比例线段与相似三角形判定
- 格式:pdf
- 大小:8.69 MB
- 文档页数:7
相似判定定理
相似三角形有四个判定定理,分别是:
1、平行于三角形一边的直线和其他两边所构成的三角形与原三角形相似。
2、两边对应成比例且夹角相等,两个三角形相似。
3、如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
4、如果两个三角形的两个角分别对应相等,则有两个三角形相似。
相似三角形的预备定理:
平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。
(这是相似三角形判定的定理,是以下判定方法证明的基础。
这个引理的证明方法需要平行线与线段成比例的证明)。
相似三角形的性质:
相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
相似三角形的周长比等于相似比。
相似三角形的面积比等于相似比的平方。
初三数学《相似三角形》知识提纲(何老师归纳)一:比例的性质及平行线分线段成比例定理(一)相关概念:1.两条线段的比:两条线段的比就是两条线段长度的比 在同一长度单位下两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段的比是,或写成a :b=m :n ; 其中 a 叫做比的前项,b 叫做比的后项2:比例尺= 图上距离/实际距离3:成比例线段:在四条线段a ,b ,c ,d 中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,记作:cda b =(或a :b=c :d ) ① 线段a ,d 叫做比例外项,线段b ,c 叫做比例内项, ② 线段a 叫首项,d 叫a ,b ,c 的第四比例项。
③ 比例中项:若c a b c a b cbb a ,,2是则即⋅==的比例中项. (二)比例式的性质1.比例的基本性质:bc ad dcb a =⇔= 2.合比:若,则或a b c d a b b c d d a b a c d c =±=±±=±3.等比:若……(若……)a b c d e f mn k b d f n =====++++≠04、黄金分割:把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=215-AB ≈0.618AB , (三)平行线分线段成比例定理1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图:当AD∥BE∥CF 时,都可得到=.=,=,nmb a =语言描述如下:=,=,=.(4)上述结论也适合下列情况的图形:图(2) 图(3) 图(4) 图(5)2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.A 型 X 型由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或. 3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. 如上图:若=.=,=,则AD ∥BE ∥CF此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.4.定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形三边......对应成比例. 二:相似三角形: (一):定义:1:对应角相等,对应边成比例的三角形,叫做相似三角形。
相似三角形的判定与性质一、知识回顾1、相似三角形的判定:(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(2)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。
(3)如果两个三角形的两组对应边的比相等,且相应的夹角相等,那么这两个三角形相似(4)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
2、相似三角形的性质(1)对应边的比相等,对应角相等。
(2)相似三角形的周长比等于相似比。
(3)相似三角形的面积比等于相似比的平方。
(4)相似三角形的对应边上的高、中线、角平分线的比等于相似比。
二、典型例题例 1:如图,已知直线 AB: y=4/3 x+b 交 x 轴于点 A( -3 , 0),交 y 轴于点 B,过点 B 作BC⊥AB 交 x 轴于点 C.(1)试证明:△ ABC∽△ AOB;( 2)求△ ABC 的周长.例 2:如图,一次函数y=kx+b 的图象经过点A( -1 ,0)和点( 1,4)交 y 轴于点 B.( 1)求一次函数解析式和 B 点坐标.( 2)过 B 点的另一直线 1 与直线 AB垂直,且交X轴正半轴于点P,求点 P 的坐标.(3)点 M( 0,a)为 y 轴正半轴上的动点,点N( b,O)为 X 轴正半轴上的动点,当直线MN⊥直线 AB时,求 a: b 的值.例 3:( 2000·陕西)如图,在矩形ABCD 中, EF 是 BD 的垂直平分线,已知 BD=20, EF=15,求矩形 ABCD 的周长.例 4:( 2010·攀枝花)如图所示,在△ ABC 中, BC > AC ,点 D 在 BC 上,且 DC=AC ,∠ ACB 的平分线 CF 交 AD 于点 F .点 E 是 AB 的中点,连接 EF .( 1)求证: EF ∥BC ;( 2)若△ ABD 的面积是 6,求四边形 BDFE 的面积.例题(1) 两个相似三角形的面积比为 s 1 : s 2 ,与它们对应高之比h 1 : h 2 之间的关系为 _______(2) 如图,已知 D E ∥ BC , CD 和 BE 相交于 O ,若 SABC:SCOB9 :16 ,则 AD:DB=_________AABADD ’DEODEEFFGA A ’CC ’OCB B ’BCDBC(2)题图(3) 题图(4) 题图(5) 题图(3)如图,已知 AB ∥CD,BO:OC=1:4, 点 E、 F 分别是 OC, OD的中点,则 EF:AB 的值为(4) 如图,已知DE∥FG∥ BC,且 AD:FD:FB=1:2:3, 则S ABC: S四边形DFGE: S四边形FBCG()A.1:9:36B.1:4:9C.1:8:27D.1:8:36(5)如图,把正方形 ABCD 沿着对角线 AC 的方向移动到正方形 A’B ’C’D ’的位置,它们的重叠部分的面积是原正方形面积的一半,若AC= 2 ,则正方形移动的距离 AA ’是(6) 梯形 ABCD中, AD∥BC,( AD<BC), AC、 BD交于点 O,若S OAB6S ABCD,则△AOD与△BOC的周长25之比为 __________ 。
数学相似三角形的知识点归纳数学相似三角形的知识点归纳数学是人们认识自然、认识社会的重要工具。
它是一门古老而崭新的科学,是整个科学技术的基础。
随着社会的发展、时代的变化,以及信息技术的发展,数学在社会各个方面的应用越来越广泛,作用越来越重要。
以下是店铺整理的数学相似三角形的知识点归纳,希望帮助到您。
数学相似三角形的知识点归纳篇1本章有以下几个主要内容:一、比例线段1、线段比,2、成比例线段,3、比例中项————黄金分割,4、比例的性质:基本性质;合比性质;等比性质(1)线段比:用同一长度单位度量两条线段a,b,把他们长度的比叫做这两条线段的比。
(2)比例线段:在四条线段a,b,c,d中,如果线段a,b的比等于线段c,d的比,那么,这四条线段叫做成比例线段。
简称比例线段。
(3)比例中项:如果a:b=b:c,那么b叫做a,c的比例中项(4)黄金分割:把一条线段分成两条线段,如果较长线段是全线段和较短线段的比例中项,那么这种分割叫做黄金分割。
