⊥AB ,M 为CD 中点.求证:∠MAB =∠MBA .例3:若25a c eb d f ===,求ac bd --,234234a ce b df +-+-4.已知:如图20□AB C D 中E 为AD 的中点,AF :AB =1:6,EF 与AC 交于M 。
求:AM :AC 。
5.已知:E 是正方形ABCD 的AB 边延长线上一点,DE 交CB 于M ,MN ∥AE ,求证:MN =MB6、已知线段AB 长为1cm ,P 是AB 的黄金分割点,则线段PA= ;7、已知:M 是线段AB 的黄金分割点,AM>BM. 求证:AMAB AB AB AM =+。
线段比例定理与相似三角形线段比例定理和相似三角形是数学中重要的概念和定理。
它们在几何学和实际问题中有着广泛的应用。
本文将详细介绍线段比例定理和相似三角形的定义、性质和应用。
一、线段比例定理线段比例定理,也称为“点分线段定理”,是指在一个线段上,如果有两个点将这个线段分成两个部分,那么这两个点所在线段的比例等于被他们分割的两部分的比例。
具体来说,如果在线段AB上有一点C,将线段AB分成两部分,形成长度为AC和CB的两个线段,则有下列等式成立:AC/CB = AB为了更好地理解线段比例定理,我们可以通过一个几何图形来解释。
考虑一个三角形ABC,从A点引一条平行于BC的直线,交BC于点D。
根据线段比例定理,可以得出下列等式:AD/DB = AB/BC这个定理在几何学中具有重要意义,可以用来解决求长度比例的问题。
二、相似三角形相似三角形是指两个三角形具有相同的形状,但是对应边的长度不一定相等。
具体来说,如果两个三角形的对应角度相等,则它们是相似三角形。
符号表示为∆ABC ∼ ∆DEF。
相似三角形可以通过比较对应边的长度比例来判断。
在相似三角形中,比较两个对应边的长度,可以使用下列比例:AB/DE = BC/EF = AC/DF这里AB, BC和AC是三角形ABC的边长,DE, EF和DF是三角形DEF的边长。
这个比例关系又称为“对应边比例定理”。
相似三角形有一些重要的性质:1. 相似三角形的对应角度相等,对应边比例相等;2. 相似三角形的对应边比例相等,对应角度相等;3. 如果两个三角形相似,则它们的相似比例为正的常数;4. 如果两个三角形的任意两边长的比例相等,则它们是相似三角形。
三、线段比例定理与相似三角形的应用线段比例定理和相似三角形在几何学和实际问题中有广泛应用。
以下是一些常见的应用场景:1. 测量高度:利用相似三角形的性质,可以通过测量某一物体的阴影和影子长度来计算物体的高度。
2. 树木的投影:根据相似三角形的对应边比例,可以通过树木在地面上的投影长度和树木的实际高度,计算出树木的实际宽度。
教学过程
一、课堂导入
1、举例说明生活中存在形状相同,但大小不同的图形。
如:照片、放电影中的底片中的图与银幕的象、不同大小的国旗、两把不同大小都含有30°角的三角尺等。
2、美丽的蝴蝶身长与双翅展开后的长度之比约为0.618.一些长方形的画框,宽与长之比也设计成0.618,许多美丽的形状都与0.618这个比值有关。
你知道0.618这个比值的来历吗?
二、复习预习
1、什么是两个数的比?2与—3的比;—4与6 的比,如何表示?其比值相等吗?用小学学过的方法可说成为什么?可写成什么形式?
2、比与比例有什么区别?
3、用字母a,b,c,d表示数,上述四个数成比例可写成怎样的形式?你知道项、外项的概念吗?
答案: 1、2:(—3)=—2
3
;—4:6=—
4
6
=—
2
3
;
2
—3
=
—4
6
,2,—3,—4,6四个数成
比例。
注意四个数字的书写顺序。
2、比是一个值;比例是一个等式。
3、a:b=c:d 即a
b
=
c
d
,a,d叫做比例外项,b,c叫做比例项。
三、知识讲解
考点 1
比例线段
一般地,四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 比,即a b =c d
,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。
注意:线段的比有顺序性,四条线段成比例也有顺序性.如d c b a =
是线段a 、b 、c 、d 成比例,而不是线段a 、c 、b 、d 成比例。
a c a k
b
c k
d b d b d
++=⇒=考点2
比例的性质
1、比例的基本性质: 比例式化积、积化比例式。
bc ad d
c b a =⇔= 2、合比性质:分子加(减)分母,分母不变。
(k=1、2、3…) 3、等比性质:分子分母分别相加,比值不变。
若)0(≠+⋅⋅⋅+++=⋅⋅⋅===n f d b n m f e d c b a 则b
a n f d
b m e
c a =+⋅⋅⋅++++⋅⋅⋅+++。
4、比例中项:若c a b c a b c
b b a ,,2是则即⋅==的比例中项。
考点3
在线段AB 上,点C 把线段分成两条线段AC 和BC ,如果AC BC AB AC =,那么称线段AB 被点
C 分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫黄金分割比。
其中618.01:215:≈-=
AC AB 即618.0≈AB AC
A B C
四、例题精析
【例题1】
【题干】已知线段a=10mm,b=6cm,c=2cm,d=3cm。
问:这四条线段是否成比例?为什么?
