ansys fluent中文版流体计算工程案例详解
- 格式:docx
- 大小:36.89 KB
- 文档页数:2
ansys fluent中文版流体计算工程案例详解ANSYS Fluent是一种流体计算动力学软件,可用于解决各种流体力学问题。
本文将详细介绍ANSYS Fluent中文版的流体计算工程案例,包括案例的基本背景、模拟过程和结果分析。
这些案例旨在帮助用户深入了解ANSYS Fluent的使用方法和流体计算工程实践。
一个典型的案例是流体在管道中的流动。
该案例背景是,一根长直管道内有水流动,管道的直径为0.1米,长度为10米。
水的初始速度为1 m/s,管道的壁面是光滑的,管道两端的压差为100Pa。
现在需要使用ANSYS Fluent模拟该流体流动过程,并进一步分析不同参数对流动的影响。
首先,在ANSYS Fluent中创建一个新的仿真项目,并选择“仿真”模块。
在界面上点击“新建”按钮,在弹出的对话框中填写相应的参数,例如案例名称、计算器类型和尺寸单位。
点击“确定”后,进入模拟设置页面。
首先,需要定义获得流动场稳定解所需的物理模型和求解方法。
在“物理模型”选项卡中,选择“连续相”和“非恒定模型”。
在“湍流模型”中选择某种适合的模型,例如k-ε模型。
在“重力”选项卡中,定义流体的密度和重力加速度。
接下来,在“模型”选项卡中,定义管道的几何和边界条件。
选择“管道”作为流体领域的几何模型,并定义长度、直径和内壁面的润滑系数。
在“边界”选项卡中,定义管道两端的入口和出口条件,例如速度和压力。
将管道两端的压力差设置为100Pa,在入口处设置水的初始速度为1 m/s。
在出口处选择“出流”边界条件。
完成几何和边界条件的定义后,点击“模拟”选项卡进入模拟设置界面。
在“求解控制”中,设置计算时间步长和迭代次数。
选择合适的网格划分方法,并进行网格划分。
点击“网格”选项卡,选择合适的网格类型,并进行网格划分。
在划分网格后,可以使用“导入”按钮导入网格文件,并进行网格优化。
完成设置后,点击“计算”按钮开始进行模拟计算。
在计算过程中,可以实时观察流体场的变化情况,并通过Fluent Post-processing工具进行结果分析。
零基础超详细流体分析的例子例子说明本例中只有单纯流体,观察流体流经三角台时速度与压强的变化。
本例的几何文件可用任何CAD软件生成,过程是这样的:先建一个长方体;再见一个三角形,拉伸成一个凸台;长方体减去凸台;最后只剩下一个几何体;(其实形状可以根据自己喜好调整)另存为IGS文件。
(其实很多格式都可以,根据喜好)1.从开始菜单启动WorkBench2.新建mesh cell拖动左边Mesh图标到Schematic中即可3.关联几何文件本例的几何文件是由CatiaV5另存的IGS格式,也可以用Ansys自带的DesignModeler制作,那就要点击New Geometry,而不是Import Geometry。
4.启动ICEM在ICEM中做两件事:建3个Named Selection(inlet、outlet、wall);划分网格。
4.1.创建Named SelectionA.右键进气(液)面,选Create Named Selection,命名为inletB.同理,选中对面的出气(液)面,命名为outletC.同理,选中剩余8个面,命名为wall。
按住Ctrl键实现多选。
4.2.划分网格A.点击Mesh调出网格划分选项B.展开Sizing,选Relevance Center为Fine,意思是网格划分较细C.另外,做如下设置D.点击Update,生成网格E.保存F.关闭ICEM,回到WB 5.建立一个CFX cell6.Update CFX Cell7.进入CFX-Pre7.1.进入快速设置7.2.设置好一页后点击Next7.3.刷新并保存,退出CFX-Pre8.求解8.1.进入求解器8.2.直接运行8.3.退出求解器9.查看结果9.1.进入后处理器9.2.新建一个观察平面点击apply查看结果点击Apply查看结果。
第4 章FLOTRAN流体分析典型工程实例ANSYS程序中的FLOTRAN CFD流体分析是一个用于分析二维及三维流体流动场的先进工具。
本章重点通过实例讲解介绍FLOTRAN CFD流体分析在工程上的一些典型应用。
本章要点如何解决流体力学问题FLOTRAN流体分析典型工程实例本章案例三维U型管道速度场的数值模拟实际生活中射流现象的数值模拟4.1 如何解决流体力学问题在流体力学的研究中,常用的方法有理论研究方法、数值计算方法和实验研究方法。
理论研究方法的特点是:能够清晰、普遍地揭示出流动的内在规律,但该方法目前只局限于少数比较简单的理论模型。
研究更复杂更符合实际的流动一般采用数值计算方法,它的特点就是能够解决理论研究方法无法解决的复杂流动问题,如常见的航空工程、气象预报、水利工程、环境污染预报、星云演化过程等。
实验研究方法的特点就是结果可靠,但其局限性在于相似准侧不能全部满足、尺寸限制、边界影响等。
数值计算方法和实验研究方法相比,它所需的费用和时间都比较少,并且有较高的精度,但它要求对问题的物理特性有足够的了解(通过实验方法了解),并能建立较精确的描述方程组(通过理论分析)。
对于流体力学的数值模拟常采用的步骤如下。
(1)建立力学模型通过流动分析,采用合理的假设与简化,建立力学模型。
假设与简化:连续介质与不连续介质;理想流体与粘性流体;不可压缩流体与可压缩流体;定常流动与非定常流动。
(2)建立数学模型根据力学模型,建立描述力学模型的数学方程组,并利用无量钢化、量纲分析、引进新的物理参数、经验或半经验公式等方法对基本方程组进行简化,得到相应流动的求解方程组,再根据具体的流动条件确定流动的初始条件和边界条件。
描写流体运动的两种方法:拉格朗日方法和欧拉方法。
(3)求解方法●准确解法:解析解●近似解法:近似解、数值解●实验解法:相似解(4)求解结果速度分布、压力分布、合力、阻力、能量耗散等物理量的求解结果。
fluent流体工程仿真计算实例与应用引言流体力学在工程和科学领域中扮演着重要的角色。
通过流体力学的研究,我们可以了解和预测液体和气体在不同条件下的行为。
然而,在真实的实验中,获取流体的准确和详细的数据是非常困难和昂贵的。
因此,流体工程仿真计算成为了一种重要的工具,它可以在实际实验之前通过计算的方式对流体进行建模和分析。
fluent流体工程仿真计算简介Fluent是一款商业化的流体动力学仿真软件,由ANSYS公司开发。
它是一个基于计算流体力学(CFD)的软件工具,能够对各种复杂的流体问题进行建模和分析。
该软件提供了丰富的功能和工具,使工程师能够模拟和解决涉及流体力学的问题。
流体力学仿真计算的优势与传统的实验方法相比,流体力学仿真计算具有以下几个优势: 1. 成本效益:流体力学仿真计算可以节约大量的实验成本,同时缩短了实验周期。
2. 控制参数的灵活性:在真实实验中,很多参数无法被精确控制,而在仿真计算中,我们可以精确地控制和调整各种参数。
3. 快速修改和优化:在实验中,修改和优化系统需要经历繁琐的实验过程,而在仿真计算中,可以轻松地进行快速修改和优化。
4. 可视化和详细分析:通过仿真计算,我们可以获得流体行为的详细信息,同时可以使用可视化工具展示仿真结果。
实例与应用1. 空气动力学仿真空气动力学是流体力学的一个重要分支,研究涉及空气流动的物体。
通过Fluent软件,我们可以对飞行器、汽车、建筑物等在空气中的流动行为进行仿真。
这样的仿真可以帮助工程师改进设计,提高性能和效率。
在空气动力学仿真中,我们可以通过设置不同的参数和条件,如飞行速度、角度、流体密度等,来模拟不同的飞行状态和环境。
通过仿真结果,可以获得飞行过程中的压力分布、升力和阻力等关键性能指标。
2. 建筑气流仿真在建筑领域中,气流对于建筑物的设计和能源消耗具有重要影响。
通过Fluent软件,可以对建筑物内、外的气流进行仿真。
建筑气流仿真可以帮助工程师优化建筑物的通风系统、改善空气质量、减少能耗。
Fluid #2: Velocity analysis of fluid flow in a channel USING FLOTRAN Introduction:In this example you will model fluid flow in a channelPhysical Problem:Compute and plot the velocity distribution within the elbow. Assume that the flow is uniform at both the inlet and the outlet sections and that the elbow has uniform depth.Problem Description:T he channel has dimensions as shown in the figureThe flow velocity as the inlet is 10 cm/sUse the continuity equation to compute the flow velocity at exitObjective:T o plot the velocity profile in the channelT o plot the velocity profile across the elbowYou are required to hand in print outs for the aboveFigure:IMPORTANT: Convert all dimensions and forces into SI unitsSTARTING ANSYSC lick on ANSYS 6.1in the programs menu.S elect Interactive.T he following menu comes up. Enter the working directory. All your files will be stored in this directory. Also under UseDefault Memory Model make sure the values 64 for Total Workspace, and 32 for Database are entered. To change these values unclick Use Default Memory ModelMODELING THE STRUCTUREG o to the ANSYS Utility Menu (the top bar)Click Workplane>W P Settings…The following window comes up:o Check the Cartesian and Grid Only buttonso Enter the values shown in the figure aboveGo to the ANSYS Main Menu (on the left hand side of the screen) and click Preprocessor>Modeling>Create>Keypoints>On Working PlaneCreate keypoints corresponding to the vertices in the figure. The keypoints look like below.Now create lines joining these key points.M odeling>Create>Lines>Lines>Straight lineT he model looks like the one below.Now create fillets between lines L4-L5 and L1-L2.C lick Modeling>Create>Lines>Line Fillet. A pop-up window will now appear. Select lines 4 and 5. Click OK. The following window will appear:T his window assigns the fillet radius. Set this value to 0.1 m.Repeat this process of filleting for Lines 1 and 2.The model should look like this now:N ow make an area enclosed by these lines.M odeling>Create>Areas>Arbitrary>By LinesS elect all the lines and click OK. The model looks like the followingT he modeling of the problem is done.ELEMENT PROPERTIESSELECTING ELEMENT TYPE:Click Preprocessor>Element Type>Add/Edit/Delete... In the 'Element Types' window that opens click on Add... The following window opens.∙Type 1 in the Element type reference number.∙Click on Flotran CFD and select 2D Flotran 141. Click OK. Close the Element types window.∙So now we have selected Element type 1 to be solved using Flotran, the computational fluid dynamics portion of ANSYS. This finishes the selection of element type.DEFINE THE FLUID PROPERTIES:∙Go to Preprocessor>Flotran Set Up>Fluid Properties.∙On the box, shown below, set the first two input fields as Air-SI, and then click on OK. Another box will appear. Accept the default values by clicking OK.∙Now we’re ready to define the Material PropertiesMATERIAL PROPERTIESW e will model the fluid flow problem as a thermal conduction problem. The flow corresponds to heat flux, pressurecorresponds to temperature difference and permeability corresponds to conductance.Go to the ANSYS Main MenuClick Preprocessor>Material Props>Material Models. The following window will appearA s displayed, choose CFD>Density. The following window appears.F ill in 1.23 to set the density of Air. Click OK.Now choose CFD>Viscosity. The following window appears:N ow the Material 1 has the properties defined in the above table so the Material Models window may be closed.MESHING: DIVIDING THE CHANNEL INTO ELEMENTS:G o to Preprocessor>Meshing>Size Cntrls>ManualSize>Lines>All Lines.I n the window that comes up type 0.01 in the field for 'Element edge length'.N ow Click OK.Now go to Preprocessor>Meshing>Mesh>Areas>Free. Click the area and the OK. The mesh will look like thefollowing.BOUNDARY CONDITIONS AND CONSTRAINTSG o to Preprocessor>Loads>Define Loads>Apply>Fluid CFD>Velocity>On lines. Pick the left edge of theouter block and Click OK. The following window comes up.E nter 0.1 in the VX value field and click OK. The 0.1 corresponds to the velocity of 0.1 meter per second of air flowingfrom the left side.R epeat the above and set the Velocity to ZERO for the air along all of the edges of the pipe. (VX=VY=0 for all sides)O nce they have been applied, the pipe will look like this:∙Go to Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid CFD>Pressure DOF>On Lines.