这个点叫做黄金分割点。
顶角是36度的等腰三角形叫做黄金三角形宽和长的比等于黄金数的矩形叫做黄金矩形。
(5)比例的性质基本性质:内项积等于外项积。
(比例=====等积)。
主要作用:计算。
合比性质,主要作用:比例的互相转化。
等比性质,在使用时注意成立的条件。
二、相似三角形的判定平行线等分线段——————平行线分线段成比例————————平行于三角形一边的直线截其他两边(或两边延长线),所截线段对应成比例——————(预备定理)平行于三角形一边的直线和其他两边(或两边延长线)相交,所截三角形与原三角形相似——————相似三角形的判定:类比于全等三角形的判定。
三、相似三角形的性质1、定义:相似三角形对应角相等对应边成比例。
2、相似三角形对应线段(对应角平分线、对应中线、对应高等)的比等于相似比3、相似三角形周长的比等于相似比4、相似三角形面积的比等于相似比的平方四、图形的位似变换1、几何变换:平移,旋转,轴对称,相似变换2、相似变换:把一个图形变成另一个图形,并保持形状不变的几何变换叫做相似变换。
相似三角形的判定及有关性质【学习目标】1. 了解平行线截割定理,会证明并应用直角三角形射影定理.2. 理解并掌握相似三角形的判定及性质。
【要点梳理】要点一、平行截割定理 1。
平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他与这组平行线相交的直线上截得的线段也相等。
推论1:经过三角形一边的中点与另一边平行的直线必平分第三边. 推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰. 2.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 如右图:l 1∥l 2∥l 3,则,,,…AB BC DE EF AB AC DE DF BC AC EFDF=== 推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.要点诠释:由上述定理可知:在证明有关比例线段时,辅助线往往作平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.要点二、相似三角形 1.定义对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比值叫做相似比(或相似系数).相似用符号“∽”表示,读作“相似于”。
要点诠释:关于相似三角形要注意以下几点:① 对应性:即两个三角形相似时,一定要把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边.② 顺序性:相似三角形的相似比是有顺序的. ③ 两个三角形形状一样,但大小不一定一样.④ 全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.2.相似三角形的判定定理①两角对应相等的两个三角形相似。
②两边对应成比例且夹角相等的两个三角形相似。
③三边对应成比例的两个三角形相似。
④平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 3.相似直角三角形的判定定理①如果两个直角三角形有一个锐角对应相等,那么它们相似. ②如果两个直角三角形的两条直角边对应成比例,那么它们相似.③如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
相似三角形边比例关系
相似三角形是指具有相同形状但尺寸不同的三角形。
在相似三角形中,它们的对应边之间存在一定的比例关系,常用的比例关系有以下几种:
1.边长比例关系:
•对应边的长度比例相等:如果两个三角形相似,那么它们对应边的长度之比相等。
即若三角形ABC与三角形DEF相似,则有AB/DE=AC/DF=BC/EF。
2.高度比例关系:
•对应高度之比相等:如果两个三角形相似,那么它们对应高度的长度之比相等。
即若三角形ABC与三角形DEF相似,则有h₁/h₂=h₃/h₄=h₅/h₆,其中h₁、h₂、h₃、h₄、h₅、h₆分别为两个三角形的对应高度。
3.面积比例关系:
•对应面积之比相等:如果两个三角形相似,那么它们对应面积的比值等于对应边的长度之比的平方。
即若三角形ABC与三角形DEF 相似,则有[ABC]/[DEF]=(AB/DE)²=(AC/DF)²=(BC/EF)²,其中[ABC]和[DEF]分别为两个三角形的面积。
这些比例关系在解决相似三角形的问题中非常有用。
通过利用这些比例关系,我们可以确定未知边长、高度或面积的值,或者进行比较和求解相关问题。
需要注意的是,这些比例关系仅适用于相似三角形,不适用于其他非相似的三角形。
在应用比例关系时,应确保已经确认了三角形的相似性。
1/ 1。
A D BC (E )图4相似三角形:是形状相同的三角形,它们的对应角都相等、对应边都成比例。
如△DEF 、△ABC 相似,表示为△DEF ∽△ABC 。
相似比:两个三角形相似,对应边的比叫相似比。
如:若△DEF 、△ABC 相似,则DFAC EFBC DEAB ==相似三角形判定定义法:对应角相等,对应边成比例的三角形相似。
判定定理①:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
判定定理②:如果三角形的三组对应边的比相等,那么这两个三角形相似。
(三边对应成比例,两三角形相似) 判定定理③:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
(两边对应成比例且夹角相等,两三角形相似)判定定理④:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(两角对应相等,两个三角形相似)特殊情况:第一:顶角(或底角)相等的两个等腰三角形相似。
第二:腰和底对应成比例的两个等腰三角形相似。
第三:有一个锐角相等的两个直角三角形相似。
第四:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
第五:如果一个三角形的两边和其中一边上的中线与另一个三角形的两边和其中一边上的中线对应成比例,那么这两个三角形相似。
相似三角形中的基本图形: (1)平行型:(A 型,X 型)(2)交错型:(3)旋转型:(4)母子三角形: 1,D 、E 分别是△ABC 的边BA ,CA 延长线上的点,DE ∥BC 。
(1)图中有哪些相等的角?(2)找出图中的相似三角形,并说明理由; (3)写出三组成比例的线段。
(1) (2) 。
理由是:(3)变形一:把上图中的直线DE 向平行于BC 方向移动到现在的位置,变为图2,回答上面的问题。
(1) (2) (3) 变形二:移动线段DE ,使∠AED =∠B ,变为图3,回答上面的问题。
(1) (2) (3) 。
相似的判定条件
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
相似的判定条件 1
(1)平行于三角形一边的直线和其他两边和两边的延长线相交,所构成的三角形与原三角形相似;
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;
(简叙为:两边对应成比例且夹角相等,两个三角形相似.);
(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似
(简叙为:三边对应成比例,两个三角形相似.);
(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似
(简叙为:两角对应相等,两个三角形相似.).
