合数与质数典型例题及答案
- 格式:docx
- 大小:65.81 KB
- 文档页数:19
六年级数学质数与合数试题答案及解析1.某校师生为贫困地区捐款1995元.这个学校共有35名教师,14个教学班.各班学生人数相同且多于30人不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款多少元?【答案】3【解析】这个学校最少有35+14×30=455名师生,最多有35+14×45=665名师生,并且有师生总数整除1995.1995=3×5×133,在455~665之间的约数只有5×133=665,所以师生总数为665人,则平均每人捐款1995÷665=3元.2.在做一道两位数乘以两位数的乘法题时,小马虎把一乘数中的数字5看成8,由此得乘积为1872.那么原来的乘积是多少?【答案】1755或1800【解析】1872=2×2×2×2×3×3×13=□□×□□,其中某个□为8,有1872=48×39,小马虎错把5看成8,也就是错把45看成48,所以正确的乘积应该是45×39=1755.有1872=78×24,小马虎错把5看成8,也就是错把75看成78,所以正确的乘积应该是75×24=1800.验证没有其他满足条件的情况.所以原来的积为1755或1800.3.在面前有一个长方体,它的正面和上面的面积之和是209,如果它的长、宽、高都是质数,那么这个长方体的体积是多少?【答案】374【解析】如下图,设长、宽、高依次为a、b、c,有正面和上面的和为ac+ab=209.ac+ab=a×(c+b)=209,而209=11×19.当a=11时,c+b=19,当两个质数的和为奇数,则其中必定有一个数为偶质数2,则c+b=2+17;当a=19时,c+b=11,则c+b=2+9,不满足.所以它们的乘积为11×2×17=374.4.如果两数的和是64,两数的积可以整除4875,那么这两个数的差等于多少?【答案】39、25【解析】4875=3×5×5×5×13,有a×b为4875的约数,且这两个数的和为64.发现39=3×13、25=5×5这两个数的和为64,所以39、25为满足题意的两个数.那么它们的差为39-25=14.评注:由上题可推知,当两个数的和一定时,这两个数越接近,积越大,所以两个和为64的数的乘积最大为32×32=1024,而积最小为1×64=64.而4875在64~1024之间的约数有65,195,325,375,975等.我们再对65,195,325,375,975等一一验证.严格的需这般计算,才不会漏掉满足题意的其他的解.而在本题中满足题意的只有39、25这两个数.5.下面是主试委员会为第六届“华杯赛”写的一首诗:美少年华朋会友,幼长相亲同切磋;杯赛联谊欢声响,念一笑慰来者多;九天九霄志凌云,九七共庆手相握;聚起华夏中兴力,同唱移山壮丽歌.请你将诗中56个字第1行左边第一字起逐行逐字编为1—56号,再将号码中的质数由小到大找出来,将它们对应的字依次排成一行,组成一句话,请写出这句话.【答案】少年朋友亲切联欢;一九九七相聚中山【解析】按要求编号排序,并画出质数号码:美少年华朋会友,幼长相亲同切磋;1 2 3 4 5 6 7 8 9 10 11 12 13 14杯赛联谊欢声响,念一笑慰来者多;15 16 17 18 19 20 21 22 23 24 25 26 27 28九天九霄志凌云,九七共庆手相握;29 30 31 32 33 34 35 36 37 38 39 40 41 42聚起华夏中兴力,同唱移山壮丽歌.43 44 45 46 47 48 49 50 51 52 53 54 55 56将质数对应的汉字依次写出就是:少年朋友亲切联欢;一九九七相聚中山.6.炎黄骄子菲尔兹奖被誉为“数学界的诺贝尔奖”,只奖励40岁以下的数学家.华人数学家丘成桐、陶哲轩分别于1982年、2006年荣获此奖.我们知道正整数中有无穷多个质数(素数),陶哲轩等证明了这样一个关于质数分布的奇妙定理:对任何正整数k,存在无穷多组含有k个等间隔质数(素数)的数组.例如,时,3,5,7是间隔为2的3个质数;5,11,17是间隔为6的3个质数:而,,是间隔为12的3个质数(由小到大排列,只写一组3个质数即可).【答案】第一个质数第二个质数第三个质数满足要求打√【解析】最小的质数从2开始,现要求每两个质数间隔12,所以2不能在所要求的数组中.而且由于个位是5的质数只有一个5,所以个位是3的质数不能作为第一个质数和第二个质数,可参照下表:7.两个质数之和为,求这两个质数的乘积是多少.【答案】74【解析】因为和为奇数,所以这两个数必为一奇一偶,所以其中一个是,另一个是,乘积为.我们要善于抓住此类题的突破口。
第21讲质数和合数——例题一、第21讲质数和合数1.四个数,一个是最小的奇质数,一个是偶质数,一个是小于30的最大质数,另一个是大于70的最小质数.求它们的和.【答案】解:最小的奇质数是3,唯一的一个偶质数是2,小于30的最大质数是29,大于70的最小质数是71.因此,它们的和为3+2+29+71=105.【解析】【分析】在解有关质数的问题时,知道一些小常识是有用的,如1既非质数又非合数,2是唯一的偶质数,也是最小的质数,3是最小的奇质数等.另外,200以内的质数共有25个,它们为:2、3、5、7、I1、13、17、19、23、29、31、37、41、43、47,53、59、61、67、71、73,791 83、89、97。
2.有7个不同的质数,它们的和是60.其中最小的是多少?【答案】解:若7个不同的质数都是奇质数,则它们的和必为奇数,不可能等于60,所以这7个不同的质数中有偶数,而我们知道2是唯一的偶质数,所以这7个质数中必有2;2又是所有质数中最小的,所以这7个质数中最小的质数就是2.【解析】【分析】本题利用了2是唯一的偶质数和最小的质数这一特性.不难得出这7个质数是2、3、5、7、11、13、19.3.若n为正整数,n+3与n+7都是质数.求n除以3所得的余数.【答案】解:我们知道n除以3所得的余数只可能为0、1、2三种;若余数为0,即n=3k(k是一个非负整数,下同),则n+3=3k+3=3(k+1),所以3|n+3.又3≠n+3,故n+3不是质数,与题设矛盾.若余数为2,即n=3k+2,则n+7=3k+2+7=3(k+3),故3|n+7;n+7不是质数,与题设矛盾.所以,n除以3所得的余数只能为1.【解析】【分析】一个整数除以m后,余数可能为0,1,…,m-1,共m种.将整数按除以m所得的余数分类,可以分成m类.如m=2时,余数只能为0与1,因此可以分为两类,一类是除以2余数为0的整数,即偶数,另一类是除以2余数为1的整数,即奇数.同样,对m=3时,就可将整数分为三类.即除以3余数分别为0、1、2这样的三类.通过余数是否相同来分类是数论中的一种重要思想方法,有着广泛的应用.4.设n1与n2是任意两个大于3的质数,N1=n12−1 , N2=n22−1 ,N1与N2的最大公约数至少为多少?【答案】解:∵n1是大于3的质数,∴n1不是3的倍数,n1 =3k+1或3k+2,在n1 =3k+1时,n1 -1=3k是3的倍数;在n1 =3k+2时,n1 +1=3k+3是3的倍数;无论哪种情况,N1=n1−1=(n1+1)(n1−1) 都是3的倍数.又∵n1是奇数,∴n1=4k+1或4k+3.在n1=4k+1时,n1+1=4k+2是2的倍数,n1-1=4k是4的倍数,所以N1是8的倍数.在n1=4k+3时,同理可得N1是8的倍数.由于3与8互质,故24|N1.同理,24|N2.另外,取n1 =5,则N1=24.综上所述,N1与N2的最大公约数至少为24.【解析】【分析】从上例中,我们可以得到两个重要结论:(1)若n不是3的倍数,则n2除以3,余数为1.