∙Pick the outlet line. (The horizontal line at the top of the area) Click OK.∙Enter 0 for the Pressure value.∙Now the Modeling of the problem is done.SOLUTIONG o to ANSYS Main Menu>Solution>Flotran Set Up>Execution Ctrl.∙The following window appears. Change the first input field value to 300, as shown. No other changes are needed. Click OK.G o to Solution>Run FLOTRAN.W ait for ANSYS to solve the problem.C lick on OK and close the 'Information' window.POST-PROCESSINGP lotting the velocity distribution…Go to General Postproc>Read Results>Last Set.Then go to General Postproc>Plot Results>Contour Plot>Nodal Solution. The following window appears:∙Select DOF Solution and Velocity VSUM and Click OK.∙This is what the solution should look like:∙Next, go to Main Menu>General Postproc>Plot Results>Vector Plot>Predefined.The following window will appear:∙Select OK to accept the defaults. This will display the vector plot to compare to the solution of the same tutorial solved using the Heat Flux analogy. Note: This analysis is FAR more precise as shown by the followingsolution:∙Go to Main Menu>General Postproc>Path Operations>Define Path>By Nodes∙Pick points at the ends of the elbow as shown. We will graph the velocity distribution along the line joiningthese two points.∙The following window comes up.∙Enter the values as shown.∙Now go to Main Menu>General Postproc>Path Operations>Map onto Path. The following window comes up.∙Now go to Main Menu>General Postproc>Path Operations>Plot Path Items>On Graph.∙The following window comes up.∙Select VELOCITY and click OK.∙The graph will look as follows:。
ansys-cfd流体分析实例Example on using commercial software“ICEM CFD 5.1”Flow around a circular cylinderY.F.Lin23Two Dimensional problemsFlow around a circular cylinderProblem DescriptionAir flows across a cylinder with the uniform velocity 0.003m/s in the wind tunnel. The length of the wind tunnel (fluid domain) has 25m long and 10 m height. The diameter of cylinder is 1m .Assumption and Boundary Conditions: 1. 2 dimensional problems 2. Steady state condition 3. The uniform flow velocity 4. No Heat transfer5. Neglect the gravitational force6. Constant air densityPre-processing stageIn this stage, we implement the “ICEM CFD” to perform the pre-processing work. The basic steps as follow:1. Establish geometry model2. Block the parts3. Generation the O grid4. Mesh the model and check quality of mesh5. Extrude the mesh6. Reset the BC’s (boundary conditions)7. Output to CFX5.7.1Creating Geometry1. Open ICEM CFDDouble Click the “ICEM CFD” Icon , afterwards, you can see the interface of the ICEMCFD.InOut5DCylinde WallFluid5D20WallOpen File>New Project…:45Set the name with “cylinder_2d”, and Click “Save”2. Creating Geometry: A. PointsClick button “Create Point” and then click button “Explicit Coordinates”Set the points in Cartesian coordinate system(X, Y, Z) with ( X=0, Y=0, Z=0 ) respectively.Click “Apply” button and see the screen: a point is createdA tree widget can be seen at left of the screen (A) and (B)A BThe same method creates other points:X=0; Y=0.5, -0.5 X=-5; Y=5, -5X=20; Y=5, -5 Y=0; X=0.5,-0.567B. Draw line (curve)First of all see the tree widget, open Model>Geometry>Points by right buttonSelect Show Point Names and you can see the name of each point like the figure showed.Now you can create curvesClick button “Create/Modify Curve ”Click button “Create Curve”Note: the left corner of the black screen: Select locationswith left button, middle=done, right=cancelSelect points by using left button of the mouse.Change the name of the Part with “INLET”:8Select PONITS.05 and POINTS.06 with left button (A),And draw a line with middle button “done” (B) and the INLET part is created in the tree widget. The same steps draw the curves named “OUTLET, SIDEA, SIDEB” with the POINTS.07and POINTS.08, POINTS.06 and POINTS.07, POINTS.05 and POINTS.08 respectively.We will see the line and the tree widgetA B910Draw the cylinderClick button “Circle or arc from Center point a nd 2 points on plane”.Set the Part with name “CYLINDER”Click button and select points “POINTS.00,POINTS.01, POINTS.03” with left button respectively (A).A BDraw the cylinder by middle button (B).See tree widget:Close Points name Use button to fit the window.Set the body and material.Click button “Create Body”Choose button “Material Point”and select “Selected surfaces” in the “By Topology” menu. Change the name of the part with “FLUID”; open the Show Point Name of the tree widget and useselect POINTS.06 and POINTS.08.The same way change the part name with “CYLINDER” and select POINTS.01 and POINTS.02. Close Show Point Name and open the tree widget:Open the bodies and you can seeAt last, open the File>Geometry>Save Geometry As…Give it the name with “cylinder_2d”. Click “save”.Now we begin to block the model.Click button “Create Block”See the first one , choose the part with “FLUID”,from the pull down menu select “FLUID”And set the Initialize Blocks type with “2D Planar”Click “Apply” button.A BWe will see that the colors of figure are changed. From (A) to (B)See the tree widget: Model>BlockingThen create some assistant points with button “CreatePoint”{Y=0X=-0.45,-0.4,-0.35,-0.3,-0.25,-0.2,-0.15,-0.1,-0.5, 0.5, 0.1,0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45}{X=0Y=-0.45,-0.4,-0.35,-0.3,-0.25,-0.2,-0.15,-0.1,-0.5, 0.5, 0.1,0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45}Now begin to block the regionClick button “Split Block”Then select button “Split Block”See the split method, select “Prescribed point”Use the put down menu to select the Prescribed point,Use the button firstly select the Edge “INLET”and secondly select the Point “POINTS.03”.We will see the block line in the vertical direction of theINLET.Zoom the fiure.The same way we draw other block lines. From the “POINTS.01 to POINTS.04”See the tree widgetSelect the “Blocking” and select “Index Control”Model>Blocking: Index Control (using right button of the mouse) We can see at the right corner of the screenBy using button and we set I min=2 and see the figureThe same way we set I max =3 , J min=2 , J max=3 And the screen shown thatThe same way block again from “POINTS.00, POINTS.09 to POINTS.44”:(A)(B)(C)After block.See the tree widget: Model>Parts>VORFN :using the right button select “Add to Part”. Click button “Blocking Material”, Add Blocks to PartUsing select blocking regions and we can see Zoom the block regions (A).A B CSelect the blocks in the cylinder or attached the cylinder (B)(C).Using the middle button to set it OK, and you can see blow (D).Click button “Associate”ABDCSelect the associate edge to curve “Associate Edge toCurve”buttonUsing the choose the edge and curveChoosing edge:Select curves:Set O grid CBAClick button “Split Block”Click “Ogird Block”buttonSelect theSee the tree widget: Open Model>Parts>VORFNOpen the VORFN (A)AUsing button to selectin or attached the cylinder (B)(C)(D).B CD EUsing middle button to click “Apply” (E)Close “VORFN” from the tree widget (F)F GClick the “Reset”(G) Mesh the edgesClick button “Set Curve Mesh Size”Using button to select Curve(s):Choose Method with “Element count”Set the Number with 100 and click Apply.See the tree: close the Model>Geometry>points, and the Model>Blocking>edgesUsing right button to select Model>Geometry>Curves:Curve Node Spacing (by using right button)The same way set the “INLET” and “OUTLET” with number 100, the “SIDEA” and “SIDEB”with number 250.Click button “Pre-Mesh Params”Choose Blocking >Pre-Mesh ParamsClick button “Update Sizes”and keep default,Then click ApplySee tree open Model>Blocking>Pre_Mesh: Project faces(by using right button)And we will see a menuClick Yes.Now we will see the mesh of the model.Zoom it see the local partClose Geomery>Points and curves, and Blocking>Edges.Then open File>Mesh>Load from BlockingOpen File>Mesh>Save Mesh As…: and set the name with “cylinder_2d”Open File>Blocking>Save Blocking As…: Save block with the name “cylinder_2d”Check the quality of the meshClick button “Display Mesh Quality”Click ApplyWe can see no negatives mesh.Extrude meshClick button “Extrude Mesh”Use to select Elements:Method 1Click button “Select items in a part”and a menu appears:Click “All” and “Accept”Method 2A BPut the left button and drag it to select all the regions (A)(C). Click middle button to accept (B) Give the New volume part name “FLUID2D”, new side part name “SIDE”, new top par name “TOP”And set the Spacing type>spacing with “0.1”, then ApplyCSo the mesh change a height 0.1 in the Z direction (D)DBox ZoomE FClick button “Shaded Full Display”(E)(F) Check the quality of the extrude meshSee the tree widget:Close top “TOP” (B) Close “FLUID” (C) A BSet the new boundary conditionsSee the tree widget:Model>Parts: Create Part (by using the right button)Click “Create Part by Selection” button From the pull down menu of the Part: select the “CYLINDER” Using and left button drag the regionUsing middle button accepts it, so a new CYLINDER boundary condition has been set (C).CBACThe same way set the INLET, OUTLET, SIDEA and SIDEB boundary conditions. INLETThe Whole Boundary Conditions CA BSee the tree widget:A Open Model>Parts>FLUID(B)B Open Model>Parts>TOP(C)CSix kinds of patternsClick File>Mesh>Save Mesh As…And save the new mesh with name “cylinder_2d_extrude”. Output the mesh file to CFXClick button “Select solver”and choose “CFX-5”Click “Okay”CBFEDAClick button “Write input”Keep default and click “Done”Then the Domain selection appearsKeep the Selected domains with “cylinder_2d_extrude.uns” and click “Done”.Now we will see the created files in working directions:From these files, we must note that only the file named “cfx5” can be inputted into CFX5.7.1 The mesh is finished.Other examples:Example on using commercial software“CFX 5.7.1”Flow around a circular cylinderY.F.LinTwo Dimensional problemsFlow around a circular cylinderAfter established the geometry model, we begin to use CFX to solve this two dimensional case. Processing with CFX-5.7.11.Open CFXDouble click the “CFX” Icon, afterwards, you can see the interface of the CFX.There are three kinds of functions of the CFX:1.CFX-Pre 5.7.1 (set the relevant parameters).2.CFX-Solver 5.7.1 (solve the case by using established physical model)3.CFX-Post 5.7.1 (get the data and figures which we need)CFX-Pre step:1.Import the mesh file from ICEM CFD2.Simulation type3.Domain4.BC’s (boundary conditions)5.Initial conditions6.Solver control7.Output file and monitor points8.Write “.def” file and simulationClick button “CFX-Pre 5.7.1”and run it.Establish a new simulationOpen File>New Simulation…:Select button “General”and give the file namewith “cylinder_2d”. Click “Save”Now we can see the interface of the CFX-PreImport mesh fileSee the middle position of the screen, Click button “Import mesh”Open Mesh>Definition>Mesh Format:From the pull down menu select “ICEM CFD”, (see figure below)Definition>File: Click button “Browse”Find the working direction and select the file named “cfx5”,Then click “Open” button. And “OK”Note: no other files can be inputted in CFX5.7.1Then the mesh file has been inputted into the CFX-PreAnd the left window appears.All of these names were already defined by us in “ICEM CFD”Set the relevant parameters1. Define the simulation type:Click button “Define the Simulation Type”button.Note: the blue color note suggest we should set a domain. Then the simulation type appearsBasic Settings>Option: Select “Transient”Basic Settings>Time Duration>Option: From the pull down menu select Total Time.Basic Settings>Time Duration>Total Time: Set with 42000s.Basic Settings>Time Steps>Option: From the pull down menu select Timesteps.Basic Settings>Time Steps>Timesteps: Set with 1s.Initial Time>Option: From the pull down menu select Autorratic.Then click Apply and Ok2. Create a domain:Click button “Create a Domain”.Set the name with “ cylinder2d” and click OkSee figure below: the color of the domain changed into green, and the window “Edit Domain”appears.General Options>Basic Settings>Location: From the pull down menu select “FLUID2D”Then click “Apply” buttonFluid Models>Heat Transfer Model>Option:Keep by default.Fluid Models>Heat Transfer Model>FluidTemperature: Set the temperature with 25c.Fluid Models>Turbulence Model>Option: Setit with “None(Laminar).Click OK3. Set boundary condtions:Click button “Create a Boundary Condition”Set INLET boundary conditionSet the Name with “INLET” and click OK。
最新ANSYS-CFD之Flotran中文讲解说明(全+重点标注)11资料目录第一章FLOTRAN 计算流体动力学(CFD)分析概述 (2)FLOTRAN CFD 分析的概念 (2)FLOTRAN 分析的种类 (2)FLOTRAN单元的特点 (4)FLUID141单元 (4)FLUID142单元 (4)FLUID单元的其他特征 (4)FLOTRAN单元使用中的一些限制 (5)FLOTRAN分析的主要步骤 (6)FLOTRAN分析中产生的一些文件 (8)FLOTRAN重启动分析(续算) (9)Restart/Iteratio(或Restart/Load step, Restart/Set, 等) (10) ANSYS程序提供几个有助于收敛和求解稳定的工具,理论手册对其机理有详述。
(10)Main Menu>Preprocessor>FLOTRAN SetUp>Relax/Stab/Cap>Prop Relaxation (10)Main Menu>Solution>FLOTRAN SetUp>Relax/Stab/Cap>Stability Parms (10)Main Menu>Solution>FLOTRAN SetUp>Relax/Stab/Cap>Stability Parms (11)Main Menu>Solution>FLOTRAN SetUp>Relax/Stab/Cap>Results Capping (11)FLOTRAN分析过程中应处理的问题 (11)Main Menu>Solution>FLOTRAN SetUp>Execution Ctrl (12) FLDATA3,TERM,TEMP,value (14)Main Menu>Solution>FLOTRAN SetUp>Execution Ctrl (14) FLOTRAN设置命令 (15)FLOTRAN边界条件 (56)第五章FLOTRAN层流和湍流分析算例 (61)第一章FLOTRAN 计算流体动力学(CFD)分析概述FLOTRAN CFD 分析的概念ANSYS程序中的FLOTRAN CFD分析功能是一个用于分析二维及三维流体流动场的先进的工具,使用ANSYS中用于FLOTRAN CFD分析的FLUID 141和FLUID 142 单元,可解决如下问题:作用于气动翼(叶)型上的升力和阻力超音速喷管中的流场弯管中流体的复杂的三维流动同时,FLOTRAN还具有如下功能:计算发动机排气系统中气体的压力及温度分布研究管路系统中热的层化及分离使用混合流研究来估计热冲击的可能性用自然对流分析来估计电子封装芯片的热性能对含有多种流体的(由固体隔开)热交换器进行研究FLOTRAN 分析的种类FLOTRAN可执行如下分析:层流或紊流传热或绝热可压缩或不可压缩牛顿流或非牛顿流多组份传输这些分析类型并不相互排斥,例如,一个层流分析可以是传热的或者是绝热的,一个紊流分析可以是可压缩的或者是不可压缩的。