相似的判定条件 2
1.相似三角形对应的角相等,对应的边成比例。
2.相似三角形所有对应线段的比值(对应高度、对应中线、对应平分线、外接圆半径、内切圆半径等。
)等于相似比。
3.相似三角形的周长之比等于相似比。
4.相似三角形面积之比等于相似比的平方。
5.相似三角形中内切圆和外接圆的直径比和周长比与相似比相同,内切圆和外接圆的面积比是相似比的平方。
线段比例定理与相似三角形线段比例定理和相似三角形是数学中重要的概念和定理。
它们在几何学和实际问题中有着广泛的应用。
本文将详细介绍线段比例定理和相似三角形的定义、性质和应用。
一、线段比例定理线段比例定理,也称为“点分线段定理”,是指在一个线段上,如果有两个点将这个线段分成两个部分,那么这两个点所在线段的比例等于被他们分割的两部分的比例。
具体来说,如果在线段AB上有一点C,将线段AB分成两部分,形成长度为AC和CB的两个线段,则有下列等式成立:AC/CB = AB为了更好地理解线段比例定理,我们可以通过一个几何图形来解释。
考虑一个三角形ABC,从A点引一条平行于BC的直线,交BC于点D。
根据线段比例定理,可以得出下列等式:AD/DB = AB/BC这个定理在几何学中具有重要意义,可以用来解决求长度比例的问题。
二、相似三角形相似三角形是指两个三角形具有相同的形状,但是对应边的长度不一定相等。
具体来说,如果两个三角形的对应角度相等,则它们是相似三角形。
符号表示为∆ABC ∼ ∆DEF。
相似三角形可以通过比较对应边的长度比例来判断。
在相似三角形中,比较两个对应边的长度,可以使用下列比例:AB/DE = BC/EF = AC/DF这里AB, BC和AC是三角形ABC的边长,DE, EF和DF是三角形DEF的边长。
这个比例关系又称为“对应边比例定理”。
相似三角形有一些重要的性质:1. 相似三角形的对应角度相等,对应边比例相等;2. 相似三角形的对应边比例相等,对应角度相等;3. 如果两个三角形相似,则它们的相似比例为正的常数;4. 如果两个三角形的任意两边长的比例相等,则它们是相似三角形。
三、线段比例定理与相似三角形的应用线段比例定理和相似三角形在几何学和实际问题中有广泛应用。
以下是一些常见的应用场景:1. 测量高度:利用相似三角形的性质,可以通过测量某一物体的阴影和影子长度来计算物体的高度。
2. 树木的投影:根据相似三角形的对应边比例,可以通过树木在地面上的投影长度和树木的实际高度,计算出树木的实际宽度。
比例线段与相似性质和判定一、比例的性质1.,a c ad bc b d =⇔=这一性质称为比例的基本性质,由它可推出许多比例形式; 2.a c b db d ac =⇔=(反比定理); 3.a c a b b d c d =⇔=(或d cb a =)(更比定理); 4.ac a b c db d b d ++=⇔=(合比定理); 5.a c a b c db d b d --=⇔=(分比定理); 6.a c a b c db d a bcd ++=⇔=--(合分比定理); 7.(0)a c m a c m a b d n b d n b d n b ++⋅⋅⋅+==⋅⋅⋅=++⋅⋅⋅+≠⇔=++⋅⋅⋅+(等比定理).二、成比例线段1.比例线段对于四条线段a b c d ,,,,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如a cb d=(即::a b c d =),那么这四条线段a b c d ,,,叫做成比例线段,简称比例线段.2.比例的项在比例式a cb d=(::a b c d =)中,a d ,称为比例外项,b c ,称为比例内项,d 叫做a b c ,,的第四比例项.三条线段a bb c=(::a b b c =)中,b 叫做a 和c 的比例中项.3.黄金分割BAC如图,若线段AB 上一点C 把线段AB 分成两条线段AC 和BC (AC BC >),且使AC 是AB 和BC 的比例中项(即2AC AB BC =⋅)则称线段AB 被点C 黄金分割,点C 叫线段AB 的黄金分割点,其中510.6182AC AB AB -=≈,350.3822BC AB AB -=≈,AC 与AB 的比叫做黄金比.三、平行线分线段成比例定理1.定理两条直线被三条平行线所截,截得的对应线段成比例. 2.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例. 3.推论的逆定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.4.三角形一边的平行线性质平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.如图,AB CD EF ∥∥,则AC BD CE DF AC BD CE DFCE DF AC BD AE BF AE BF====,,,.若将AC 称为上,CE 称为下,AE 称为全,上述比例式可以形象地表示为====上上下下上上下下,,,下下上上全全全全.AB C D E FFEDC B A当三条平行线退化成两条的情形时,就成了“A ”字型,“X ”字型.则有AE AF AE AF EFBC EF EB FC AB AC BC⇔===∥,. A BCE F F ECB A考点一:比例的性质☞考点说明:如果要考查多以选择和填空为主,重点掌握等比性质 【例1】 若345x y z==,则2332x y z x y z ++--的值为________【巩固】设14a c e b d f ===,则a c e b d f +-=+-_______【拓展】若a b a c b ck c b a+++===,则k 的值为_________【例2】 已知::1:3:5x y z =,求33x y zx y z+--+的值【巩固】已知:234x y z==.求33x y z x y -+-.考点二:黄金分割☞考点说明:如果要考查可能出现在22题之中,需要掌握黄金分割的定义【例3】 如图所示,乐器上的一根弦80AB cm =,两个端点A B ,固定在乐器面板上,支撑点C 是靠近点B的黄金分割点(即AC 是AB 与BC 的比例中项),支撑点D 是靠近点A 的黄金分割点,则AC =________cm ,DC =________cm .DBAC【例4】 如图所示,在黄金分割矩形ABCD 512AB BC ⎛⎫-= ⎪ ⎪⎝⎭中,分出一个正方形ABFE ,求FCCD . F EDB AC考点三:平行线分线段成比例定理☞考点说明:平行线分线段成比例定理的考查多数以选择或填空的形式展开 【例5】 如图,DE BC ∥,且DB AE =,若510AB AC ==,,求AE 的长.EDCBA【例6】 如图,已知DE BC ∥,EF AB ∥,则下列比例式中错误的是( )FEDCB AA .AD AEAB AC =B .CE EACF FB =C .DE AD BC BD =D .EF CF AB CB =【拓展】如图,ABC ∆中,D 为BC 边的中点,延长AD 至E ,延长AB 交CE 的延长线于P .若2A D D E =,求证:3AP AB =.PEDCBA【例7】 已知,如图边长为2的等边ABC ∆,DE BC ∥,:1:4BCD ABC S S ∆∆=,则EC 的长为_____【例8】 如图,在OCE ∆中,AD BE ∥、BD CE ∥,若3OA =,9AC =,则AB 的长为________【例9】 已知,如图在平行四边形ABCD ,P 为BC 上任一点,连接DP 交AB 的延长线于Q求证:1BC ABBP BQ-=E D CBAEDC BA O QPDC BA考点四:梅涅劳斯定理☞考点说明:梅涅劳斯型在选择和填空中考察较多,需要熟练掌握该定理以提高解题速度梅涅劳斯定理:如果一条直线与ABC △的三边AB 、BC 、CA 或其延长线交于F 、D 、E 点,那么1AF BD CEFB DC EA⋅⋅=.