(2)若n是奇数,则n2除以8,余数为1.5.有人说:“任何七个连续的整数中一定有质数”.对吗?【答案】解:不对.如90、91、92、93、94、95、96这七个连续整数全部是合数,没有质数.【解析】【分析】合数:因数除了1和它本身之外还有其他因数的数;质数:因数只有1和它本身的数.由此分析即可.6.设自然数n1>n2 ,且有n12−n22=79 ,试求n1与n2的值.【答案】解:依题可得:n12−n22=(n1+n2)(n1−n2)=79 ,∵整数n1>n2,∴n1+n2与n1−n2 都是正整数,又∵79是一个质数,由质数的性质,及n1+n2 > n1-n2得:,解得:.【解析】【分析】质数:因数只有1和它本身的数,根据质数的性质列出二元一次方程组,解之即可.7.n是不小于40的偶数.试证明:n总可以表示成两个奇合数的和.【答案】证明:因为n是偶数,所以,n的个位数字必为0、2、4、6、8中的某一个.( 1 )若n的个位数字为0,则n=15+5k(k≥5为奇数).( 2 )若n的个位数字为2,则n=27+5k(k≥3为奇数).( 3 )若n的个位数字为4,则n=9+5k(k≥7为奇数).( 4 )若n的个位数字为6,则n=21+5k(k≥5为奇数).( 5 )若n的个位数字为8,则n=33+5k(k≥3为奇数).综上所述,不小于40的任一偶数,都可以表示成两个奇合数之和.【解析】【分析】奇合数:指不能被2整除的合数;即除了偶合数之外的其余合数都是奇合数.根据偶数定义可知n的个位数字必为0、2、4、6、8中的某一个,分情况讨论,即可得证.8.证明有无穷多个n,使多项式n2+3n+7( 1 )表示合数;( 2 )是11的倍数.【答案】证明:只需证(2)当n=11k+1(k≥1)时,多项式n2+3n+7=(11k+1)2+3(11k+1)+7=11(11k2+5k+1).∴是11的倍数.∵11k2+5k+1>1,∴这时n2+3n+7是合数.【解析】【分析】令n=11k+1(k≥1),代入多项式,计算、化简得n=11(11k2+5k+1),从而可得式11的倍数,由11k2+5k+1>1,可得n是表示合数.。
五年级数学质数与合数试题答案及解析1.一个正方形的边长是质数,它的面积是( )。
A.质数B.合数C.奇数D.偶数【答案】B【解析】略2.把10以内所有的质数相乘,所得的积一定是( )。
A.奇数B.偶数C.质数D.无法确定【答案】B【解析】略3.在20以内的自然数中,是奇数又是质数的数是()。
【答案】3,5,7,11,13,17,19【解析】略4.如果a是偶数,那么与它相邻的两个数是()和()这两个数是()数。
【答案】a-1、a+1、奇数【解析】略5.所有的奇数都是质数。
()【答案】×【解析】略6.一个长方形周长是16米,它的长、宽的米数是两个质数,这个长方形面积是多少平方米?【答案】15平方米【解析】因为长方形的周长是16厘米,所以长+宽=16÷2=8米,又因为长、宽均为质数,所以8=5+3,所以长应该是5米,宽是3米,再根据长方形的面积公式S=ab,即可求出面积.解:因为长方形的周长是16米,即(长+宽)×2=16,所以长+宽=16÷2=8(厘米);又因为长、宽均为质数,所以8=5+3,所以长应该是5米,宽是3米;长方形的面积是:5×3=15(平方米).答:这个长方形的面积是15平方米.点评:关键是根据题意将8进行裂项,得出符合要求的长和宽,再利用长方形的面积公式S=ab 解决问题.7.最小的质数是( ),最小的奇数是( ),( )既不是质数也不是合数。
【答案】2 1 1【解析】略8.两个质数的和一定是合数。
( )【答案】×【解析】例如2+3=5,5是质数。
9. 37是( )。
A.因数 B.质数 C.合数【答案】B【解析】略10.两个自然数相除,除数是最小的合数,商是一位数,商既是2的倍数又是3的倍数,余数比最小的质数多1。
除法算式是( )÷( )=( )……( )。
【答案】27 4 6 3【解析】最小的合数是4,所以除数是4,既是2的倍数又是3的倍数的一位数是6,所以商是6,最小的质数是2,所以余数是3,被除数=除数×商+余数,所以被除数是27。
质数和合数练习题一、填空。
1、像叫做合数。
像叫做质数或。
2、在0、1、2、9、15、32、147、60、216中,奇数有,偶数有,质数有,合数有,是3的倍数的数有。
既不是质数,又不是合数的有。
3、最小的自然数是,最小的质数是,最小的合数是。
4、18的因数有,,其中质数有,,,合数有。
5、能同时是2、3、5倍数的最小两位数是,。
6、20以内既是合数又是奇数的数有,。
7、三个连续偶数的和是54,这三个偶数分别是。
8、50以内11的倍数有。
9、40以内最大质数与最小合数的乘积是。
10、一个三位数,能有因数2,又是5的倍数,百位上是最小的质数,十位上是10以内最大奇数,这个数是。
11、从1、0、8、5四个数字中选三个数字,组成一个有因数5的最小三位数是。
12、有两个数都是质数,这两个数的和是8,两个数的积是15,这两个数是和。
13、一个四位数,千位上是最小的质数,百位上是最小的合数,十位上既不是质数也不是合数,个位上既是奇数又是合数,这个数是。
14、个位上是的数,既是2的倍数,也是5的倍数。
15、既不是质数,又不是合数的自然数是;既是质数,又是偶数的数是;既是奇数又是质数的最小数是;既是偶数,又是合数的最小数是;既是奇数,又是合数的最小的数是。
16、20以内的数中不是偶数的合数有,不是奇数的质数有。
17、下面是一道有余数的整数除法算式:A÷B=C……R,若B是最小的合数,C是最小的质数,则A最大是,最小是。
18、三个连续奇数的和是87,这三个连续的奇数分别是。
19、写出两个既是奇数,又是合数的数。
和。
20、写出两个都是质数的连续自然数。
和。
21、一个两位数的质数,交换个位与十位上的数字,所得的两位数仍是质数,这个数是。
22、把下列各数写成质数相乘的形式。
93= 76= 87=18= 6= 8=二、判断题。
对的在括号里写“√”,错的写“×”。
1、任何一个自然数,不是质数就是合数。
()2、个位上是3的数一定是3的倍数。
一、填空。
1、最小的自然数是(),最小的质数是(),最小的合数是(),最小的奇数是()。
2、20以内的质数有(),20以内的偶数有(),20以内的奇数有()。
3、20以内的数中不是偶数的合数有(),不是奇数的质数有()。
4、在5和25中,()是()的倍数,()是()的因数,()能被()整除。
5、下面是一道有余数的整数除法算式:A÷B=C……R若B是最小的合数,C是最小的质数,则A最大是(),最小是(). 6.100以内最大的质数与最小的合数的和是(),差是()。
7.两个质数和为18,积是65,这两个质数是()和()。
二、判断题,对的在括号里写“√”,错的写“×”。
1、1既不是质数也不是合数。
()2、个位上是3的数一定是3的倍数。
()3、所有的偶数都是合数。
()4、所有的质数都是奇数。
()5、两个数相乘的积一定是合数。
()一、填空。
1、有三个质数,它们的乘积是1001,这三个质数各是()、()、()。
2、三个连续奇数的和是87,这三个连续的奇数分别是()、()、()。
3、两个都是质数的连续自然数有()和();三个数都是合数的连续自然数有()和()。
4、在括号里填上适当的质数。
①8=()+()②12=()+()+()③18=()+()+()④24=()+()=()+()=()+()二、判断。
1.奇数都比偶数小。
()2.质数与质数的乘积还是质数。
()3.两个质数的和一定是偶数。
()4.质数不一定是奇数,合数不一定是偶数。
()5.偶数+偶数=偶数,奇数+奇数=奇数。