AnsysFluent基础详细⼊门教程(附简单算例)Ansys Fluent基础详细⼊门教程(附简单算例)当你决定使FLUENT解决某⼀问题时,⾸先要考虑如下⼏点问题:定义模型⽬标:从CFD模型中需要得到什么样的结果?从模型中需要得到什么样的精度;选择计算模型:你将如何隔绝所需要模拟的物理系统,计算区域的起点和终点是什么?在模型的边界处使⽤什么样的边界条件?⼆维问题还是三维问题?什么样的⽹格拓扑结构适合解决问题?物理模型的选取:⽆粘,层流还湍流?定常还是⾮定常?可压流还是不可压流?是否需要应⽤其它的物理模型?确定解的程序:问题可否简化?是否使⽤缺省的解的格式与参数值?采⽤哪种解格式可以加速收敛?使⽤多重⽹格计算机的内存是否够⽤?得到收敛解需要多久的时间?在使⽤CFD分析之前详细考虑这些问题,对你的模拟来说是很有意义的。
第01章fluent介绍及简单算例 (2)第02章fluent⽤户界⾯22 (3)第03章fluent⽂件的读写 (5)第04章fluent单位系统 (8)第05章fluent⽹格 (10)第06章fluent边界条件 (36)第07章fluent流体物性 (55)第08章fluent基本物理模型 (63)第11章传热模型 (75)第22章fluent 解算器的使⽤ (82)第01章fluent介绍及简单算例FLUENT是⽤于模拟具有复杂外形的流体流动以及热传导的计算机程序。
对于⼤梯度区域,如⾃由剪切层和边界层,为了⾮常准确的预测流动,⾃适应⽹格是⾮常有⽤的。
FLUENT解算器有如下模拟能⼒:●⽤⾮结构⾃适应⽹格模拟2D或者3D流场,它所使⽤的⾮结构⽹格主要有三⾓形/五边形、四边形/五边形,或者混合⽹格,其中混合⽹格有棱柱形和⾦字塔形。
(⼀致⽹格和悬挂节点⽹格都可以)●不可压或可压流动●定常状态或者过渡分析●⽆粘,层流和湍流●⽜顿流或者⾮⽜顿流●对流热传导,包括⾃然对流和强迫对流●耦合热传导和对流●辐射热传导模型●惯性(静⽌)坐标系⾮惯性(旋转)坐标系模型●多重运动参考框架,包括滑动⽹格界⾯和rotor/stator interaction modeling的混合界⾯●化学组分混合和反应,包括燃烧⼦模型和表⾯沉积反应模型●热,质量,动量,湍流和化学组分的控制体源●粒⼦,液滴和⽓泡的离散相的拉格朗⽇轨迹的计算,包括了和连续相的耦合●多孔流动●⼀维风扇/热交换模型●两相流,包括⽓⽳现象●复杂外形的⾃由表⾯流动上述各功能使得FLUENT具有⼴泛的应⽤,主要有以下⼏个⽅⾯●Process and process equipment applications●油/⽓能量的产⽣和环境应⽤●航天和涡轮机械的应⽤●汽车⼯业的应⽤●热交换应⽤●电⼦/HV AC/应⽤●材料处理应⽤●建筑设计和⽕灾研究总⽽⾔之,对于模拟复杂流场结构的不可压缩/可压缩流动来说,FLUENT是很理想的软件。
基于ANSYS FLUENT的两相流分析例1众所周知,FLUENT和CFX是ANSYS中最牛的两个流体分析软件。
下面以FLUENT 为例,说明其在多相流分析中的应用。
该例子来自于FLUENT帮助,但是其建模,网格划分以及命名集的定义方式则进行了改变。
希望该例子对于大家做多相流的分析有所帮助。
问题:一个水-空气混合物在管道内向上流动,在T型交叉点分成两支。
管道宽25mm,输入部分长125mm,顶部和右边都是250mm。
空气和水在进口处的速度见下图,而两个出口处的出流权重分为为0.38和0.62.现在要求对该两相流做一个稳态分析。
使用ANSYS fluent分析过程如下(1)创建项目示意图(WORKBENCH)设置geometry单元格的属性(2)创建几何模型(geometry) 设置单位为mm创建草图并施加尺寸约束修改模型从草图生成面物体这样,几何建模工作完成,存盘后退出DM. (3)划分网格并设置命名集(mesh)下面进入到mesh单元格,首先划分网格,添加一个尺寸控制,并设置单元划分尺寸为2.5mm.划分网格结果如下然后定义命名集,其实就是定义速度进口边,以及流出边。
这些定义会在后面用到。
选择最下面这条边,并定义命名集inlet再选择最右边这条边,定义命名集outlet1最后选择最上边这条边,定义命名集outlet2这样,网格划分和命名集定义结束,存盘并退出mesh. (4)设置流体分析模型(setup)点击WB中的setup,马上弹出下列对话框OK后进入fluent。
(4.1)设置一般选项进入general菜单项,接受默认设置。
做基于压力的稳态分析,是二维的平面问题。
(4.2)定义计算模型首先确定是多相分析(两相分析)接着确定是紊流分析(4.3)定义材料模型系统默认只有空气材料,需要加入水这种材料从FLUENT自带的材料库中找到水这种材料,并复制到本模型的数据库中这样,材料模型的定义工作结束。
目录第一章FLOTRAN 计算流体动力学(CFD)分析概述 (2)FLOTRAN CFD 分析的概念 (2)FLOTRAN 分析的种类 (2)FLOTRAN单元的特点 (4)FLUID141单元 (4)FLUID142单元 (4)FLUID单元的其他特征 (4)FLOTRAN单元使用中的一些限制 (5)FLOTRAN分析的主要步骤 (6)FLOTRAN分析中产生的一些文件 (8)FLOTRAN重启动分析(续算) (9)Restart/Iteratio(或Restart/Load step, Restart/Set, 等) (10)ANSYS程序提供几个有助于收敛和求解稳定的工具,理论手册对其机理有详述。
(10)Main Menu>Preprocessor>FLOTRAN SetUp>Relax/Stab/Cap>Prop Relaxation (10)Main Menu>Solution>FLOTRAN SetUp>Relax/Stab/Cap>Stability Parms (10)Main Menu>Solution>FLOTRAN SetUp>Relax/Stab/Cap>Stability Parms (11)Main Menu>Solution>FLOTRAN SetUp>Relax/Stab/Cap>Results Capping (11)FLOTRAN分析过程中应处理的问题 (11)Main Menu>Solution>FLOTRAN SetUp>Execution Ctrl (12)FLDATA3,TERM,TEMP,value (14)Main Menu>Solution>FLOTRAN SetUp>Execution Ctrl (14)FLOTRAN设置命令 (15)FLOTRAN边界条件 (56)第五章FLOTRAN层流和湍流分析算例 (61)第一章FLOTRAN 计算流体动力学(CFD)分析概述FLOTRAN CFD 分析的概念ANSYS程序中的FLOTRAN CFD分析功能是一个用于分析二维及三维流体流动场的先进的工具,使用ANSYS中用于FLOTRAN CFD分析的FLUID 141和FLUID 142 单元,可解决如下问题:∙作用于气动翼(叶)型上的升力和阻力∙超音速喷管中的流场∙弯管中流体的复杂的三维流动同时,FLOTRAN还具有如下功能:∙计算发动机排气系统中气体的压力及温度分布∙研究管路系统中热的层化及分离∙使用混合流研究来估计热冲击的可能性∙用自然对流分析来估计电子封装芯片的热性能∙对含有多种流体的(由固体隔开)热交换器进行研究FLOTRAN 分析的种类FLOTRAN可执行如下分析:∙层流或紊流∙传热或绝热∙可压缩或不可压缩∙牛顿流或非牛顿流∙多组份传输这些分析类型并不相互排斥,例如,一个层流分析可以是传热的或者是绝热的,一个紊流分析可以是可压缩的或者是不可压缩的。
ansys fluent 流体数值计算方法与实例Ansys Fluent 是一种广泛使用的流体数值计算方法,可用于模拟流体流动过程,例如空气动力学、海洋动力学、航空航天等领域。
本文将介绍 Ansys Fluent 的基本概念和数值计算方法,并探讨 Ansys Fluent 在实际工程中的应用实例。
1. Ansys Fluent 的基本概念Ansys Fluent 是 Ansys 公司开发的一款数值计算方法,主要用于模拟流体运动。
它包括三个主要部分:模型建立、求解器和结果后处理。
模型建立部分用于创建流体运动的数学模型,包括流体的物理性质、边界条件、初始条件等。
求解器部分用于对模型进行数值求解,以得到流场的数值解。
结果后处理部分用于对求解得到的流场进行可视化和分析。
2. Ansys Fluent 的数值计算方法Ansys Fluent 的数值计算方法基于有限体积法(Finite Volume Method,FVM)和有限元法(Finite Element Method,FEM)。
在 FVM 中,模型被划分为多个小部分,每个小部分被划分为多个小体积,然后对每个小体积进行求解。
求解器根据流体的物理性质和边界条件计算出每个小体积内的流体速度、压力等物理量,然后将这些物理量代入下一个小体积中,以此类推,最终得到整个模型的解。
在 FEM 中,模型被划分为多个小区域,然后在每个小区域内使用离散化的单元进行求解。
每个单元包含有限个节点和有限个边界面,单元内的物理量可以通过节点和边界面之间的方程进行求解。
3. Ansys Fluent 在实际工程中的应用实例Ansys Fluent 在实际工程中的应用非常广泛,以下是几个实际工程中的应用实例:1. 空气动力学在飞机设计和飞行模拟中,Ansys Fluent 可以用于模拟空气流动,包括气动力学、湍流流动、温度变化等方面。
通过 Ansys Fluent,可以分析飞机在不同高度、速度和风速下的气动力学特性,并进行飞行模拟,为飞机的设计和优化提供数值支持。
ANSYS EXERCISE – ANSYS 8.1Flow Over a Flat PlateCopyright 2001-2005, John R. BakerJohn R. Baker; phone: 270-534-3114; email: jbaker@This exercise is intended only as an educational tool to assist those who wish to learn how to use ANSYS. It is not intended to be used as a guide for determining suitable modeling methods for any application. The author assumes no responsibility for the use of any of the information in this tutorial. There has been no formal quality control process applied to this tutorial, so there is certainly no guarantee that there are not mistakes on the following pages. The author would appreciate feedback at the email address above if mistakes are discovered in this tutorial.In this exercise, you will solve the classical flat plate 2-D airflow problem, illustrated below, using ANSYS. The problem is adapted from the textbook, Fundamentals of Fluid Mechanics, by Munson, Young, and Okiishi. The airflow velocity for flow over the flat plate will be solved for, based on the specified velocity and pressure boundary conditions, and the plate dimensions. Step-by-step instructions are provided beginning on the following page.Notes: The fluid is air, with density, ρ=1.23 kg/m3, and dynamic viscosity, μ =1.79E-5 N-s/m2. The plate is 1 m long, as shown, and is very thin. It will be modeled with a thickness of 0.001 m. The plate is modeled in a square field, with edge lengths of 2 m. The 2 m edge length dimensions are arbitrary. These lengths are chosen large enough such that the effects of the flat plate on the flow are captured completely within the square field. Also, the flow velocity in all directions is zero along the sides of the flat plate.The steps that willbe followed, after launching ANSYS, are:Preprocessing:1. Change Preferences2. Change Jobname.3. Define element type. (Fluid141 element, which is a 2-D element for fluid analysis.)4. Define the fluid. (Air – SI Units.)5. Create keypoints.6. Create areas.7. Specify meshing controls / Mesh the areas to create nodes and elements.8. Zoom in to see flat plate region (optional).Solution:9. Specify boundary conditions.10. Specify number of solution iterations.11. Solve.Postprocessing:11. Plot the x-direction velocity (VX) distribution.12. List VX at Nodes.Exit13. Exit the ANSYS program, saving all data._____________________________________________________________________________ Notes:•It is assumed in this tutorial that the user has already launched ANSYS and is working in the Graphical User Interface (GUI).