这条直线叫ABC △的.梅氏线,ABC △叫梅氏三角形. GF EDCBAGFE DCBAH3H 2H 1F E DCBA证法一:如左图,过C 作CG ∥DF∵DB FB DC FG =,EC FGAE AF= ∴1AF BD CE AF FB FGFB DC EA FB FG AF⋅⋅=⋅⋅=. 证法二:如中图,过A 作AG BD ∥交DF 的延长线于G ∴AF AG FB BD =,BD BD DC DC =,CE DCEA AG= 三式相乘即得:1AF BD CE AG BD DCFB DC EA BD DC AG⋅⋅=⋅⋅=. 证法三:如右图,分别过A B C 、、作DE 的垂线,分别交于123H H H 、、. 则有123AH BH CH ∥∥,所以3122311CH AH BH AF BD CE FB DC EA BH CH AH ⋅⋅=⋅⋅=.【例10】 如图,在ABC ∆中,M 是AC 的中点,E 是AB 上一点,且14AE AB =,连接EM 并延长,交BC 的延长线于D ,则BCCD=_______.MEDCBA【例11】 如图,在ABC ∆中,D 为BC 边的中点,E 为AC 边上的任意一点,BE 交AD 于点O .(1)当1A 2AE C =时,求AOAD 的值; (2)当11A 34AE C =、时,求AOAD的值; (3)试猜想11AE AC n =+时AO AD 的值,并证明你的猜想. E OD CBA【巩固】如图,AD 是ABC ∆的中线,点E 在AD 上,F 是BE 延长线与AC 的交点.(1)如果E 是AD 的中点,求证:12AF FC =; (2)由(1)知,当E 是AD 中点时,12AF AEFC ED=⋅成立,若E 是AD 上任意一点(E 与A 、D 不重合),上述结论是否仍然成立,若成立请写出证明,若不成立,请说明理由. AB CDEF【拓展】在ABC ∆中,底边BC 上的两点E 、F 把BC 三等分,BM 是AC 上的中线,AE 、AF 分别交BM于G 、H 两点,求证:::5:3:2BG GH HM =MH G FECBA考点五:相似三角形的性质☞考点说明:利用相似三角形的性质如对应边成比例,求线段的长,或者转化角度。
比例线段与相似三角形性质中考要求重难点1.相似定义,性质,判定,应用和位似2.相似的判定和证明3.相似比的转化课前预习生活中几个有趣的黄金分割点报幕员应站在舞台宽度的0.618处的地方报幕最佳.将高清晰度电视屏幕的长与宽组成一条线段,取这条线段的黄金分割点,将线段分成两条线段,则屏幕的长与宽刚好接近16:9.人体有很多神秘的黄金分割点:肚脐刚好就是整个人体的黄金分割点;喉头刚好是头顶到肚脐的黄金分割点,膝关节是肚脐到脚的黄金分割点,肘关节是手指到肩部的黄金分割点.⨯=度时,身体会感觉最舒服.当人生活在正常体温37.50.61823.175国旗上的五角星是很美的几何图形,而其中由五条线段相交的五个点刚好是这条线段的黄金分割点.这些生活中的黄金分割点都是学者在日常生活中去探索、发现的,你是否也能给出几例你自己验证了得生活中的黄金分割点呢?例题精讲模块一 比例的性质☞比例线段1.,a c ad bc b d =⇔=这一性质称为比例的基本性质,由它可推出许多比例形式; 2.a c b db d ac =⇔=(反比定理); 3.a c a b b d c d =⇔=(或d cb a =)(更比定理); 4.ac a b c db d b d ++=⇔=(合比定理); 5.a c a b c db d b d --=⇔=(分比定理); 6.a c a b c db d a bcd ++=⇔=--(合分比定理); 7.(0)a c m a c m a b d n b d n b d n b ++⋅⋅⋅+==⋅⋅⋅=++⋅⋅⋅+≠⇔=++⋅⋅⋅+(等比定理).【例1】 若:2:3x y =,则下列各式不成立的是 ( ) A .53x y y += B .13y x y -= C . 123x y = D .1314x y +=+ 【难度】1星【解析】根据比例的性质公式:a c a b c d b d b d ++=⇔=;a c a b c db d b d--=⇔=可知,,A B C 正确,只有D 错误.【答案】D【巩固】若0234x y z ==≠ ,则23x yz+= . 【难度】2星 【解析】设()0234x y zk k ===≠,则2,3,4x k y k z k === 所以有,23491344x y k k z k ++== 【答案】134【巩固】若:3:2a b =,:5:4b c =,则::a b c =( )A .3:2:4B .6:5:4C .15:10:8D .15:10:12【难度】2星【解析】可以把两个比中的b所占的份数变成相同的.:3:215:10a b==,:5:410:8b c==,即::a b c可求.∵:3:215:10a b==,:5:410:8b c==,∴::15:10:8a b c=.故选C【答案】CA.13B.2C.5D.3【难度】2星【难度】2星【解析】根据题意比例的合比性质,即可得出结果.由题意,32ab=,∴33325 aa b== ++故选C 【答案】CA.4B.3C.3D.7【难度】2星【解析】设37a bk =-,那么3a k -,7b k -,然后代入所求的代数式即可求出结果. 设37a bk =-, ∴3a k -,7b k -, ∴73433b a k k a k ----. 【答案】BA .3 B .5 C .5 D .5【难度】2星【解析】根据比例的等比性质直接即可得解.∵23a c b d ==, ∴23a c b d -==-, ∴23a cb d -=- 【答案】A【巩固】已知一张地图的比例尺是15000∶,若A 、B 两地的实际距离为250 m ,则画在地图上的距离是 .【难度】2星【解析】根据公式:∵比例尺=图上距离∶实际距离,设图上距离为l∴有1=5000250l ()15()20l m cm == 【答案】5cm【巩固】已知a b ck b c a c a b===+++,则直线2y kx k =+一定经过( ) A .1第,2象限 B .2第,3象限 C .3第,4象限 D .1第,4象限【难度】2星【解析】分情况讨论:当0a b c ++≠时,根据比例的等比性质,得:()122a b c k a b c ++==++,此时直线为112y x =+,直线一定经过1,2,3象限.当0a b c ++=时,即a b c +=-,则1k =-,此时直线为2y x =--,即直线必过2,3,4象限. 综合两种情况,则直线必过第2,3象限.【答案】B【拓展】若a b ct b c c a a b===+++,则一次函数2y tx t =+的图象必定经过的象限是( ) A .第一、二象限 B .第一、二、三象限 C .第二、三、四象限 D .第三、四象限【难度】2星【解析】先根据等式求出t 的值,从而得到一次函数的解析式,再根据一次函数的性质分析经过的象限即可.(注意有两种情况).