()质数和合数(一)参考答案答案:一、(1)0、2、4、1 (2)2、3、5、7、11、13、17、19;2、4、6、8、10、12、14、16、18、20;1、3、5、7、9、11、13、15、17、19;(3)9、15;2(4)25、5、5、25、25、5(5)11、9;(6)101、93;(7)13、5二、√××××质数和合数(二)参考答案答案:一、1.7、11、13 2. 27、29、31 3. 2、3;8、9、10和20、21、22等等4. ①5、3 ②2、3、7③2、5、11④11、13;19、5;7、17二、×××√×。
质数合数练习题及答案一、选择题1. 以下哪个数是质数?A. 4B. 8C. 9D. 11答案:D2. 100以内最大的质数是:A. 97B. 99C. 100D. 101答案:A3. 一个数的因数除了1和它本身外,还有其他因数,这个数是:A. 质数B. 合数C. 偶数D. 奇数答案:B4. 以下哪个数不是合数?A. 2B. 4C. 6D. 8答案:A5. 一个数的最小因数是1,最大因数是它本身,这个数是:A. 质数B. 合数C. 偶数D. 奇数答案:A二、填空题1. 质数是指除了1和它本身外,没有其他______的自然数。
答案:因数2. 合数是指除了1和它本身外,还有______的自然数。
答案:其他因数3. 一个数的因数的个数是有限的,最小的因数是______,最大的因数是______。
答案:1;它本身4. 一个数如果只有1和它本身两个因数,那么这个数叫做______。
答案:质数5. 一个数如果除了1和它本身外,还有别的因数,那么这个数叫做______。
答案:合数三、判断题1. 所有的偶数都是合数。
()答案:错误2. 质数只有两个因数,即1和它本身。
()答案:正确3. 2是最小的质数,也是唯一的偶数质数。
()答案:正确4. 每个合数至少有三个因数。
()答案:正确5. 1既不是质数也不是合数。
()答案:正确四、解答题1. 判断下列数中哪些是质数,哪些是合数。
- 17- 18- 19- 20- 21- 23答案:质数:17、19、23;合数:18、20、212. 找出100以内的质数。
答案:2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 973. 计算下列数的因数,并判断它们是质数还是合数。
- 36- 49- 63答案:36的因数有1, 2, 3, 4, 6, 9, 12, 18, 36,是合数;49的因数有1, 7, 49,是质数;63的因数有1, 3, 7, 9, 21, 63,是合数。
五年级数学下册《质数和合数》练习题及答案解析学校:___________姓名:___________班级:________________一、判断题1.任何质数加上1都能成为合数。
( )2.把一根16cm长的铁丝围成一个长是a厘米,宽是b厘米的长方形,若a和b都是质数,则长方形的面积是215cm。
( )3.在全部自然数里,不是质数就是偶数。
( )4.所有的质数一定是奇数,所有的合数都是偶数。
( )5.最小的质数是1,最小的合数是4。
( )二、填空题6.一个两位数,个位上是最小的合数,十位上是3的倍数,这个数最大是( )。
7.6的倍数中,最小倍数是( ),100以内3的最大倍数是( );28的因数中最大的一位数是( );20以内最大的质数是( )。
8.20以内所有质数是( ),其中最大的质数比最小的质数多( )。
9.176是一个( )分数,它的分数单位是( ),它有( )个这样的分数单位,再添上( )个这样的分数单位就是最小的合数。
10.下面的游戏规则公平吗?在后面的括号里填“公平”或“不公平”。
(1)淘气和弟弟玩五子棋,他们设计了一个摸牌方案决定谁先走。
将下面4张扑克牌背面朝上,任意摸一张牌,摸到质数弟弟先走,摸到合数淘气先走。
( )(2)足球比赛中,裁判用抛硬币的方法决定谁先开球。
( )(3)同学们玩跳皮筋,常用“石头、剪刀、布”的方法来决定谁先跳。
( )(4)下象棋时,先掷骰子,朝上的数字比3大,红方先走;比3小,黑方先走。
( )11.( )既不是质数也不是合数,( )是偶数但不是合数。
三、解答题12.三个不同的质数之和是50,写出这三个质数。
13.用数字1,2,3,组成一位数、两位数和三位数,其中哪些是质数,哪些是合数?四、选择题14.两个不同质数的积—定是()。
A.合数B.质数C.奇数D.偶数15.下面()组的两个数互质.A.15和16B.14和21C.39和1316.要使3□15能被3整除,□里最小能填()。
第3讲质数与合数阿拉伯数字无疑是人类历史上最伟大的发明之一,其本身蕴含的规律更是数学学科中最璀璨的明珠!质数和合数的分类产生了哥德巴赫猜想等世界着名的命题,学习质数和合数,窥探数字的奥秘!对于自然数a 和b (0b ≠),若a b ÷没有余数,则a 是b 的倍数,b 是a 的约数。
特殊地,0是任意非零自然数的倍数。
质数:除了1和本身,没有其他约数的自然数叫质数。
合数:除了1和本身,还有其他约数的自然数叫合数。
特殊地,1既不是质数也不是合数。
最小的合数是4,最小的质数是2,且2是唯一的偶质数。
质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。
互质数:公约数只有1的两个自然数,叫做互质数。
分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
编写说明知识要点【例1】对7个不同质数求和,和为58,则最大的质数是多少【分析】七个质数若全部是奇数,则和一定是奇数,而58是偶数,则七个质数中必定含有唯一的偶质数2,所以最小的质数是2,从2开始,最小的七个连续质数是2,3,5,7,11,13,17,和为58,所以题中的七个质数只能是从2开始的七个连续质数,最大为17。
【温馨提示】2是唯一的偶质数,是偶数中的“叛徒”,所以质数也经常与奇偶性相结合,主要考察“2”.【拓展】已知a、b、c、d都是质数,且130959179+=+=+=+,求a、b、c、d的值。
a b c d【分析】959179+=+=+,所以b、c、d应该都是奇数,所以a是唯一的偶质数2,依此可求得:b c dc=,53b=,41d=.a=,372【例2】从小到大写出5个质数,使后面数都比前面的数大12。
这样的数有几组【分析】考虑到质数中除了2以外其余都是奇数,因此这5个质数中不可能有2;又质数中除了2和5,其余质数的个位数字只能是1、3、7、9。
若这5个质数中最小的数其个位数字为1,则比它大24的数个位即为5,不可能是质数;若最小的数其个位数字为3,则比它大12的数个位即为5,也不可能为质数;由此可知最小的数其个位数字也不可能是7和9,因此最小的数只能是5,这5个数依次是5,17,29,41,53。
第3讲质数与合数知识网络1.质数与合数(1)一个大于1的自然数,如果除了1和它本身,再不能被其他自然数整除,那么它就叫做质数(也叫做素数)。
(2)一个大于1的自然数,如果除了1和它本身,还能被其他自然数整除,那么它就叫做合数。
例如:4、6、8、10、12、14,…都是合数。
在100以内有2、3、5、7、11、13、17、19、23、29、31、37、41、47、53、59、61、67、71、73、79、83、89、97共25个质数。
2.质因数与分解质因数(1)如果一个质数是某个数的约数,那么就是说这个质数是这个数的质因数。
(2)把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如,把42分解质因数,即是42=2×3×7。
其中2、3、7叫做42的质因数。
又如,50=2×5×5,2、5都叫做50的质因数。
重点·难点要注意以下几条:(1)1既不是质数,也不是合数。