【答案】这四条线段成比例
∵a=10mm=1cm
∴a
c
=
1
2
,
d
b
=
3
6
=
1
2
∴a
c
=
d
b
,即线段a、c、d、b是成比例线段。
【解析】直接利用比例线段的概念解答。
【例题2】
【题干】已知d
c c b a a
d c b a +=+=:,求证
【答案】证明:∵
d c b a = ∴c
d a b = ∴c
d c a b a +=+ ∴d
c c b a a +=+ 【解析】利用比例的合比性质证明。
【例题3】
【题干】根据下列条件,求a:b的值。
(1)2a=3b;(2)a
5
=
b
4。
【答案】解:(1)23=b a ;(2)4
5=b a 。
【解析】比例的基本性质直接运用,其中第2小题两次运用了性质,初学时易差错,要求学生重视对变形结果的检验,即变形后是否仍然满足“两项之积等于两外项之积”。
【例题4】
【题干】已知a b =c d
,判断下列比例式是否成立,并说明理由。
(1)a +b b =c +d d ;(2)a b =a +c b +d。
【答案】解:(1)成立,理由如下:
d c b a = 11+=+∴d c b a 即d
d d c b b b a +=+ d
d c b b a +=+∴ (2)成立,理由如下: 设k d
c b a ==,则dk c bk a ==, k
d b d b k d b ck bk d b c a =++=++=++∴)( d
b c a b a ++=∴ 【解析】(1)比较条件和结论的形式得到解题思路,利用等式的基本性质;
(2)采用设比值较为简单,其实质就是等比性质。
【例题5】
【题干】如图,设AB是已知的线段,在AB上作正方形ABCD,取AD的中点E,连接EB,延长DA至F,使EF=EB,以线段AF为边作正方形AFGH,请说明点H就是AB的黄金分割点。
【答案】证明:设AB=2a ,那么在a a a AE AB BE BAE Rt 5)2(,2222=+=+=∆中
a AH AB BH a AE BE AF AH a BE EF )53(,)15(,5-=-=-=-==== ,
,2152)15(-=-=∴a a AB AH ,2
15)15()53(-=--=a a AH BH 因此,AH
BH AB AH =点H 是AB 的黄金分割点。
【解析】利用黄金分割点的定义证明。
五、课堂运用【基础】
1、(1)已知线段a=30mm,b=2cm,c=4
5
cm,d=12mm,试判断a、b、c、d是否成比例
线段。
(2)已知a、b、c、d是比例线段,其中a=6cm,b=8cm,c=24cm,则线段d的长度是多少?
【答案】解:(1)a 、b 、c 、d 不是成比例线段,理由如下:
∵ b =2cm=20mm, c =45
cm=8mm ∴3
2128,232030====d c b a ∴d c b a ≠ ∴a 、b 、c 、d 不是成比例线段,但是a 、b 、d 、c 成比例线段。
(2)∵a 、b 、c 、d 是比例线段 ∴4386==b a ∴4386==b a ∴4
3
24
==d b a ∴cm d 32= 即线段d 的长度是32cm 。
【解析】利用成比例线段的概念解答。
2x-3y x+y =
1
2
,求
y
x。
2、若
【答案】 解:∵2x-3y x+y =12
∴ x+y=2(2x-3y)
∴x+y=4x-6y ∴3x=7y ∴7
3 x y 【解析】根据比例的基本性质,利用方程思想解答。
【巩固】
1、若x2-3xy+2y2=0,求y
x
= 。
【答案】2
1或1 【解析】:∵x 2-3xy+2y 2=0 ∴(x-y )(x-2y )=0 ∴x=y 或x=2y ∴2
1 x y 或1。
根据比例的基本性质,利用方程思想解答。
2、如图,是我国省的几个城市的位置图,问基隆市在高雄市的哪一个方向?到高雄市的实际距离是多少km?
【答案】解:从图上量出高雄市到基隆市的距离约35mm,设实际距离为s ,则
3519000000s =
359000000s ∴=⨯=315000000(mm)
即s =315(km)
量得图中28α∠=︒,我们还能确定基隆市在高雄市的北偏东28︒的315km 处。
答:基隆市在高雄市的北偏东28︒的315km 处。
【解析】利用比例尺的概念及比例线段的定义解答,要注意设实际距离为s ,求角度时要注意方位。
()
a b b c c a k a b c c a b +++===、、都是实数 1、 ,则k=( )
A 、2
B 、-1
C 、2或-1
D 、无法确定
【解析】当a+b+c=0时,a+b=-c ,b+c=-a,c+a=-b ,故1-=+=+=+b
c a a c b c b a ;当 a+b+c ≠0时,利用等比性质
2)(2=++++=+=+=+c
b a
c b a b c a a c b c b a ,所以k=-1或2。
2、(1)x:y:z=2:3:4,求
x-y+z
2x+3y-z
的值。
(2)已知a:b:c=3:4:5,且2a+3b-4c=-1,求2a-3b+4c的值。
【答案】解:(1)设x=2k,y=3k,z=4k ,则x -y +z 2x +3y -z =3
19343322432==-⨯+⨯+-k k k k k k k k ; (2)设a=3k,b=4k,c=5k ,则2a +3b -4c =2×3k+3×4k-4×5k=-2k=-1,所以k 2
1= 故2a -3b +4c=2×3k-3×4k+4×5k=14k=7。
【解析】利用设比的方法进行解答。
课程小结
1、理解并掌握比例线段的概念以及比例的性质;
2、比例式变形的常用方法:(1)利用等式性质;(2)设比值。
3、比例线段在实际问题中的应用,体会数学在生活中广泛的应用价值。