【答案】由已知得()b c t a +=;()c a t b +=;()a b t c +=,三式相加得:()2a b c t a b c ++=++,①当0a b c ++≠时,12t =; ②当0a b c ++=时,a b c +=-,1t =-.∴一次函数2y tx t =+为1y x =-+或1124y x =+∵1y x =-+过第一、二、四象限;1124y x =+过第一、二、三象限;∴一次函数2y tx t =+的图象必定经过的象限是第一、二象限.故选AB .舞蹈社不变,溜冰社不变C .舞蹈社增加,溜冰社减少D .舞蹈社增加,溜冰社不变【难度】2星【解析】若甲∶乙∶丙=::a b c ,则甲占全部的a abc ++,乙占全部的b a b c ++,丙占全部的ca b c++.故选D☞黄金分割点A如图,若线段AB 上一点C 把线段AB 分成两条线段AC 和BC (AC BC >),且使AC 是AB 和BC 的比例中项(即2AC AB BC =⋅)则称线段AB 被点C 黄金分割,点C 叫线段AB 的黄金分割点. 设AC x =,则BC AB x =-,即有一元二次方程220x ABx AB +-=,根据公式法解得:x ,因为0x >,所以有x,即0.618AC AB AB =≈,0.382BC AB AC AB =-=≈,AC 与AB 的比叫做黄金比. 【例4】 如图所示,在黄金分割矩形ABCD AB BC ⎛= ⎝⎭中,分出一个正方形ABFE ,求FCCD . F EDB AC【难度】1星 【解析】∵AB AC ,∴BC AB =.BC AB AB -=. ∵BC AB BC BF FC -=-=,AB CD =∴FC CD =.【答案】FC CD =【巩固】E 为平行四边形ABCD 的边AD 延长线上的一点,且D 为AE 的黄金分割点,即AD AE ,BE 交DC 于F.已知1AB =-,求CF 的长. 【难度】2星 【解析】∵AD AE∴DE AE =又∵DC AB ∥ ∴DE DFAE AB=,1AB∴4DF =∴3CF =【答案】3CF =模块二 平行线分线段成比例定理平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.如图,AB CD EF ∥∥,则AC BD CE DF AC BD CE DFCE DF AC BD AE BF AE BF====,,,.若将AC 称为上,CE 称为下,AE 称为全,上述比例式可以形象地表示为====上上下下上上下下,,,下下上上全全全全.AB C D E FFEDC B A当三条平行线退化成两条的情形时,就成了“A ”字型,“X ”字型.则有AE AF AE AF EFBC EF EB FC AB AC BC⇔===∥,. A BCE F F ECB A【例5】 如图,小明站在C 处看甲、乙两楼顶上的点A 和点E C E A ,、、三点在同一直线上,点B D 、分别在点E A 、的正下方,且D B C 、、三点在同一直线上,B C 、相距20米,D C 、相距40米,乙楼BE 高15米,则甲楼AD 的高为(小明身高忽略不计) ( ) A .40米 B . 20米 C . 15米 D . 30米【难度】1星 【解析】BC BECD AD=20BC DB == 15BE = ∴30AD = 【答案】 D【巩固】如图,在ABCD △中,DE BC ∥,4AD =,8DB =,3DE =.(1)求ADAB的值; (2)求BC 的长.ABCD EEDCB A【难度】1星【解析】∵DE BC ∥,4AD =,8DB =,3DE =∴41483AD AB ==+ ∴13AD DE AB BC == ∴9BC =【答案】13;9【例8】如图,在APM △的边AP 上任取两点B 和C ,过点B 作AM 的平行线交PM 于点N ,过点N 作MC的平行线交AP 于点D ,求证:AP PB PC PD =∶∶.PNMB C DA【难度】2星 【解析】略【答案】∵ND MC ∥∴PN PDPM PC=又由NB AM ∥得PN PBPM PA=∴PD PB PC PA =即PA PCPB PD=【巩固】如图, Rt ABC △中,90C ∠=︒,有一内接正方形DEFC ,连接AF 交DE 于G ,15AC = ,10BC =,求GE .GABC DEP【难度】2星 【解析】略【答案】设正方形的边长为a ,则15-AD a = ∵DE BC ∥∴AD DE AC BC = 15-1510a a=解得6a =又在AFB △中GE BF ∥ 有GE AE DEBF AB BC==, GE AD BP AC =∴9415GE = 125GE =【巩固】如图,DE BC ∥,且DB AE =,若510AB AC ==,,求AE 的长.EDBA【难度】3星 【解析】略【答案】AD AE AD AEDE BC AB AC DB EC⇒==∵∥, 又510AB AC BD AE ===,, 1210AD AB AD DB AE AEAE AC AE EC AC AE AE=====--∴, 1101023AE AE AE =⇒=-∴【例5】如图,在平行四边形ABCD中,4AC=,6BD=,P是BD上的任一点,过点P作EF AC∥,与平行四边形的两条边分别交于点E、F,设BP x=,EF y=,则能反映y与x之间关系的图象是()A.B.C.D.【难度】2星【解析】根据平行四边形的性质得到132OD OB BD===,根据平行线分线段成比例定理得到BP EFOB AC=和DP EFOD AC=,代入求出y与x的关系式,根据函数的图象特点即可选出答案.【答案】设AC交BD于O,∵四边形ABCD是平行四边形,∴132OD OB BD===,当P在OB上时,∵EF AC∥,∴BP BF EFOB BC AC==,∴34x y=,∴43y x=,当P在OD上时,PFE DCBA同法可得:DP DF EFOD DC AC==,∴634x y-=,∴483y x=-+,∵两种情况都是一次函数,图象是直线.故选C【例6】 如图,已知梯形ABCD 中,AD BC ∥,对角线AC 、BD 分别交中位线EF 于点H 、G ,且121EG GH HF =∶∶∶∶,那么AD BC ∶等于 .HGFE DCBA【难度】2星【解析】∵根据平行线分线段成比例定理可得:EG 、GF 分别是ABD △和DBC △的中位线.那么2AD EG =,2BC GF =. ∴:21:[221]1:3AD BC =⨯⨯+=()()【答案】1∶3【巩固】已知线段a 、b ,求作线段x ,使22b x a=,正确的作法是( )xab2bxab2bA .B .x2bbax2bbaC .D .【难度】2星【解析】对题中给出的等式进行变形,先作出已知线段a 、b 和2b ,再根据平行线分线段成比例定理作出平行线,被截得的线段即为所求线段x .【答案】由题意,22b x a = ∴2a bb x=,∵线段x 没法先作出, ∴B 选项错误, 根据平行线分线段成比例定理,只有C 符合.