(2)关于质数1)质数有无限多个。
2)最小的质数是2。
3)在质数中只有2是偶数,其余的质数全是奇数。
4)每个质数只有两个约数:1和它本身。
(3)关于合数1)合数有无限多个。
2)最小的合数是4。
3)每个合数至少有三个约数:1、它本身、其他约数。
例如,8的约数除1和8外,还有2、4,所以8是合数。
学法指导(1)对比一下几种判别质数与合数的方法,可以看出例1方法的优越性。
判别269,用2至268中所有的数试除,要除267个数;用2至268中的质数试除,要除41个数;而用本题的方法,只要除6个数。
(2)将质数按照从小到大的顺序逐一去除一个数,来判断这个数是质数还是合数的方法,有弊病。
如果一个数是质数,在我们试除的过程式中就永远找不到另一个质数是它的约数。
那么,试除的数有什么范围呢?能不能使试除的数少一点呢?请同学们学习例1。
(3)用例1的方法判断一个数是质数还是合数,有着它的优越性,它可以明确试除的质数范围,使试除的数的量进一步减少。
质数和合数练习题一、填空。
1、像2、3、5、7、19、13、23…只有1和它本身两个因数的数叫做质数或素数。
像 4、6、9、14…除了1和它本身外还有别的因数的数叫做合数。
2、最小的自然数是(0),最小的质数是(2),最小的合数是(4)。
3、在0、1、2、9、15、32、147、60、216中,自然数有 0、1、2、9、15、32、147、60、216,奇数有 1、9、15、147 ,偶数有0、2、32、60、216 ,质数有 2 ,合数有 9、15、32、147、60、216 ,是3的倍数的数有 9、15、60、216 。
既不是质数,又不是合数的有 1 。
4、 20以内既是合数又是奇数的数有 9、15 。
5、能同时是2、3、5倍数的最小两位数是30。
6、 18的因数有1、2、3、6、9、18,其中质数有2、3 ,合数有6、9、18 。
7、 50以内11的倍数有11、22、33、44 。
8、三个连续偶数的和是54,这三个偶数分别是16、18 、20 。
9、 40以内最大质数与最小合数的乘积是148 。
37乘410、从1、0、8、5四个数字中选三个数字,组成一个有因数5的最小三位数是105 。
11、一个三位数,能有因数2,又是5的倍数,百位上是最小的质数,十位上是10以内最大奇数,这个数是290 。
12、一个四位数,千位上是最小的质数,百位上是最小的合数,十位上既不是质数也不是合数,个位上既是奇数又是合数,这个数是2419 。
13、有两个数都是质数,这两个数的和是8,两个数的积是15,这两个数是3和 5 。
14、既不是质数,又不是合数的自然数是 1 ;既是质数,又是偶数的数是2 ;既是奇数又是质数的最小数是3;既是偶数,又是合数的最小数是 4 ;既是奇数,又是合数的最小的数是9 。
15、个位上是0 的数,既是2的倍数,也是5的倍数。
16、20以内的数中不是偶数的合数有 9、15 ,不是奇数的质数有 2 。
2021-2022学年五年级数学下册典型例题系列之第二单元:质数和合数专项练习1.在自然数1-10中,质数有(________),合数有(________),(________)既不是质数,也不是合数。
2.最小的合数是(________),最小的质数是(________)。
3.在2、3、4、9、10、11、18、54这些数中,质数是(________),合数是(________),既是奇数又是合数的是(________),既是质数又是偶数的是(________)。
4.12的因数有_________个,在这些因数中,质数有_________,合数有_________,奇数有_________,偶数有_________。
5.两个质数的和是15,则这两个质数是(______)和(______)。
6.在()里填上合适的质数。
65=(________)×(________)7.两个质数的积是15,这两个质数分别是_________和_________。
8.把20写成两个不同质数和的形式。
20=(________)+(________)=(________)+(________)9.将下列各数分别填入指定的圈里。
27、5、14、11、1、2、33、62、0、1910.平平今年的年龄是个两位数,个位上既是质数又是偶数,十位上既不是质数也不是合数。
他今年(______)岁,至少再过(______)年,他的年龄数同时是2、3、5的倍数。
11.截至北京时间2021年5月1日17时,全球累计确诊新冠肺炎病例数量已达九位数,最高位和万位上的数都是1,百位上的数是最小的合数,个位上的数既是一个奇数,又是一个合数,千万位上的数比十万位上的数多3,十万位上的数既是一个偶数,又是一个质数,其余各位上是0,这个数写作(______);这个数读作(______)。
全球新冠肺炎确诊病例超过100万例的国家达24个,88个国家病例超10万例。
小学数学《质数、合数、分解质因数》练习题(含答案)1、P是质数,P+10,P+14,P+102都是质数。
求P是多少?答:P=3.2、360共有多少个约数?这些约数的和是多少?解:24。
提示:把360分解质因数得360 = 32×23×5,所以360共有约数(3+1)×(2+1)×(1+1)= 24个。
(1+12+22+32)×(1+13+23)×(1+15)= 11703、从小到大写出5个质数,使后面的数都比前面的数大12.(北京市第三届迎春杯数学竞赛决赛试题)答:5,17,29,41,53.4、将1999表示成为两个质数的和:1999=□+□,共有多少种填法?解:因为两个奇数的和是偶数,所以将1999表示成为两个质数的和,这两个质数中必定有一个是偶数,因而也就是2,另一个是1999-2=1997,即.答:只有一种方法。
(我们将2+1997与1997+2作为同一种。
)5、有4个学生,他们的年龄是4个连续的自然数。
这4个数相乘等于3024,这4个学生中最大的年龄是多少岁?解:3024=24×33×7答:年龄最大的9岁。
6、边长为自然数,面积为105的形状不同的长方形共有多少种?解:105=3×5×7面积为105的形状不同的长方形有4种:(1)105×1 (2)35×5 (3)21×5 (4)15×77、某班同学在班主任老师带领下去种树,学生恰好平均分成三组,如果老师与学生每人种树一样多。
共种了1073棵,那么平均每人种了多少棵树?解:1073=29×37.师生总数应是被3除余1的数,37被3除余1,所以平均每人种树只能是29棵。
8、一个数是5个2,3个3,2个5,1个7的连乘积。
这个数有约数是两位数,这些两位的约数中,最大的是几?解:提示:从最大的两位数99开始,依次从大到小顺序考虑,将不符合题意的数淘汰。
质数合数练习题及答案质数和合数是数学中的基本概念,通过练习题的形式可以加深我们对这两个概念的理解。
本文将介绍一些关于质数和合数的练习题,并给出相应的答案。
练习题一:质数判断1. 13是质数还是合数?2. 50是质数还是合数?3. 97是质数还是合数?4. 100是质数还是合数?答案:1. 13是质数。
2. 50是合数。
3. 97是质数。
4. 100是合数。
解析:质数是指大于1且只能被1和本身整除的数。
13只能被1和13整除,所以是质数;50可以被2、5和10整除,不符合质数的定义,所以是合数;97只能被1和97整除,是质数;100可以被2、4、5、10、20、25、50和100整除,不符合质数的定义,所以是合数。
练习题二:质数因子1. 12的质数因子是什么?2. 36的质数因子是什么?3. 45的质数因子是什么?4. 50的质数因子是什么?答案:1. 12的质数因子是2和3。
2. 36的质数因子是2和3。
3. 45的质数因子是3和5。