•The menu picks needed to perform all required tasks are specified in italics in the step-by-step instructions below. It is sometimes more convenient to enter certain commands directly at the command line. The method of direct command line entry, however, is not emphasized in this exercise. Primarily, in this exercise, the analysis will be performed using menu picks from the ANSYS Graphical User Interface.SUGGESTION: As you work through this exercise, on the ANSYS Toolbar click on “SAVE_DB” often!At any point, if you want to resume from the previous time the model was saved, simply click on “RESUM_DB” on this same Toolbar. Any information entered since the last save will be lost, but this is a nice feature in the event that you make an input mistake, and are unsure of how to correct it.Note: Most of the required tasks are performed using menu picks from the ANSYS GUI, as specified in italics in the step-by-step instructions below. It is sometimes more convenient, however, to enter certain commands directly at the command line. The command line is seen on the screen.The Main Menu is on the left side of the screen.The method of direct command line entry is used in some cases in this exercise, whenever this method seems more convenient than using menu picks.Often, as an alternative, an input file, known as a “batch file”, is created, which is simply an ASCII text file containing a string of ANSYS commands in the appropriate order. ANSYS can read in this file as if it were a program, and perform the analysis in “batch mode”, without ever opening up the Graphical User Interface. The batch file option is not covered in this exercise.There are a number of ways to model a system and perform an analysis in ANSYS. The steps below present only one method.Preprocessing:1. Change Preferences. Main Menu -> Preferences -> FLOTRAN CFD -> OK2. Change jobname. At the upper left-hand corner of the screen:File -> Change JobnameEnter “flatplate”, and click on “OK”.3. Define element type:Preprocessor -> Element Type -> Add/Edit/DeleteClick on “Add”. The “Library of Element Types” box appears, as shown. Highlight “FLOTRAN CFD”, and “2D FLOTRAN 141”. Click on “OK”, then “Close”.4. Define fluid properties: Preprocessor -> FLOTRAN Set Up ->Fluid PropertiesOn the box, shown below, change the first two input fields to “AIR-SI”, and then click on “OK”. Another box will appear. Accept all defaults on that box by clicking on “OK”.5. Create keypoints:There are several options available for creating the basic geometry. The method that will be employed involves creating “keypoints”, then generating two separate areas, with corners defined by the keypoints.Preprocessor -> -Modeling- Create -> Keypoints -> In Active CS…Fill in the fields as shown below, then click “APPLY”. When you click on “Apply”, the command is issued to create keypoint number 1 at (x,y,z)=(-1,1,0). Note that when the Z field is left blank, in this case, the blank space defaults to zero, which is desired. Since you clicked on “Apply”, instead of “OK”, then the keypoint creation box remains open.Create keypoint number 2 at (x,y,z)=(0,1,0), using the input shown below. After entering the input, again, click on “APPLY”:Create 12 total keypoints in the same manner. The locations for all 12 are shown in the following table. When the final keypoint is created, click on “OK” instead of “APPLY”.“OK” issues the command and also closes the keypoint creation box.Keypoint Number X-Location Y-Location1 -1 12 0 13 1 14 -0.5 05 0 06 0.5 0-0.0017 -0.5-0.0018 0-0.0019 0.510 -1 -111 0 -112 1 -1Before moving on, it is probably a good idea to check the keypoint locations. Along thetop toolbar choose:List -> Keypoint -> Coordinates Only.A box should open up with the keypoint location information. If any keypoint is not inthe correct location, at this point, you can just re-issue the keypoint creation command for that particular keypoint. To do this, choose:Preprocessor -> -Modeling- Create -> Keypoints -> In Active CS…Fill in the correct information for that particular keypoint in the box, and click “OK”. The keypoint will be moved to the correct location. If you have some keypoint incorrectly numbered above number 12, this will not cause a problem. Just be sure you have keypoint numbers 1 thru 12 located correctly.You can close the box listing the keypoint locations, by clicking, in that listing box, on “File-> Close”.6. Create areas:It may be a good idea to save your model at this point, by clicking “SAVE_DB”on the ANSYS Toolbar. Now, if you make a mistake from which you do not know howto recover, just click on “RESUM_DB”, and the model will resume from the point of the last save.We will create two separate areas. One is the left half of the flow field, and the other is the right half. We will do this by defining areas, as outlined below, using the defined keypoints as corners of the areas. The figure below shows the end result, exceptthe figure shows an extremely exaggerated thickness of the flat plate. This is done forclarity. The black dots denote keypoints, and the circled numbers denote the keypoint numbers.In creating the areas, it is probably easiest to use the direct command line entry approach. At the command line, type in, as shown below: a,1,2,5,4,7,8,11,10Hit “Enter”, and the left half of the flow field is generated as an area, defined by the keypoints entered with the “a” command. Now, create the right half, by typing, at the command line: a,2,3,12,11,8,9,6,5After hitting “Enter”, the right side is generated. Note that, although we have created the flow field in two halves, the entire 2 m x 2 m field could have been produced as a single square. Then, the flat plate could have been cut out of that square. However, the method being employed will produce a line of “nodes” protruding vertically from the center of the flat plate, and this will be desirable when the fluid velocity results are compared to the analytical solution. At this time, the horizontal flat plate appears in the graphics window as a single line, because it is so thin. The plot in the graphics window should appear as:7. Specify Mesh Size Controls / Mesh the Model.There are a number of ways to perform this step, but for this exercise, the procedure has been automated, and will involve typing only a single word, below. The actual method employed would involve entering 24 commands at the command line. Because of the possibility of typographical errors, however, for this exercise, this step has been automated, using the “macro” option within ANSYS. A macro has been created. It is a text file named mshfield.mac. It is available for download on the website from which this tutorial was downloaded. The file, mshfield.mac, should be copied to your ANSYS working directory. The commands in the macro are discussed in the Appendix, at the end of these instructions. However, to execute all of the required commands (assuming you have the file “mshfield.mac” stored in your current ANSYS working directory), all that is needed is to type, at the command line:mshfieldThen, hit “Enter”. All of the necessary commands should be