故选C【拓展】在ABC ∆中,底边BC 上的两点E 、F 把BC 三等分,BM 是AC 上的中线,AE 、AF 分别交BM于G 、H 两点,求证:532BG GH HM =∶∶∶∶.MH G FECBAG'H'MH GFEC BA【难度】5星 【解析】略【答案】如图,过C 点作'CH AH ∥,交BM 的延长线于'H ,易证'CH AH =,'HM MH =;同样得'G ,可得''GH H G =,设BG x =,GH y =,HM z =,则'MH z =,''H G y =, 由平行线分线段成比例定理可知: 1222x x y z y z =⇒=++;2421x y x z y z +=⇒=-, ∴52x z =,32y z =, ∴532222AG GH HM z z z =∶∶∶∶,即532AG GH HM =∶∶∶∶模块三 相似三角形的性质☞对应角相似三角形对应角相等【例9】已知,AB 是⊙O 的直径,且C 是圆上一点,小聪透过平举的放大镜从正上方看到水平桌面上的三角形图案的B ∠(如图所示),那么下列关于A ∠与放大镜中的B ∠关系描述正确的是( )【难度】2星【解析】略【答案】∵AB是直径,∴C∠是直角,∴90A B∠+∠=︒,用放大镜观察图形,镜中的图形与原图形相似,所以在镜中看的角大小没有改变,∴90A B∠+∠=︒.故选A【巩固】如图,若ABC AED△∽△,试找出图中所有的对应角、对应边,并用式子表示.EDCBA【难度】1星【解析】略【答案】ADE ACB∠=∠,DAE CAB∠=∠,AED ABC∠=,AE AD DE AB AC BC==☞对应边相似三角形对应边成比例【例10】三角形三边之比为357∶∶,与它相似的三角形最长边是21cm,另两边之各是()A.15cm B.18cm C.21cm D.24cm【难度】3星【解析】最长边为21cm的三角形三边比例为357∶∶∵可设最长边为721x=3x=∴另外两边和3588324x x x+==⨯=故选D【答案】D【巩固】ABC △3,'''A B C △的两边长分别为1,若ABC △与'''A B C △相似,则'''A B C △的第三条边长 .【难度】2星【解析】∵ABC △'''A B C △的两边1∴'''A B C △【答案】2【拓展】已知ABC △的三边长分别为20cm 、50cm 、60cm ,现要利用长度分别为30cm 和60cm 的细木条各一根,做一个三角形木架与ABC △相似,要求以其中一根为边,将另一根截成两段(允许有余料)作为另外两边,那么另外两边的长度(单位:cm )分别为多少?【难度】3星【解析】根据相似三角形对应边成比例的性质.首先,以60cm 为一边时,另一端30cm 需要结成两段,构成不了三角形.其次,以30cm 为一边时,对应着ABC △的三边,可以有相似比23∶,53∶,21∶.当相似比为23∶ 时,其他两段需要用料165cm ,不符合题意.当相似比为53∶时,其他两段长度分别为12cm 和36cm ,可以.当相似比为21∶时,其他两段长度分别为10cm 和25cm ,可以截取.【答案】12cm 和36cm 或者10cm 和25cm .☞中线、高线、角平分线相似三角形的对应中线、高线、角平分线的比等于相似比【例7】 如图ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,试证明:AB BC AC AMk A B B C A C A M====''''''''(k 为相似比). M 'MA 'B 'C 'C BA【难度】2星 【解析】略【答案】∵'''ABC A B C △∽△ ∴,'''''AB BCB B A B BC =∠=∠ 又∵AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线 ∴2''2''''''BC BM BM ABk B C B M B M A B ====【巩固】已知ABC △与DEF △相似且对应中线的比为2:3,则ABC △与DEF △的周长比为( ). 【难度】1星【解析】由于相似三角形的对应中线和周长的比都等于相似比,由此可求出两三角形的周长比. 【答案】∵ABC △与DEF △相似且对应中线的比为2:3,∴它们的相似比为2:3;故ABC △与DEF △的周长比为2:3【巩固】若两个相似三角形的相似比是2:3,则这两个三角形对应中线的比是( ). 【难度】1星【解析】根据相似多边形的性质,对应边之比相等可得.【答案】相似三角形对应中线的比等于相似比,因而对应中线的比是2:3【例8】 如图ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,求证:AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比). H 'H AB C C 'B 'A '【难度】2星 【解析】略【答案】∵'''ABC A B C △∽△∴2'''ABC A B C S S k =△△∶,即有211''''22BC AH B C A H k ⋅⋅=∶又∵''BC k B C =,2''''BC AHk B C A H =∴''AHk A H =【解析】利用两个相似三角形的面积比等于相似比的平方,对应高的比等于相似比即可求解.【答案】∵12h h=相似比,∴22112s h s h ⎛⎫= ⎪⎝⎭【巩固】如果两个相似三角形对应高的比为5:4,那么这两个相似三角形的相似比为( ). 【难度】1星【解析】相似三角形的一切对应线段(包括对应高)的比等于相似比,由此可求得这两相似三角形的相似比.【答案】∵两个相似三角形对应高的比为5:4,∴它们的相似比为5:4【例9】 如图ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比). D 'D A 'B 'C B A【难度】2星 【解析】略【答案】∵'''ABC A B C △∽△ ∴''','BAC B A C B B ∠=∠∠=∠又∵AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线∴11,''''''22BAD BAC B A D B A C ∠=∠∠=∠∴''','BAD B A D B B ∠=∠∠=∠ ∴'''ABD A B D △∽△ ∴''''AB ADk A B A D ==【巩固】两个相似三角形对应高之比为1:2,那么它们对应中线之比为( ) A .1:2 B .1:3 C .1:4 D .1:8 【难度】【解析】两个相似三角形的相似比等于对应高的比,也等于对应中线的比. 【答案】∵两个相似三角形对应高之比为1:2;∴两个相似三角形的相似比为1:2; ∴它们对应中线之比为1:2. 故本选A☞周长比 、面积比相似三角形的周长比等于相似比,面积比等于相似比的平方 【例10】 如图1,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++.A 'B 'C 'CB A图1如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AH k A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.图2【例11】 若ABC DEF △∽△,它们的面积比为41∶,则ABC DEF △∽△的相似比为( ) A .2:1 B .1:2 C .4:1 D .1:4 【答案】1星【解析】由ABC DEF △∽△与它们的面积比为4:1,根据相似三角形面积的比等于相似比的平方,即可求得ABC △与DEF △的相似比.【答案】∵ABC DEF △∽△,它们的面积比为4:1,∴△ABC 与△DEF 的相似比为2:1. 故选A【例12】 已知'''ABC A B C △∽△,它们的相似比是23∶,ABC △的周长为6,则'''A B C △的周长为( ). 【难度】1星【解析】利用相似三角形的周长的比等于相似比列式求解.