4. 50的质数因子是2和5。
解析:质数因子是指能够整除该数的质数。
12可以被2和3整除,所以质数因子是2和3;36可以被2和3整除,所以质数因子是2和3;45可以被3和5整除,所以质数因子是3和5;50可以被2和5整除,所以质数因子是2和5。
练习题三:质数和合数之间的关系1. 质数和质数相乘的结果是质数还是合数?2. 质数和合数相乘的结果是质数还是合数?3. 合数和合数相乘的结果是质数还是合数?答案:1. 质数和质数相乘的结果是合数。
2. 质数和合数相乘的结果是合数。
3. 合数和合数相乘的结果是合数。
解析:质数的定义是只能被1和本身整除的数,而合数是可以被除了1和本身之外的其他数整除的数。
两个质数相乘时,除了1和本身以外没有其他因子,所以结果是合数;一个质数和一个合数相乘时,合数的质因子中一定包含质数本身,所以结果也是合数;两个合数相乘时,两个合数的质因子会相乘,不会只剩下1和本身,所以结果是合数。
小学质数和合数练习题及答案精品文档小学质数和合数练习题及答案一、判断题1、任何自然数,它的最大因数和最小倍数都是它本身。
2、一个数的倍数一定大于这个数的因数。
3、个位上是0的数都是2和5的倍数。
4、一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
5、5是因数,10是倍数。
6、36的全部因数是2、3、4、6、9、12和18,共有7个。
7、因为18?9=2,所以18是倍数,9是因数。
9、任何一个自然数最少有两个因数。
10、一个数如果是24的倍数,则这个数一定是4和8的倍数。
11、15的倍数有15、30、45。
12、一个自然数越大,它的因数个数就越多。
13、两个质数相乘的积还是质数。
14、一个合数至少得有三个因数。
15、在自然数列中,除2以外,所有的偶数都是合数。
16、15的因数有3和5。
17、在1—40的数中,36是4最大的倍数。
1 / 12精品文档18、16是16的因数,16是16的倍数。
19、8的因数只有2,4。
20、一个数的最大因数和最小倍数都是它本身,也就是说一个数的最大因数等于它的最小倍数。
21、任何数都没有最大的倍数。
22、1是所有非零自然数的因数。
23、所有的偶数都是合数。
124、质数与质数的乘积还是质数。
25、个位上是3、6、9的数都能被3整除。
26、一个数的因数总是比这个数小。
27、743的个位上是3,所以743是3的倍数。
28、100以内的最大质数是99。
二、填空。
1、在50以内的自然数中,最大的质数是,最小的合数是。
2、既是质数又是奇数的最小的一位数是。
3、在20以内的质数中,加上2还是质数。
4、如果有两个质数的和等于24,可以是,,,或,。
5、一个数的最小倍数减去它的最大因数,差是。
6、一个数的最小倍数除以它的最大因数,商是。
7、一个自然数比20小,它既是2的倍数,又有因数7,这个自然数是。
2 / 12精品文档如果a的最大因数是17,b的最小倍数是1,则a+b的和的所有因数有个;a-b的差的所有因数有个;a×b的积的所有因数有个。
五年级数学质数与合数试题答案及解析1.两个质数的积一定是合数。
()【答案】√【解析】略2.把10以内所有的质数相乘,所得的积一定是( )。
A.奇数B.偶数C.质数D.无法确定【答案】B【解析】略3. 12的因数有( ),其中( )是质数,( )是合数。
【答案】1,2,3,4,6,12 2,3 4,6,12【解析】略4.在20以内的自然数中,是奇数又是质数的数是()。
【答案】3,5,7,11,13,17,19【解析】略5.两个质数的差是2,这两个质数分别是( )和( )。
【答案】7 5【解析】略6.最小的质数是( ),最小的奇数是( ),( )既不是质数也不是合数。
【答案】2 1 1【解析】略7.两个质数的和一定是合数。
( )【答案】×【解析】例如2+3=5,5是质数。
8. 37是( )。
A.因数 B.质数 C.合数【答案】B【解析】略9.按要求写数。
24的因数:___________________________________________40以内6的倍数:______________________________________20以内的质数:________________________________________20以内的合数:_______________________________________20以内的奇数:_______________________________________20以内的偶数:_______________________________________【答案】24,2,12,3,8,4,66,12,18,24,30,362,3,5,7,11,13,17,194,6,8,9,10,12,14,15,16,18,201,3,5,7,9,11,13,15,17,192,4,6,8,10,12,14,16,18,20【解析】略10.如果n是自然数,那么2n+2一定是偶数。
质数和合数练习题一、填空。
1、像2、3、5、7、19、13、23…只有1和它本身两个因数的数叫做质数或素数。
像 4、6、9、14…除了1和它本身外还有别的因数的数叫做合数。
2、最小的自然数是(0),最小的质数是(2),最小的合数是(4)。
3、在0、1、2、9、15、32、147、60、216中,自然数有 0、1、2、9、15、32、147、60、216,奇数有 1、9、15、147 ,偶数有0、2、32、60、216 ,质数有 2 ,合数有 9、15、32、147、60、216 ,是3的倍数的数有 9、15、60、216 。
既不是质数,又不是合数的有 1 。
4、 20以内既是合数又是奇数的数有 9、15 。
5、能同时是2、3、5倍数的最小两位数是30。
6、 18的因数有1、2、3、6、9、18,其中质数有2、3 ,合数有6、9、18 。
7、 50以内11的倍数有11、22、33、44 。
8、三个连续偶数的和是54,这三个偶数分别是16、18 、20 。
9、 40以内最大质数与最小合数的乘积是148 。
37乘410、从1、0、8、5四个数字中选三个数字,组成一个有因数5的最小三位数是105 。
11、一个三位数,能有因数2,又是5的倍数,百位上是最小的质数,十位上是10以内最大奇数,这个数是290 。
12、一个四位数,千位上是最小的质数,百位上是最小的合数,十位上既不是质数也不是合数,个位上既是奇数又是合数,这个数是2419 。
13、有两个数都是质数,这两个数的和是8,两个数的积是15,这两个数是3和 5 。
14、既不是质数,又不是合数的自然数是 1 ;既是质数,又是偶数的数是2 ;既是奇数又是质数的最小数是3;既是偶数,又是合数的最小数是 4 ;既是奇数,又是合数的最小的数是9 。
15、个位上是0 的数,既是2的倍数,也是5的倍数。
16、20以内的数中不是偶数的合数有 9、15 ,不是奇数的质数有 2 。
