开普勒三定律的应用
- 格式:doc
- 大小:330.50 KB
- 文档页数:13
开普勒的行星第三定律万有引力万有引力是牛顿提出的一个基本物理定律,它描述了任何两个物体之间的引力作用。
而开普勒的行星第三定律则是描述了行星运动周期和轨道半径之间的关系。
这两个定律在天体物理研究中起着重要的作用,并且相互关联。
万有引力定律是由英国物理学家牛顿在17世纪提出的。
该定律表明,任何两个物体之间都存在引力,而且这个引力与它们的质量和距离有关。
具体来说,两个物体之间的引力正比于它们的质量乘积,反比于它们之间的距离的平方。
开普勒的行星第三定律是由德国天文学家开普勒在17世纪提出的。
这个定律描述了行星运动周期和轨道半径之间的关系。
根据这个定律,行星的运动周期的平方与它们的轨道半径的立方成正比。
换句话说,行星离太阳越远,它的运动周期就越长。
这两个定律之间的关系在理论物理研究中起着重要的作用。
根据万有引力定律,我们可以计算出行星之间的引力,从而预测它们的轨道和运动。
而开普勒的行星第三定律则为我们提供了一种计算行星轨道半径和运动周期之间关系的方法。
通过研究这两个定律,我们可以深入了解行星系统的形成和演化过程。
例如,根据开普勒的行星第三定律,我们可以推测出行星系统中可能存在的未被发现的行星。
通过观测已知行星的运动周期和轨道半径,我们可以推算出其他行星的存在。
除了行星系统的研究,万有引力定律和开普勒的行星第三定律还在其他领域有着广泛的应用。
例如,它们可以用于计算天体的质量,预测彗星的轨道,解释恒星的运动等等。
这些应用使得我们能够更好地理解宇宙的本质和运行机制。
虽然万有引力定律和开普勒的行星第三定律是在几个世纪前提出的,但它们至今仍然被广泛应用于现代科学研究中。
随着天文观测技术的不断进步,我们对宇宙的认识也在不断深化。
这些定律的应用和发展将继续推动着天体物理学的进步。
万有引力定律和开普勒的行星第三定律是天体物理学中的重要定律。
它们描述了物体之间的引力作用和行星运动周期与轨道半径之间的关系。
这些定律的研究和应用使我们能够更好地理解宇宙的本质和运行机制,推动着天体物理学的进步。
典型例题关于开普勒的三大定律例1 月球环绕地球运动的轨道半径约为地球半径的60倍,运行周期约为27天。
应用开普勒定律计算:在赤道平面内离地面多少高度,人造地球卫星可以随地球一起转动,就像停留在无空中不动一样.分析:月球和人造地球卫星都在环绕地球运动,根据开普勒第三定律,它们运行轨道的半径的三次方跟圆周运动周期的二次方的比值都是相等的.解:设人造地球卫星运行半径为R,周期为T,根据开普勒第三定律有:同理设月球轨道半径为,周期为,也有:由以上两式可得:在赤道平面内离地面高度:km点评:随地球一起转动,就好似停留在天空中的卫星,通常称之为定点卫星.它们离地面的高度是一个确定的值,不能随意变动。
利用月相求解月球公转周期例2 假设近似认为月球绕地球公转与地球绕日公转的轨道在同一平面内,且都为正圆.又知这两种转动同向,如下图,月相变化的周期为29.5天〔图是相继两次满月,月、地、日相对位置示意图〕.解:月球公转〔2π+〕用了29.5天.故转过2π只用天.由地球公转知.所以=27.3天.例3如下图,A、B、C是在地球大气层外的圆形轨道上运行的三颗人造地球卫星,以下说法中正确的选项是哪个?〔〕A.B、C的线速度相等,且大于A的线速度B.B、C的周期相等,且大于A的周期C.B、C的向心加速度相等,且大于A的向心加速度D.假设C的速率增大可追上同一轨道上的B分析:由卫星线速度公式可以判断出,因而选项A是错误的.由卫星运行周期公式,可以判断出,应选项B是正确的.卫星的向心加速度是万有引力作用于卫星上产生的,由,可知,因而选项C是错误的.假设使卫星C速率增大,那么必然会导致卫星C偏离原轨道,它不可能追上卫星B,故D也是错误的.解:此题正确选项为B。