【答案】∵ABC △的周长:'''A B C △的周长23=∶,ABC △的周长为6;∴'''A B C △的周长3692⨯==【巩固】若两个相似三角形的面积之比为14∶,则它们的周长之比为( ) A .12∶ B .14∶ C .15∶ D .116∶ 【难度】1星 【解析】略.【答案】∵两个相似三角形的面积之比1:4;∴它们的相似比为12∶; ∴它们的周长之比为12∶ 故选A【例13】 已知ABC DEF △∽△,且12AB DE =∶∶,则ABC △的面积与DEF △的面积之比为( ) A .12∶ B .14∶ C .21∶ D .41∶ 【难度】1星【解析】利用相似三角形的面积比等于相似比的平方即可求. 【答案】∵ABC DEF △∽△,且相似比为1:2;∴其面积之比为1:4;故选B【例14】 在ABC △和DEF △中,2AB DE =,2AC DF =,A D ∠=∠.如果ABC △的周长是16,面积是12,那么DEF △的周长、面积依次是 .【难度】2星【解析】根据周长比等于相似比,面积比是相似比的平方. 【答案】8;3【巩固】如图,已知D E 、分别是ABC △的AB AC 、边上的一点,DE BC ∥,且1:3ADEDBCE S S △四边形∶=,那么AD AB ∶等于( )A .14 B .13C .12D .23 ABCDE【难度】3星【解析】∵1:3ADE DBCE S S △四边形∶=∴1:4ADE ABC S S △∶=△∴AD AB ∶=1:2【答案】C【拓展】如图,在ABC △中,,DE FG BC GI EF AB ∥∥∥∥.若ADE △、EFG △、GIC △的面积分别为220cm 、245cm 、280cm ,则ABC △的面积为 .GIH FA BCDE【难度】3星【解析】由三角形的面积,可知234AE EG GI =∶∶∶∶,所以29AE AC =∶∶,即481S ADE S ABC =△∶△∶,根据20S ADE =△,所以405S ABC =△.【答案】2405cm☞三角形相似的综合【例15】 一张等腰三角形纸片,底边长15cm ,底边上的高的长为225cm ..现沿底边依交从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )A .第4张B .第5张C .第6张D .第7张第1张第2张【难度】3星【解析】如图,作AD BC ⊥于点D ,交第n 张纸条于点E ,3,,DE n AE GH =⊥则AGH ABC △∽△,∴GH AE BC AD =即1322.53522.5n-=,解得6n = 【答案】C .B第2张第1张【巩固】如图所示,路边有两根电线杆AB CD 、,其中 3 AB m =, 6 CD m =,用铁丝将两杆固定,求铁丝AD 与铁丝BC 的交点M 处距离地面的高度MH .H MAB CD EF【难度】2星【解析】由两步相似倒出边与边之间的比例关系.∵ MH AB ∥ ∴DH MHDB AB =① MH CD ∥ BH MHBD CD=② ①+②:136MH MH=+∴2MH cm =【答案】2cm【拓展】 如图,在ABC ∆中,D 为BC 边的中点,E 为AC 边上的任意一点,BE 交AD 于点O .(1)当1A 2AE C =时,求AOAD 的值; (2)当11A 34AE C =、时,求AOAD的值; (3)试猜想1A 1AE C n =+时AOAD的值,并证明你的猜想. E DBACO【难度】4星 【解析】(1)当11211AE EC ==+时,22321AO AD ==+; (2)当11A 312AE C ==+时,21222AO AD ==+;当1A 4AE C =时,22532AO AD ==+. (3)当1A 1AE C n =+时,22AO AD n=+, 证明方法比较多,选择两种介绍:如上右图,过点D 作//DF BE ,交AC 于点F . ∵//DF BE ,BD CD = ∴EF CF = ∵11AE AC n =+ ∴CE nAE =,122nEF CE AE == ∵//DF BE ∴222AO AE AO OD EF n AD n==⇒=+OFCABDE另一种解法就是梅氏定理,看ADC ∆被直线BOE 所截可知1AO DB CE OD BC EA ⋅⋅=,而11AE CE nAE AC n =⇒=+,BD CD =,故22AO AD n=+. 【答案】(1)23AO AD =;(2)当1A 3AE C =时,12AO AD =;当1A 4AE C =时,25AO AD =(3)当1A 1AE C n =+时,22AO AD n =+模块四 位似位似图形:两个多边形不仅相似,而且对应顶点的连线相较于一点,对应边互相平行,像这样的两个图形叫做位似图形,这个点叫做位似中心.位似变换的坐标:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -. 位似的性质:(1)位似图形上任意一对对应点到位似中心的距离之比等于相似比. (2)位似图形的对应线段的比等于相似比. (3)位似图形的周长比等于相似比. (4)位似图形的面积比等于相似比的平方.【例16】 如图,下列各组图形中是位似图形的为 ()OABCDEDE BC ∥(1) (2) (3) (4)A .(1)(2)(3)(4)B .(2)(4)C .(1)(2)(4)D .(1)(2)(3)【难度】1星【解析】根据位似图形的定义:位似图形是指两个多边形不仅相似,而且对应顶点的连线相较于一点,对应边互相平行的两个图形,对应点连线的交点叫做位似中心.将每一个图形的对应点连接起来,看是否交于一点,这样排除()3,其次判断符合条件的图形是否是相似图形.所以答案选B .【答案】B【巩固】如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为,a b (),那么大“鱼”上对应“顶点”的坐标为 ( )第3题图A .,2a b --()B .()2,a b -C .()2,2a b --D .()2,2b a --【难度】1星【解析】解此题运用的方法就是找特殊点.由图中可见,每个小正方形的边长为1,可推知小“鱼”较长的鳍的顶点坐标为()5,3,则位似图形中的对应点的坐标为()10,6--,小“鱼”较短的鳍的顶点坐标为()3,2-,则位似图形中的对应点的坐标为()6,4-,由此可知,当某小“鱼”上某个“顶点”坐标为,a b ()时,位似图形中的对应点的坐标为()2,2a b --.【答案】C【巩固】如图,正五边形FGHMN 是由正五边形ABCDE 经过位似变换得到的,23AB FG =∶∶,则下列结论正确的理 ( ) A .23DE MN = B .32DE MN = C .32A F ∠=∠ D .23A F ∠=∠ABCD ENMHGF【难度】1星【解析】由两图形位似,有23AB DE FG MN ==. 【答案】B【巩固】判断满足下列关系的AOC △与BOD △是否是位似图形,如果是,请指出位似中心.(1)如图1所示,AB CD 、相交于点O ,且,ABC ADC AD CB ∠=∠=; (2)如图2所示,AB CD 、相交于点O ,且B A ∠=∠.图2图1ABCDOOABCD【难度】1星【解析】根据位似图形的定义:两个多边形不仅相似,而且对应顶点的连线相交于一点,对应边互相平行,像这样的两个图形叫做位似图形,这个点叫做位似中心.【答案】(1)AOC △与BOD △是位似图形,位似中心为O 点;(2)AOC △与BOD △是位似图形,位似中心为O 点.【例17】 七边形ABCDEFG 位似于七边形A B C D E F G ''''''',它们的面积之比为49∶,已知位似中心O 到A点的距离为6,那么O 到A '的距离为多少?