executed, and the mesh should appear, as shown in the following figure on the next page. The requiredcommands are listed in the appendix.GUI with Finite Element Mesh in Graphics Window8. Zoom in to see the flat plate (optional)This step is not necessary, but it may be helpful to you to see the flat plate geometry, and the fine mesh near the plate. If you wish to zoom in, first, it may be best to turn off the X-Y-Z Axis “Triad” display, as it is really just in the way. We know that we defined our model so that +x is to the right on the screen, and +y is upward. To turn off the X-Y-Z Axis “Triad” display, on the menu across the very top of the GUI choose:PltCtrls -> Window Controls -> Window OptionsA box appears. Change the [/TRIAD] option to “Not Shown”, and then click “OK”.Then, back to the menu across the very top of the GUI, select:PltCtrls -> Pan, Zoom, Rotate…The “Pan-Zoom-Rotate” box below appears. On that box, select “Box Zoom”Then, in the graphics window, press the left mouse button, and drag to producea box near the center of the flow area. Then, click once with the left mousebutton, and you will see a zoomed view of the region around the plate, withthe fine mesh. At any time, to return to the full model view, on the “Pan-Zoom-Rotate” box, click on “Fit” (near the bottom of the box).Solution:9. Specify boundary conditions.In Step 6, there is a sketch of the geometry, with an exaggerated thickness for the flat plate. You may want to refer to this figure and the figure on page 1, during the boundary condition specification. The boundary condition specification steps are outlined below, in steps 9a thru 9e, where VX denotes X-direction flow velocity, and VY denotes Y-direction flow velocity. Before beginning the specifications, it is probably best to plot the lines, without showing the areas, for better clarity. On the menu along the very top of the GUI, select:Plot -> LinesYou should then see colored lines, which are the boundaries of the areas. Unless you are zoomed in, the flat plate will probably appear as a single horizontal line. Although not necessary, you may also want to turn on “Keypoint Numbering”. To do this, again on the very top menu, choose: PltCtrls -> NumberingZoomed View of PlateThe box below opens. Click on the box to the right of “Keypoint numbers” to toggle from “Off” to “On”. Then, click on “OK”. If you have the lines plotted, then the keypoint numbers should also show.9a) Specification of VX Value and VY=0 on the line connecting keypoints 1 and 10.One way to do this is to choose, and the ANSYS Main Menu:Solution -> Define Loads-> Apply->Fluid/CFD-> Velocity -> On LinesA picking menu appears, as shown (below, left). Click on the far left vertical line (theline which connects keypoints 1 and 10), and it should highlight. In the picking menu, choose “OK”. (Note that if you accidently highlight the wrong line, you can unselect it using the picking menu, and switching from “Pick” to “Unpick”. But here, it’s probably easiest to just hit “Cancel” on the picking menu, then re-open the picking box, using: Solution -> -Loads- Apply -> -Fluid/CFD- Velocity -> On Lines.)After highlighting the appropriate line, and clicking “OK” in the Picking Menu, a box appears (shown below right). Enter “0.072764” (or your assigned value) for VX, and 0.0 for “VY”, then click “OK”. Since this is a 2-D analysis, you don’t need a VZ value.9b) Specification of VX=VY=0.0 along the edges of the flat plate. Here, we could use the picking option to select the correct lines, as we did in Step 9a. But, it would involve zooming in to pick the correct closely-spaced lines. It may be easiest here to initially just select the correct lines, using two successive command line entries, which are:ksel,s,kp,,4,9lslk,s,1Hit “Enter” after each command. Note that there are supposed to be two consecutive commas, as shown, in the “ksel” command. The first command above selects keypoints 4 thru 9, and the second command selects the set of all lines which have their endpoints within the selected set of keypoints. Now, on the menus, choose:Solution -> Define Loads-> Apply -> Fluid/CFD-> Velocity -> On LinesThis time, when the picking menu appears, you don’t need to pick on any lines in the model, just choose “Pick All” at the bottom of the picking menu. Only the lines of interest are currently selected. When the “Velocity Constraints” box opens, just enter VX=0.0 and VY=0.0, then click on “OK”.Now, it is very important that you re-select all entities. On the very top menu, choose: Select -> Everything (or else, equivalently, you can type, at the command line: allsel , then hit “Enter”.Then, on the top menu, choose: Plot -> Lines8c) Specification of atmospheric pressure on five of the six lines that define the outer boundary. These are the lines defined by end keypoints 1-2; 2-3; 3-12; 12-11; and 11-10. Note that the farthest left vertical line, connecting keypoints 1 and 10, is not included in the set. Here, we can return to the picking menu method. Choose:Solution -> Define Loads-> Apply -> Fluid/CFD-> Pressure DOF -> On LinesA picking menu opens. Click on all five of the lines noted above to highlight them. If you make a mistake in picking, it may be best to just click on “Cancel” in the picking menu, then re-start step 8c. Once the correct five lines are highlighted, choose “OK” in the picking menu, and the “Pressure Constraint” box will open, as shown below. Enter “0” for “Pressure value”, and click “OK”. This “0” value indicates atmospheric pressure.10. Specify Number of Solution Iterations:Solution -> FLOTRAN Set Up ->Execution CtrlThe box below appears. Change the first input field value to 500, as shown. No other changes are needed. Click OK.11. Solve the problem:Solution -> Run FLOTRANThe problem will run until the specified 500 iterations are completed. This will take a few minutes. When the solution is completed, a box will appear that reads “Solution is Done!”. You may close this box.Postprocessing:12. Plot the x-direction velocity distribution.First, read in the results by selecting:General Postproc -> Read Results-> Last SetThen, to plot, choose:General Postproc -> Plot Results ->Contour Plot-> Nodal SoluThe box below opens:Highlight “DOF solution” and “X-Component of Fluid Velocity” and click “OK”. In the graphics window, a plot, as shown below, should appear. Note that the velocity values corresponding to the colors are shown in the legend to the right.You may want to zoom in closer to the flat plate to get a better view of the velocity distribution near the flat plate. See Step 8 for instructions on zooming in to get a closer look. It is also possible to save plots in the graphics window to graphics files, in formats such as “TIFF”, “JPEG”, or “BITMAP”, and subsequently insert them into a word processing document. This option is not covered in this exercise. If you want to try this, though, you can select, from the top menu: PltCtrls -> Hard Copy -> To File. A box opens up with the plot file creation options.13. List VX at Nodes.13a. Select nodes