合数与质数答案典题探究例1.在横线内填上合适的质数.26=23+312=7+5=13+13=7+19=3+23=2×13.考点:合数与质数.专题:数的整除.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数,据此填空即可.解答:解:26=23+3 12=7+5=13+13=7+19=3+23=2×13故答案为:23,3,13,13,7,19,3,23,2,13,7,5.点评:明确质数的意义,是解答此题的关键.例2.寻找符合条件的数:小于100,并且由3个不同质数相乘得到.考点:合数与质数.专题:数的整除.分析:只要把这个小于100的数,分解质因数即可得出.解答:解:2×3×7=42点评:此题考查了一个数分解质因数的方法.例3.自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的自然数有多少个?考点:合数与质数.专题:数的整除.分析:根据个位数字与十位数字都是质数,可得这个两位质数的个位数字和十位数字只能是:2、3、5、7.解答:4解:因为N是质数,且其个位数字和十位数字都是质数,那么十位数字和个位数字只能是:2、3、5、7,所以符合题意的两位数质数有:23,37,53,73,有4个;答:这样的自然数有4个.点评:此题考查了质数的灵活应用,理解十位数字与个位数字都是质数的两位质数是由:2、3、5、7组成的是本题的关键.例4.一个式子有8个空“空格”,在这些“空格”里,填进20以内各不相同的质数,使A是整数,并且尽可能大.A=(2+3+5+11+13+17+19)÷7.考点:合数与质数;整数的除法及应用.分析:根据质数的意义可知,20以内的质数有2、3、5、7、11、13、17、19;它们的和为2+3+5+7+11+13+17+19=77,则算式中除数应用为77的约数,能被77整除的只有7和11,因此A最大为(77﹣7)÷7=10.解答:解:20以内的质数的质数的和为:2+3+5+7+11+13+17+19=77,77=7×11,所以要使A最大,则A=[2+3+5+11+13+17+19]÷7=70÷7=10,即A能取得的最大整数是10.故答案为:2,3,5,11,13,17,19,7.点评:首先根据质数的意义确定20以内的质数并求出它们的和是完成本题的关键.演练方阵A档(巩固专练)一.选择题(共10小题)1.(•龙湖区)2、3、5、7都是()A.奇数B.偶数C.质数考点:合数与质数.分析:自然数中,能被2整除的数为偶数,不能被2整除的数为奇数;自然数中,除了1和它本身外,没有别的因数的数为质数.根据以上定义对题目中的数字进行分析即能得出正确选项.解答:解:根据偶数、奇数及质数的定义可知:在2、3、5、7这四个数字中,2为偶数,3,5,7为奇数,2、3、5、7全是质数.故选:C.点评:通过本题可以看出,2既为质数,同时也是偶数.2.(•新余模拟)一个两位数,个位和十位上的数字都是合数,并且互质,这个两位数最小是()A.89B.28C.49考点:合数与质数.专题:整数的认识.分析:自然数中,除了1和它本身外,还有别的因数的数为合数.由此可知,小于10的合数有4,6,8,9.即这个两位数由有4,6,8,9中的两个合数组成.又这两个数互质,只有公因数1的两个数为互质数,而这4个数中,9与4,8互质,所以这个两位数最小是49..解答:解:根据合数的意义可知,这个两位数由有4,6,8,9中的两个合数组成,而这4个数中,9与4,8互质,所以这个两位数最小是49.故选:C.点评:首先根据合数的定义确定组成这个两位数的数的取值范围,然后根据互质数的意义确定是完成本题的关键.3.(•石阡县模拟)一个合数至少有()个因数.A.3个B.3个以上C.3个或3个以上考点:合数与质数.专题:数的整除.分析:合数是指一个大于1的自然数,除了1和它本身两个因数外,还有其它的因数,说明一个合数有3个或3个以上的因数.据此做出选择即可.解答:解:一个合数有3个或3个以上的因数.故选:C.点评:此题考查合数的意义,关键是看这个数有几个因数,有3个或3个以上的因数的数一定是合数.4.(•北海)下面()组中的两个数是合数,又是互质数.A.7和8B.10和12C.15和16考点:合数与质数.专题:数的整除.分析:合数是含有1和它本身两个因数外还含有其它因数的数,互质数是只有公因数1的两个数,据此依次分析选择.解答:解:A、7和8是互质数,但7是质数,不是合数,所以不合题意;B、10和12都是合数,但是10和12不是互质数,所以不合题意;C、15和16都是合数,15和16又是互质数,所以符合题意;故选:C.点评:本题主要考查互质数、合数的意义.5.(•汉阳区)一个数如果只有2个因数,那么这个数一定是()A.偶数B.奇数C.质数D.合数考点:合数与质数.专题:整数的认识.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数.即质数只有两个因数,即1和它本身.解答:解:根据质数的意义可知,一个数如果只有2个因数,那么这个数一定是质数.故选:C.点评:自然数中,质数只有两个因数,1只有一个因数,零有没因数,合数最少有三个因数.6.(•蕲春县模拟)是一个最简分数,a和c一定是()A.质数B.合数C.互质数D.不一定考点:合数与质数.分析:首先弄清什么样的分数是最简分数,据此解答.解答:解:分数的分子和分母只有公约数1的分数叫做最简分数,由此得一个最简分数的分子和分母一定是互质数.故选C.点评:此题主要考查最简分数的意义及互质数的概念.7.(•黄岩区)一个比l大的数除了1和它本身之外,没有其他的因数,这个数是()A.质数B.合数C.奇数D.偶数考点:合数与质数.专题:数的整除.分析:根据质数和合数的含义:除了1和它本身以外,不含其它因数的数是质数;除了1和它本身外,还含有其它因数的数是合数;据此解答即可.解答:解:由质数的含义可知:一个比l大的数除了1和它本身之外,没有其他的因数,这个数是质数;故选:A.点评:明确质数的含义,是解答此题的关键.8.(•渝北区)下面的数是质数的是()A.1B.2C.4考点:合数与质数.专题:综合判断题.分析:自然数中,除了1和它本身外没有别的因数的数为质数,除了1和它本身外还有别的因数的数为合数.据此对各选项中的数字进行分析即能得出正确选项.解答:解:A、1不是质数也不是合数;B、2是质数;C、4是合数;故选:B.点评:自然数中,质数与合数是根据因数的多少进行定义的.9.(•安岳县模拟)下列叙述正确的是()A.互质的两个数没有公因数B.两个分数大小相等,分数单位也一定相等C.小兰完成的作业量一定,她已完成的作业和未完成的作业量成反比例D.两个面积相等的三角形,不一定能拼成一个平行四边形考点:合数与质数;分数的意义、读写及分类;辨识成正比例的量与成反比例的量;三角形的特性.专题:综合判断题.分析:A,根据互质数的意义,公因数只有1的两个数叫做互质数.所以互质的两个数没有公因数.此说法错误.B,两个分数的大小相等,分数单位不一定相同,如:和相等,但是它们的分数单位不同.所以两个分数相等,分数单位也一定相同.此说法错误.C,根据反比列的意义,两种相关联的量,如果它们对应的两个数的积一定,这两种相关联的量成反比列.所以,小兰完成的作业量一定,她已完成的作业和未完成的作业量成反比例.此说法错误.D,因为只有两个完全一样的三角形,才能拼成一个平行四边形,两个三角形的面积相等,不一定完全一样,所以,两个面积相等的三角形,不一定能拼成一个平行四边形.此说法正确.解答:解:根据上面的分析知:说法正确的是:两个面积相等的三角形,不一定能拼成一个平行四边形.故选:D.点评:此题考查的目的是理解互质数的意义、分数单位的意义、反比列的意义,明确:只有两个完全一样的三角形,才能拼成一个平行四边形.10.(•华亭县模拟)正方形的边长是质数,它的周长一定是(),它的面积一定是()A.质数B.合数C.既不是质数也不是合数考点:合数与质数;正方形的周长;长方形、正方形的面积.分析:正方形的边长是质数,设这个质数是a,则它的周是4a,它的面积是a2,然后根据约数个数分析,是质数还是合数,据此解答.解答:解:正方形的边长是质数,设这个质数是a,则它的周是4a,4a含有1、2、4、a、2a、4a,含有6个约数,它的面积是a2,a2含有:1、a、a2共计3个约数,即4a和a2含有至少3个约数,所以都是合数;故选:B.点评:本题主要考查质数合数的意义,注意本题设这个质数是a,则它的周长是4a,它的面积是a2,然后根据约数个数分析.