【难度】1星【解析】由面积比为49∶,得位似七边形对应边的比为23∶,所以位似比为23∶,所以O 到A '的距离为9. 【答案】9【巩固】如图,ABC △与'''A B C △是位似图形,点A 、B 、'A 、'B 、O 共线,点O 为位似中心.(1)AC 与''A C 平行吗?试说明理由; (2)若''AB A B =2,'5OC =,求'CC 的长.C ,B ,A ,AB CO【难度】1星【解析】(1)由位似图形的性质(2)∵两三角形是位似三角形∴''''A B OA OC AB OA OC==又''AB A B =2,所以'OC OC =12,∴10OC =,'1055CC =-= 【答案】平行;5【拓展】如图,在平面直角形坐标系中,正方形22223333A B C D A B C D 、都是由正方形1111A B C D 经过位似变换得到的,点O 是位似中心.(1)你能找出正方形1111A B C D 以O 为位似中心,相似比是2的位似图形吗? (2)正方形4444A B C D 是正方形3333A B C D 的位似图形吗?如果是,求相似比; (3)由正方形3333A B C D 得到它的位似图形正方形1111A B C D ,求相似比;(4)我们把横坐标、纵坐标都为整数的点称为整点,观察图中每个正方形四条边上的整点个数.猜测:正方形1111A B C D 以O 为位似中心,相似比为10的位似图形10101010A B C D 的四条边上整点个数之和是多少?【难度】2星【解析】(4)正方形1111A B C D 四条边上整数点的个数为4,正方形2222A B C D 四条边上整数点的个数为8,正方形3333A B C D 四条边上整数点的个数为12,根据数学归纳法可推知,正方形n n n n A B C D 四条边上整数点的个数为4n 个,所以正方形10101010A B C D 四条边上整数点的个数为40.【答案】正方形2222A B C D ;是,4:3;3:1;40.课堂检测1. 已知:234x y z==.求33x y z x y -+-. 【难度】3星 【解析】设2,3,4234x y z k x k y k z k ===⇒===,代入33x y z x y -+-中得原式113- 【答案】113-2. 如图所示,乐器上的一根弦80AB cm =,两个端点A B ,固定在乐器面板上,支撑点C 是靠近点B 的黄金分割点(即AC 是AB 与BC 的比例中项),支撑点D 是靠近点A 的黄金分割点,则AC = cm ,DC = cm .CD【难度】3星【解析】点C 是靠近点B 的黄金分割点,∴:AC AB,即8040AC AB ===,又∵点D 是靠近点A 的黄金分割点,∴40BD =,∴8080160DC AC BD AB =+-=-=【答案】40;1603. 如图,在ABC △中,D 为BC 边的中点,E 为AC 边上的任意一点,BE 交AD 于点O .(1)当1A 2AE C =时,求AOAD 的值; (2)当1134AE AC =、时,求AOAD的值; (3)试猜想1A 1AE C n =+时AOAD的值,并证明你的猜想. E DBACO【难度】4星 【解析】(1)当11211AE EC ==+时,22321AO AD ==+; (2)当11A 312AE C ==+时,21222AO AD ==+;当1A 4AE C =时,22532AO AD ==+. (3)当1A 1AE C n =+时,22AO AD n=+, 证明方法比较多,选择两种介绍:如上右图,过点D 作//DF BE ,交AC 于点F . ∵//DF BE ,BD CD = ∴EF CF = ∵11AE AC n =+ ∴CE nAE =,122nEF CE AE == ∵//DF BE ∴222AO AE AO OD EF n AD n==⇒=+OFCABDE另一种解法就是梅氏定理,看ADC ∆被直线BOE 所截可知1AO DB CE OD BC EA ⋅⋅=,而11AE CE nAE AC n =⇒=+,BD CD =,故22AO AD n=+. 【答案】(1)23AO AD =;(2)当1A 3AE C =时,12AO AD =;当1A 4AE C =时,25AO AD =;(3)当1A 1AE C n =+时,22AO AD n =+课后作业1. 已知:a cb d=,求证:ab cd +是2222a c b d ++和的比例中项. 【难度】2星 【解析】略【答案】讲解此题时.老师可先引导学生回顾比例中项的定义:如果a cb a=,那么a 是b 、c 的比例中项.由a cad bc b d=⇒=, 而22222222222222222()2()()ab cd a b c d abcd a b c d a d b c a c b d +=++=+++=++ 故ab cd +是2222a c b d ++和的比例中项.2. 已知:b c a c a bk a b c+++===,则k = . 【难度】2星【解析】当0a b c ++≠时,由等比性质得()22a b c b c a c a b k a b c a b c+++++++===++++;当0a b c ++=时,即b c a +=-,则1b c ak a a+-===-,综上所述,k 的值为2或1-. 【答案】2或1-3. 已知135x y z =∶∶∶∶,求33x y zx y z+--+的值.【难度】3星 【解析】解法一:设135x y zk ===,则35x k y k z k ===,,.∴39553953x y z k k k x y z k k k +-+-==--+--. 解法二:由135x y z =∶∶∶∶得35y x z x ==,.∴39553953x y z x y x x y z x x x +-+-==--+-+.【答案】53-4. 如图,在ABC △中,M 是AC 的中点,E 是AB 上一点,且14AE AB =,连接EM 并延长,交BC 的延长线于D ,则BCCD=__ ___ __. MECBA【难度】3星【解析】先介绍常规的解法:BCFE DMA BCFED M A如图,过点C 作DE 或AB 的平行线均可,不妨以左图为例来说明. 过点C 作//CF DE ,交AB 于点F . ∵AM MC =,//CF DE ∴AE EF = ∵14AE AB =∴2BF EF= ∵//CF DE ∴2BC BFCD EF== 当然,过点M 、点E 作适当的平行线,均可作出此题,这里不再给出.31 以上这些解法均属于常规解法,下面介绍特殊的解法:看ABC ∆为直线EM D 所截,由梅涅劳斯定理可知,1AE BD CM EB DC MA ⋅⋅= 又14AE AB =,AM CM =,故32BD BC DC CD=⇒= 上述图形是一个经典的梅氏定理的基本图形,解类似的题时,梅氏定理的运用能够带来立竿见影的效果,很快得出答案,梅氏定理的证明见变式1,先讲变式1再介绍本解法.【答案】25.用一个10倍的放大镜去观察一个三角形,下列说法中正确的是( )①三角形的每个角都扩大10倍; ②三角形的每条边都扩大10倍;③三角形的面积扩大10倍; ④三角形的周长扩大10倍.A .①②B .①③C .②④D .②③【难度】1星【解析】略【答案】①三角形的每个角不会变化,故错误;②三角形的每条边都扩大10倍,故正确③三角形的面积会扩大10倍,故错误;④三角形的周长会扩大10倍,故正确.故选C。