along the plate center (x=0.0 meters).For comparison with the analytical solution, you will need a listing of specific x-direction velocities at specific locations in the flow field. ANSYS has calculated VX, VY, and the pressure at each “node”. Because of our method of creating the model by automatic “meshing” of the areas, at this time, we do not know specific node numbers at specific locations. But, we can get a listing of node numbers, including the locations of each node, and also a listing of velocities by node numbers. To keep the amount of information to a workable level, it is probably best to include in these lists only a subset of nodes. To get such a list, we can first select only the nodes at x=0 (at the center of the plate – recall the plate ends are at x=-0.5 m and x=+0.5 m). This is a case where it isprobably easiest to just use the direct command line entry option, rather than operate through the menus. On the command line, type:nsel,s,loc,x,0Hit “enter”.Then, reduce the selected set even further by reselecting, from the currently selected set, only those nodes above the plate, up to y=0.15 m. To do this, type, at the command line:nsel,r,loc,y,0,0.15Hit “enter”.13b. List the locations of the selected nodes.On the very top menu, choose List -> Nodes. In the box that appears, on the “Output listing will contain” option, choose “Coordinates Only”. Then for the “Sort first by” option, select “Y coordinate” as shown below:Then, just click on “OK” at the bottom. A listing box appears:You can get a hard copy of the information in this box by clicking, in this listing box:File -> Print.You can also save this information to a file using the option:File -> Save As.If desired, you may close the node listing box to get it out of the way. To do this, in that listing box, choose: File -> Close.13c. List x-direction velocity (VX) at each of these nodes.First, for convenience, sort the nodes so that the results listing will list the velocities of the selected nodes in ascending order of y-location. Choose:General Postproc -> List Results -> -Sorted Listing-> Sort NodesIn the box that opens, shown below, select “Ascending Order”, for “ORDER”, and highlight “Geometry” and “Y”, as shown, and hit “OK”. This produces another listing box of node locations, which you may close.Then, to get the list of nodal velocities, select:General Postproc -> List Results -> Nodal SolutionIn the box that appears, select “DOF Solution” and “X Component of Fluid Velocity”, as shown, then click “OK”.The listing, as shown below, should appear. You will probably want to either print these velocities out, or save them to a file, as you did the node locations. The locations of the same nodes have already been listed, in Step 13b, above. Since you now have velocities (VX) at various y-locations, all at the center of the plate (x=0), the results for these nodes can be checked with the analytical solution.Re-select all nodes in the model for additional plotting, or listing, as desired. To do this, simply type, at the command line: “allsel” and hit enter:Or else, on the very top menu, choose: Select -> EverythingSubsequent lists and plots will include all nodes. Steps 12 and 13 can be repeated to get listings of velocities and pressures of nodes at other locations. Of course, Y-direction velocities (VY) are also available. In addition, there are options for velocity vector plots, and also animations of the steady-state flow, available on the ANSYS Post-processor.14. Exit ANSYS, Saving All Data. On the ANSYS Toolbar, choose:Quit ->Save Everything -> OKTo recall the model and solution at a later date, assuming you have deleted no files, simply re-launch ANSYS, specify the same working directory as before, re-issue the same jobname as used in Step 2 of these instructions, and then click on “RESUME_DB” on the ANSYS Toolbar shown above.To see the resumed model in the graphics window, you may then need to click on “Plot” on the very top menu, then, choose either “Elements”, “Nodes”, or “Areas”, depending on which entities you wish to plot.Appendix – Discussion of Step 7 (This appendix is included for discussion only, and may be skipped.)The commands on the following page are designed to produce a fine mesh near the plate, but a more coarse mesh away from the plate. In Step 7 of these instructions, all of these commands were issued automatically, by simply typing “mshfield”. This only worked because a file named “mshfield.mac” was copied to your ANSYS working directory. This is not a standard ANSYS command. It is a user-created macro containing a string of commands.Regarding the mesh, a fine mesh was desired near the flat plate, where the velocity gradients are highest. This is necessary to accurately calculate the flow velocity near the plate. However, away from the high velocity gradient region, a fine mesh is not necessary. For solution accuracy, there is no problem with simply creating a very fine mesh in all regions of the model. However, producing a fine mesh in regions where it is not necessary results in longer solution time and higher computer memory and hard drive storage requirements, without significantly increasing the solution accuracy. Therefore, it is useful to control the mesh. A discussion of the method used follows: •We first select the two horizontal lines, which define the plate top and bottom, and we specify that there are to be 100 element divisions along each of these lines. This is accomplished with the first five commands.•Then, the vertical line along the center of the flow field, above the flat plate, is selected, and 30 element divisions are specified, with a spacing ratio of 0.01. This means that the ratio of the longest division to the shortest is 100. This is done with commands 6 thru 8.•Next, the vertical line along the center of the flow field, below the flat plate, is selected, and again, 30 element divisions are specified, with a spacing ratio of 100. This is handled with commands 9 thru 11. Note: It may be confusing that in one case we entered a spacing ratio of “0.01”, and in the other case, we entered a spacing ratio of “100”. In both cases, this means that the ratio of the longest division to the shortest is 100. The line “directions” (which are determined and stored internally in ANSY) were automatically determined when the areas were generated. Because of these directions, in the first case, the spacing ratio of “0.01” will produce the smallest element divisions at the ends of the lines nearer the plate. In the next case, a spacing ratio of “100” is needed to produce the smaller divisions nearer the plate. It is possible to check the directions of all lines, but it is not necessary in this exercise, because the required commands have already been determined for you.•Next, the two vertical lines at the ends of the flow fields are selected, and the number of element divisions specified for each is 20. The spacing ratio is uniform, so no spacing ratio is entered. This is handled with commands 12 thru16.