二.填空题(共10小题)11.(•台州)的分数单位是,再添上14个这样的分数单位是最小的素数.考点:合数与质数.分析:根据分数的意义和最小的素数(质数)是2来进行分析,然后填出即可.解答:解:的分数单位是.因为:+=2;所以:再添上14个这样的分数单位是最小的素数.故答案为:,14.点评:此题考查分数的认识与质数合数.12.(•浙江)在6、10、18、51这四个数中,51既是合数又是奇数.10和51互质.考点:合数与质数;奇数与偶数的初步认识.分析:合数的含义:在自然数中除了1和它本身外还有其它因数的数;奇数的含义:在自然数中不能被2整除的数叫作奇数;在自然数中,如果两个数的公因数只有1,那么这两个数称为互质数.解答:解:在6、10、18、51这四个数中,合数有:6,10,18,51;奇数有:51;互质的数是:10与51;所以在6、10、18、51这四个数中,51即是合数又是奇数,10与51互质.故答案为:51,10,51.点评:此题主要考查的是合数、奇数和互质数的知识.13.(•万州区)一个质数和比它小的每一个非零自然数都互质.正确.考点:合数与质数.分析:自然数中,除了1和它本身外,没有别的因数的数为质数;假如这个质数与比它小的某个非零自然数不互质,那么这个质数与这个非零自然数就有“除1和其本身之外的”公约数,这个结论和质数的定义相矛盾,即“一个素数肯定与比它小的任意非零自然数互质.”解答:解:根据质数的定义可知,一个质数和比它小的每一个非零自然数都互质的说法是正确的.故答案为:正确.点评:一个质数和比它大的非零自然数中只与它的倍数不互质,除了其倍数外,与其它自然数都互质.14.(•福田区模拟)如果a和b是大于0的相邻的自然数,那么a和b一定是互质数.√.(判断对错)考点:合数与质数.专题:数的整除.分析:在自然数中,只有公因数1的两个数为互质数.根据自然数的排列规律及公因数的意义可知,任何一对大于0的相邻的两个自然数只有公因数1,所以如果a和b是大于0的相邻的自然数,那么a和b一定是互质数.解答:解:根据互质数的意义可知,如果a和b是大于0的相邻的自然数,那么a和b一定是互质数是正确的.故答案为:√.点评:明确任何一对大于0的相邻的两个自然数只有公因数1是完成本题的关键.15.(•芜湖县)有公约数1的两个数叫做互质数.×.(判断对错)考点:合数与质数.专题:数的整除.分析:根据互质数的意义,公因数只有1的两个数叫做互质数.1是任何两个非0自然数的公因数.解答:解:公因数只有1的两个数叫做互质数.1是任何两个非0自然数的公因数.所以有公约数1的两个数叫做互质数.出说法错误.故答案为:×.点评:此题考查的目的是理解掌握互质数的概念及意义.16.(•中山市模拟)质数只有1个因数.错误.(判断对错)考点:合数与质数.专题:整数的认识.分析:自然数中,除了1和它本身外,没有别的因数的数为质数.由此可知,质数共有2个因数,即1和它本身.解答:解:根据质数的意义可知,质数共有2个因数,即1和它本身.故答案为:错误.点评:自然数中,只有1只有一个因数,即它本身.17.(•上海模拟)既是合数又是偶数的最小自然数是4.考点:合数与质数;奇数与偶数的初步认识.分析:根据质数与合数、奇数与偶数的意义,是2的倍数的数叫做偶数;不是2的倍数的数叫做奇数;一个自然数如果只有1和它本身两个因数,这样的数叫做质数;一个自然数如果除了1和它本身还有别的因数,这样的数叫做合数;由此解答.解答:解:根据合数、偶数的意义,既是合数又是偶数的最小自然数是4.故答案为:4.点评:解答本题主要明确自然数,合数、质数、奇数、偶数的概念.18.(•贵州模拟)相同两个素数的和等于它们的积,这个素数是2.考点:合数与质数.专题:数的整除.分析:一个自然数如果只有1和它本身两个因数,这样的数叫做质数(素数),在所有的质数中,相同两个素数的和等于它们的积,得出2+2=2×2,所以这个素数是2.解答:解:相同两个素数的和等于它们的积,这个素数是2;故答案为:2.点评:此题考查了质数的含义.19.(•通州区模拟)一个非零自然数,不是质数就是合数.×.(判断对错)考点:合数与质数.专题:综合判断题.分析:根据质数与合数的意义:一个自然数,如果只有1和它本身两个因数,这样的数叫做质数;一个自然数,如果除了1和它本身还有别的因数,这样的数叫做合数;1既不是质数也不是合数.解答:解:因为,1既不是质数也不是合数,所以,一个非零自然数,不是质数就是合数.此说法是错误的.故答案为:×.点评:解答此题的关键是理解质数、合数的意义.20.(•临川区模拟)最小的质数占最小的合数的50%.考点:合数与质数;百分数的实际应用.专题:综合填空题.分析:最小的质数是2,最小的合数是4,进而用2除以4,计算得出百分数的结果即可.解答:解:最小的质数是2,最小的合数是4,那么:2÷4=0.5=50%.故答案为:50%.点评:明确求一个数占另一个数的百分之几,用除法计算;也考查了最小的质数是2,最小的合数是4.三.解答题(共10小题)21.两个质数的积一定是奇数,如3×5=15、11×83=913×.考点:合数与质数;奇数与偶数的初步认识.专题:数的整除.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数,则最小的质数是2;能被2整数的数为偶数.由此可知,2与其它质数的积一定是偶数.解答:解:由于最小的质数是2,则2与其它质数的积一定是偶数.故答案为:×.点评:除了2之外,任意两个质数的积一定是奇数.22.判断27,28,29,30是素数,还是合数.考点:合数与质数.专题:数的整除.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数.除了1和它本身外,还有别的因数的数为合数.据此分析即可.解答:解:在27,28,29,30中,素数为29,合数为27,28,30.点评:本题考查了学生对于合数与质数意义的理解与应用.23.写出大于85而小于98的所有素数.考点:合数与质数.专题:数的整除.分析:在自然数中,除了1与它本身之外,没有别的因数的数为质数.据此意义完成即可.解答:解:大于85而小于98的所有素数为:89、97.点评:完成本题要注意将大于85而小于98中的数分解质因数,以确定它们因数的个数.24.四个质数的乘积是和的11倍,这样的数和是多少?考点:合数与质数.专题:数的整除.分析:因为四个质数的乘积是和的11倍,可知四个数里面一定有一个是11,设其余三个是abc,那么abc=a+b+c+11,因为b+c≥4,所以11<3(b+c)容易知道b+c≤bc,因此abc<a+4bc,4≤bc<a/(a﹣4)或a<4得到a=2,3,5,同理b,c,据此解答即可.解答:解:4个质数的乘积是和的11倍,可知四个数里面一定有一个是11,设其余三个是abc,那么abc=a+b+c+11,因为b+c≥4,所以11<3(b+c)容易知道b+c≤bc,因此abc<a+4bc,4≤bc<a/(a﹣4)或a<4得到a=2,3,5,同理b=2,3,5,c=2,3,5,经过验证这4个质数为2,2,5,112+2+5+11=20答:这样的数和是20.点评:解答本题的关键是:四个质数的乘积是和的11倍,可以推算出期中一个质数是11.25.有一个三位数,百位数字是最小的质数,个位数是一位数中最大的偶数,这个数最小是多少?最大是多少?(直接写数)考点:合数与质数;奇数与偶数的初步认识.专题:整数的认识;数的整除.分析:我们知道最小的质数是2,一位数中最大的偶数是8.所以这个三位数百位上是2,个位上是8,要想最小,十位为0,最大十位为9,据此解答即可.解答:解:由分析可得这个数最小是208;最大是298.答:这个数最小是208;最大是298.点评:本题是考查整数的写法、质数与合数的意义、自然数的意义.26.我校少先队员排队做操,每排人数相等且都在1人以上.想一想,总共有多少人?在正确答案的下面划线.41人43人47人49人.考点:合数与质数.专题:数的整除.分析:由“每排人数相等且都在1人以上”说明总人数能分成几个相同的数,即合数;而41、43、47都是质数,故不能分成几个相同的数,因此总人数为49.解答:解:由题意,总人数能分成几个相同的数,而41、43、47都是质数,故不能分成几个相同的数,因此总人数为49.答:五(3)班有49人.点评:此题重点考查了合数与质数的概念,并由此解决问题.27.在横线填上合适的质数.10=3+736=17+1991=13×785=17×524=11+13=17+7.考点:合数与质数.专题:数的整除.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数.据此意义将题目中的数分解成两个质数相加的形式即可.解答:解:10=3+736=17+1991=13×785=17×524=11+13=7+17故答案为:3,7;17,19;13,7;17,5;11,13,17,7.点评:如果两个质数的和是奇数,则这两个质数其中一个一定为2.28.写出60的全部因数,其中质数有2、3、5,偶数有2、4、6、10、12、20、30、60.考点:合数与质数;奇数与偶数的初步认识.专题:数的整除.分析:先根据找一个数因数的方法,找出60的所有因数,然后根据质数和合数的意义,奇数和偶数的意义进行分类.解答:解:60=1×60=2×30=3×20=4×15=5×12=6×10所以60的因数有1、2、3、4、5、6、10、12、15、20、30、60,在这些因数中,质数有2、3、5;偶数有2、4、6、10、12、20、30、60.故答案为:2、3、5,2、4、6、10、12、20、30、60.点评:熟练掌握找一个数因数的方法,以及正确的对自然数进行分类是解决本题的关键.B档(提升精练)一.选择题(共10小题)1.(•天河区)下面说法正确的是()A.两个质数的和一定是质数B.假分数的倒数都小于1C.分数的大小一定,它的分子和分母成正比例D.面积相等的两个三角形一定能拼成一个平行四边形考点:合数与质数;倒数的认识;分数的基本性质;三角形的周长和面积.专题:综合判断题.分析:根据题意,对各题进行依次分析、进而得出结论.解答:解:A、两个质数的和一定是质数,说法错误,如:3+5=8,8是合数;B、假分数的倒数都小于1,说法错误,如;C、因为:分子÷分母=分数的值(一定),它的分子和分母成正比例;D、因为:面积相等的两个三角形一定能拼成一个平行四边形,说法错误;故选:C.点评:此题涉及的知识点较多,但都比较简单,属于基础题,只要认真,容易完成,注意平时基础知识的积累.2.(•高台县)下列说法正确的是()A.1既不是质数也不是合数B.最小的合数是2C.负数比正数大考点:合数与质数;正、负数大小的比较.专题:整数的认识.分析:在自然数中,1既不是质数也不是合数;除了1和它本身外,没有别的因数的数为质数,除了1和它本身外,还有别的因数的数为合数;在数轴上,负数位于0的左边,正数位于0的右边,借助数轴比较数的大小,所有的负数都在0的左边,也就是负数都比0小,而正数都比0大,正数都比负数大.解答:解:下列说法正确的是:1既不是质数也不是合数.故选:A.点评:根据质数与合数,正数与负数的含义进行解答即可.3.(•泗县模拟)在1~25的自然数中,合数有()A.14B.15C.16考点:合数与质数.专题:压轴题.分析:根据合数的定义即可解决问题.解答:解:在1~25的自然数中合数有:4、6、8、9、10、12、14、15、16、18、20、21、22、24、25,共15个,故选:B.点评:此题考查了合数的定义.4.(•龙海市模拟)在1、2.3、2、6、﹣4、5%、23、9、51中,素数有()个.A.1个B.2个C.3个考点:合数与质数.专题:数的认识.分析:根据质数(又叫素数)的意义,一个自然数,如果只有1和它本身两个因数,这样的数叫做质数(素数).由此解答.解答:解:在1、2.3、2、6、﹣4、5%、23、9、51中,素数有:2,23.答:在这组数中素数有2和23.故选:B.点评:此题考查的目的是使学生理解质数(素数)的意义,明确质数与合数是在非0自然数范围内,根据一个非0自然数因数个数的多少分成质数、合数和1三部分.5.(•萝岗区)两个质数的积一定是()A.奇数B.偶数C.质数D.合数考点:合数与质数.专题:压轴题;数的整除.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数.最小的质数是2,除了2之外,其它质数都为奇数.根据数的奇偶性可知,2与其它质数相乘的积一定是偶数;除了2之外,其它两个质数相乘的积是奇数,即两个质数的积可能是偶数也可是质数;又在自然数中,除了1和它本身外,还有别的因数的数为合数.两质数相乘的积的因数,除了1和它本身外,还有这两个质数是它的因数,即共有4个因数.一定为合数.解答:解:根据质数的意义及数的奇偶性可知,个质数的积可能是偶数也可是质数;根据合数的意义可知,两质数相乘的积,一定为合数.故选:D.点评:完成本题要注意最小的质数是2,2同时为偶数.6.(•楚州区)所有素数的积是()A.奇数素数B.奇数合数C.偶数合数D.偶数素数考点:合数与质数.专题:数的整除.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数.则最小的质数是2,除了1和它本身外,还有别的因数的数为合数.由于素数有无数个,则所有所有素数的积的因数也有无数个,则它们的积是合数,又最小的素是2,2为偶数,根据数的奇偶性可知,所有素数的积是偶合数.解答:解:所有所有素数的积的因数也有无数个,则它们的积是合数,又最小的素是2,2为偶数,根据数的奇偶性可知,所有素数的积是偶合数.故选:C.点评:除了2之外,所有素数为奇数,则除2之外所有素数的积是奇数合数.7.(•玉溪模拟)在下面与3有关的四句话中,正确的一句话是()A.3是一个自然数,它既是质数也是奇数B.一个自然数的末位是3的倍数,这个自然数一定能被3整除C.任何一个偶数都能被2整除,但不能被3整除D.如果m是一个不为零的自然数,那么3和m一定是互质数考点:合数与质数;奇数与偶数的初步认识;找一个数的倍数的方法.专题:数的整除.分析:根据所学的有关知识,将下列四个选项逐一进行分析、判断,即可选择出正确的一项.解答:解:A、根据自然数、质数、奇数的定义可知,3是一个自然数,它既是质数也是奇数,所以此选项说法正确;B、举例说明:如26,末位数字是6,是3的倍数,但是这个自然数26不能被3整除,所以此选项说法错误;C、举例说明:24,是偶数,能被2整除,也能被3整除,所以此选项说法错误;D、互质数是指两个数的最大公因数是1,如果m=21,则3和m的最大公约数是3,所以不是互质数,此选项说法错误.故选:A.点评:此题主要考查质数、倍数、奇数、偶数、互质数的意义及应用,此类问题可以采用举反例的方法进行判断选择.8.(•天河区)两个数既是合数,又是互质数,它们的最小公倍数是90,这两个数分别是()A.9和10B.2和45C.6和15D.30和3考点:合数与质数;求几个数的最小公倍数的方法.专题:数的整除.分析:在自然数中,除了1和它本身外还有别的因数的数为合数.公因数只有1的两个数为互质数.又互质的两个数的最小公倍数一定是这两个互质数相乘的积,据此分析即可.解答:解:由于90=2×45=18×5=15×6=9×10,在这几组数中,2、5不是合数,15与6不互质,符合条件的只有10与9,故选:A.点评:明确互质的两个数的最小公倍数一定是这两个互质数相乘的积并据此分析是完成本题的关键.。