•Next, the four horizontal lines, at the top and bottom of the flow fields, are selected, and the number of element divisions specified for each is 10. Again, the spacing ratio is uniform, so no spacing ratio is entered. This is handled with commands 17 thru 21.•Everything is re-selected with the “allsel” command, command number 22.•The element shape is set to triangular, with the “mshape” command. Triangular elements are sometimes better than quadrilateral elements for irregularly shaped areas, such as we have.•The two areas are meshed, using the “amesh” command.The mesh that should result was shown in Step 7 of these instructions.Rather than use the macro “mshfield.mac”, in Step 7, the commands below could have been issued in the order shown below, at the ANSYS command line. The user would not have typep the numbers in parentheses, but would have just typed the commands. These numbers were included for reference only. The user could have typed the commands, exactly as shown, including all commas, and hit “Enter” after each command was typed. The macro “mshfield.mac” is simply an ASCII text file containing the string of commands below (without the numbers).Commands:(1) ksel,s,kp,,4,6(2)lslk,s,1(3) ksel,s,kp,,7,9(4) lslk,a,1(5) lesize,all,,,200(6) ksel,s,kp,,2,5,3(7) lslk,s,1(8) lesize,all,,,30,0.01(9) ksel,s,kp,,8,11,3(10) lslk,s,1(11) lesize,all,,,30,100(12) ksel,s,kp,,1,10(13) lslk,s,1(14) ksel,s,kp,,3,12(15) lslk,a,1(16) lesize,all,,,20(17) ksel,s,kp,,1,3(18) lslk,s,1(19) ksel,s,kp,,10,12(20) lslk,a,1(21) lesize,all,,,10(22) allsel(23) mshape,1,2d(24) amesh,all。
ansysfluent中文版流体计算工程案例详解以汽车空气动力学为例,我们可以利用ANSYS Fluent来模拟车辆行驶过程中的风阻和气动性能。
首先,我们需要建立车辆的几何模型,并进行网格划分。
网格划分的精度和密度直接影响到计算结果的准确性。
在划分网格时,我们需要考虑到车辆外形的复杂性以及细节特征,如轮胎、后视镜等。
建立几何模型和划分网格后,我们可以导入该模型并设置初始条件。
初始条件包括初始流速、压力和温度等。
接下来,我们需要设置流体物性,如空气的密度、粘度和热导率等。
在进行计算之前,我们还需要设置边界条件。
车辆表面通常设定为无滑移壁面,即在边界处满足流速为零的条件。
此外,我们还需要设置出口条件来模拟车辆行驶过程中的空气流动。
出口条件可以设定为自由出流或常数质量流率出流。
此外,我们还可以设置车辆的速度和方向等边界条件。
设置完边界条件后,我们可以开始求解流体力学方程。
ANSYS Fluent使用的是控制方程的有限差分形式来近似求解。
利用迭代算法,可以逐步优化流场的精度和稳定性,直至达到收敛条件。
在求解过程中,我们可以通过图形输出和数据记录等方式来观察和分析结果。
图形输出可以显示出流场、压力分布、速度分布和湍流特性等。
数据记录可以提供流场参数的详细信息,如压力、温度、速度和质量流率等。
通过以上步骤,我们可以获得汽车在不同速度下的风阻系数、力矩和气动特性等重要参数。
这些结果可以为汽车的空气动力学设计和优化提供依据。
综上所述,ANSYS Fluent可以应用于各种流体力学计算工程。
通过几何建模、网格划分、边界条件设置、流体力学方程和求解等步骤,我们可以对流动过程进行模拟和分析,并获得各种流场参数。
这些参数对于优化设计、性能评估和产品改进等方面具有重要意义。
ANSYS流体第4章flotran流体分析典型工程实例ANSYS程序中的FLOTRAN CFD流体分析是一个用于分析二维及三维流体流淌场的先进工具。
本章重点通过实例讲解介绍FLOTRAN CFD流体分析在工程上的一些典型应用。
本章要点如何解决流体力学问题FLOTRAN流体分析典型工程实例本章案例三维U型管道速度场的数值模拟实际生活中射流现象的数值模拟4.1 如何解决流体力学问题在流体力学的研究中,常用的方法有理论研究方法、数值计算方法与实验研究方法。
理论研究方法的特点是:能够清晰、普遍地揭示出流淌的内在规律,但该方法目前只局限于少数比较简单的理论模型。
研究更复杂更符合实际的流淌通常使用数值计算方法,它的特点就是能够解决理论研究方法无法解决的复杂流淌问题,如常见的航空工程、气象预报、水利工程、环境污染预报、星云演化过程等。
实验研究方法的特点就是结果可靠,但其局限性在于相似准侧不能全部满足、尺寸限制、边界影响等。
数值计算方法与实验研究方法相比,它所需的费用与时间都比较少,同时有较高的精度,但它要求对问题的物理特性有足够的熟悉(通过实验方法熟悉),并能建立较精确的描述方程组(通过理论分析)。
关于流体力学的数值模拟常使用的步骤如下。
(1)建立力学模型通过流淌分析,使用合理的假设与简化,建立力学模型。
假设与简化:连续介质与不连续介质;理想流体与粘性流体;不可压缩流体与可压缩流体;定常流淌与非定常流淌。
(2)建立数学模型根据力学模型,建立描述力学模型的数学方程组,并利用无量钢化、量纲分析、引进新的物理参数、经验或者半经验公式等方法对基本方程组进行简化,得到相应流淌的求解方程组,再根据具体的流淌条件确定流淌的初始条件与边界条件。
描写流体运动的两种方法:拉格朗日方法与欧拉方法。
(3)求解方法●准确解法:解析解●近似解法:近似解、数值解●实验解法:相似解(4)求解结果速度分布、压力分布、合力、阻力、能量耗散等物理量的求解结果。
15 设置FLOTRAN分析的自由度限值命令:FLDATA31, CAPP, Lable, Value功能:设置自由度变量的限值以防止出现不合理结果菜单:Main Menu>Preprocessor>FLOTRAN Set Up>Relax/Stab/Cap>Results CappingMain Menu>Solution>FLOTRAN Set Up>Relax/Stab/Cap>Results Capping其中,Lable的选项及其各自含义如下:VELO:控制是否加速度限值,缺省为否TEMP:控制是否加温度限值,缺省为否PRES:控制是否加压力限值,缺省为否UMIN:指定X方向速度的最小限值,缺省为-1×1020UMAX:指定X方向速度的最大限值,缺省为1×1020VMIN:指定Y方向速度的最小限值,缺省为1×1020WMIN:指定Z方向速度的最小限值,缺省为-1×1020WMAX:指定Z方向速度的最大限值,缺省为1×1020TMIN:指定温度的最小限值,缺省为-1×1020实用文档TMAX:指定温度的最大限值,缺省为1×1020 PMIN:指定压力的最小限值,缺省为-1×1020 PMAX:指定压力的最大限值,缺省为1×1020该命令的菜单形式有如下两个:实用文档16 选择FLOTRAN各自由度相应的求解器命令:FLDATA18, METH, Lable, Value功能:选择每个自由度的解算方法菜单:Main Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>VXSolver CFD实用文档Solver CFDMain Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>VZ Solver CFDMain Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>PRES Solver CFDMain Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>TEMP Solver CFDMain Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>ENKE Solver CFDMain Menu>Preprocessor>FLOTRAN Set Up>CFD Solver Controls>ENDS Solver CFDMain Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>VX Solver CFDMain Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>VY Solver CFDMain Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>VZ Solver CFD实用文档Solver CFDMain Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>TEMP Solver CFDMain Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>ENKE Solver CFDMain Menu>Solution>FLOTRAN Set Up>CFD Solver Controls>ENDS Solver CFD其中,Lable的选项及其各自的含义如下:VX:指定X方向速度求解器,缺省为TDMA(三对角矩阵法〕VY:指定Y方向速度求解器,缺省为TDMA(三对角矩阵法〕VZ:指定Z方向速度求解器,缺省为TDMA(三对角矩阵法〕PRES:指定压力求解器,缺省为PCRM(预条件共轭残差法)TEMP:指定温度求解器,缺省为TDMA(三对角矩阵法〕ENKE:指定湍流动能求解器,缺省为TDMA(三对角矩阵法〕ENDS:指定湍流动能耗散率求解器,缺省为TDMA(三对角矩阵法〕Value的值及其含义如下:实用文档0:不求解该自由度的方程1:使用三对角矩阵法(TDMA, 作为除压力外其它所有自由度的缺省求解器)2:使用共轭残差法(CRM〕(该方法为半直接迭代求解法)3:使用预条件共轭残差法(PCRM〕(该方法为半直接迭代求解法)4:使用预条件广义最小残差法(PGMR)该命令的菜单形式如下(在此只显示了VX的菜单,其它自由度的菜单与此类似):实用文档17 对FLOTRAN各求解器的控制命令:FLDATA19, TDMA, Lable, Value功能:指定各自由度用TDMA法求解时的迭代数(推进步数)其中,Lable的选项及其各自的含义如下:VX:指定X方向速度TDMA法推进步数,缺省为1VY:指定Y方向速度TDMA法推进步数,缺省为1VZ:指定Z方向速度TDMA法推进步数,缺省为1PRES:指定压力TDMA法推进步数,缺省为100TEMP:指定温度TDMA法推进步数,缺省为100ENKE:指定湍流动能TDMA法推进步数,缺省为10ENDS:指定湍流动能耗散率TDMA法推进步数,缺省为10Value 即为上述推进步数(迭代数)注意:该命令只有PRES、TEMP、ENKE、ENDS四项能通过菜单达到,因若改变了速度项的推进步数缺省值,通常会引起求解不稳定。
【序言】ANSYS Fluent 2020是一款广泛应用于工程领域的计算流体力学(CFD)软件,具有强大的模拟功能和广泛的应用范围。
本文将介绍ANSYS Fluent 2020在不同领域的具体案例模型,通过这些案例模型的分析,可以更好地了解如何在实际工程中应用ANSYS Fluent 2020进行流体力学模拟。
【一、航空航天领域】1.1 飞机机翼气动特性模拟在航空航天领域,飞机的气动特性对飞行性能具有重要影响。
使用ANSYS Fluent 2020可以建立飞机机翼的流体力学模型,通过对气流在机翼表面的流动状况进行模拟,可以分析机翼的升力、阻力和气动效率等重要参数。
1.2 空气动力学仿真除了飞机机翼,ANSYS Fluent 2020还可用于模拟飞机的整机空气动力学特性。
通过建立飞机外形的三维流体力学模型,可以分析飞机在不同飞行状态下的气动效应,从而为飞机设计和改进提供重要的参考数据。
【二、汽车工程领域】2.1 汽车车身空气动力学仿真在汽车工程领域,ANSYS Fluent 2020可以用于模拟汽车车身的空气动力学特性。
通过建立汽车外形的流体力学模型,可以分析汽车在行驶过程中的空气阻力、升力和气动噪音等问题,为汽车设计优化提供科学依据。
2.2 发动机流场模拟除了汽车车身,ANSYS Fluent 2020还可用于模拟内燃机的燃烧过程和排气流场。
通过对发动机内部流动的数值模拟,可以优化燃烧过程、提高发动机效率,同时减少尾气排放和噪音产生。
【三、能源与环境领域】3.1 风力发电机叶片流场模拟在风能领域,ANSYS Fluent 2020可用于模拟风力发电机叶片的流场特性。
通过对叶片表面气流的详细分析,可以优化叶片设计,提高风力发电机的转化效率,减少杂音和振动。
3.2 污染物扩散模拟在环境保护领域,ANSYS Fluent 2020可以用于模拟大气污染物的扩散情况。
通过建立城市或工业区域的空气流动模型,可以预测污染物的扩散范围和浓度分布,为环境评估和污染防治提供科学依据。
ansys fluent中文版流体计算工程案例详解ANSYS Fluent是一种用于计算流体力学的软件,通过数值模拟的方式进行流体分析和设计。
在实际应用中,需要使用流体计算工程案例来验证仿真结果的准确性和可靠性。
下面将介绍一些常见的应用案例。
1.汽车空气动力学设计。
在汽车设计中,空气动力学是一个非常重要的因素。
使用ANSYS Fluent可以对汽车外形进行流体分析,如气流、气压、气动力等。
通过对气流的模拟,可以优化车身外形设计,提高汽车的性能和燃油经济性。
2.船舶流场分析。
船舶的流体设计是提高船舶速度和燃油经济性的重要因素。
使用ANSYS Fluent可以对船舶外形和水动力性能进行分析。
通过模拟船舶在水中的流动情况,可以优化船体外形和螺旋桨设计,提高航行效率。
3.风力发电机设计。
风力发电机是一种通过风力发电的机械设备。
通过ANSYS Fluent对风场进行数值模拟,可以预测风力发电机的性能和稳定性。
通过分析叶片的气动力学特性,可以优化叶片的设计,提高风力发电机的发电效率。
4.石油钻井液流分析。
石油钻井过程中,需要注入液体来冷却钻头并加速岩屑的排除。
使用ANSYS Fluent对液体的流动情况进行数值模拟,可以预测液体的流动速度和压降,优化钻井液的配比,提高钻井效率。
5.医用注射器设计。
医用注射器是一种常见的医疗器械。
通过使用ANSYS Fluent分析注射器的流场,可以优化注射器的设计。
通过预测注射器注射药液时的速度和压降,可以优化注射器的内部结构和开孔位置,提高注射的精度和安全性。
总之,ANSYS Fluent可以应用于各种流体力学领域,帮助工程师们进行流体力学设计与分析,取得更高效准确的结果。
这些案例都为设计和实施各种流体系统提供了指导,可以大大提高工作效率。