点评:由于人造地球卫星在轨道上运行时,所需要的向心力是由万有引力提供的,假设由于某种原因,使卫星的速度增大。
那么所需要的向心力也必然会增加,而万有引力在轨道不变的时候,是不可能增加的,这样卫星由于所需要的向心力大于外界所提供的向心力而会作离心运动。
专题22开普勒行星运动定律及应用【知识梳理】 一、开普勒三定律二、开普勒行星运动规律的理解及应用1.行星绕太阳运动的轨道通常按 轨道处理。
2.由开普勒第二定律可得12Δl 1r 1=12Δl 2r 2,12v 1·Δt ·r 1=12v 2·Δt ·r 2,解得v 1v 2=r 2r 1,即行星在两个位置的速度之比与到太阳的距离成 比,近日点速度 ,远日点速度 .3.开普勒第三定律a 3T 2=k 中,k 值只与 有关,不同的中心天体k 值不同,且该定律只能用在同一中心天体的环绕星体之间。
【专题练习】 一、单项选择题1.人类对太阳系中行星运动规律的探索过程中,曾有擅长观测的科学家通过长期观测记录了各行星环绕太阳运动(公转)的大量数据,在此基础上有位擅长数学推理的科学家,认为行星公转轨道应该是椭圆,然后通过数学推理,发现了行星运动三定律,揭示了行星运动的规律,但他却未能找到行星按照这些规律运动的原因,今天的你可以轻而易举的知道这个原因。
发现行星运动三定律的这位科学家是( ) A .罗勒密B .哥白尼C .第谷D .开普勒2.开普勒定律指出,行星绕太阳运行的轨道都是椭圆。
太阳与这些椭圆的关系是()A.太阳处在所有椭圆的中心上B.在相等时间内,太阳与每一颗行星的连线扫过相等的的面积C.所有行星轨道半长轴的三次方与公转周期二次方的比值都相等,且该比值与太阳无关D.所有行星轨道半长轴的三次方与公转周期二次方的比值都相等,且该比值与行星无关3.行星的运动轨迹与圆十分接近,因此开普勒第三定律的数学式可以表示为:32RkT。
下列有关普勒第三定律的说法中正确的是()A.公式中的k值与行星的质量有关B.公式中的k值与太阳的质量无关C.该公式对地月系也是适用的,其k值仍和太阳的质量有关D.该公式对地月系也是适用的,其k值与地球质量有关4.有一种通信卫星静止在赤道上空某一点,因此它的运行周期必须与地球自转周期相同,假设月球绕地球运转的周期为27天,那么通信卫星离地心的距离是月心离地心距离的几分之一?()A.127B.1729C.181D.195.某行星沿椭圆轨道绕太阳运行,如图所示,在这颗行星的轨道上有a、b、c、d四个对称点。
开普勒三大定律的运用开普勒的三大定律是描述行星运动规律的基本法则,为天文学和物理学的发展做出了重要贡献。
这三大定律为人们理解和预测天体运动提供了重要依据,也被广泛应用于航天工程、卫星轨道设计等领域。
下面将介绍开普勒三大定律的具体内容及其在现代科学中的应用。
一、第一定律:行星轨道定律第一定律又称为椭圆轨道定律,它指出:每颗行星绕太阳运行的轨道是一个椭圆,太阳在椭圆的一个焦点上。
这意味着行星不是沿着圆形轨道运行的,而是按照椭圆轨道运动,其中太阳位于椭圆的一个焦点上,并非在中心位置。
在现代科学中,第一定律的应用非常广泛。
例如,天文学家通过观测行星的轨道形状和运行轨道来确认行星的轨道规律,从而推断出行星的性质和运动状态。
此外,在航天领域,工程师们设计人造卫星的轨道时也会考虑到椭圆轨道定律,以确保卫星运行的稳定性和可靠性。
二、第二定律:面积定律第二定律也被称为面积速度定律,它描述了行星在轨道上与太阳连线所扫过的面积相等的定律。
换句话说,当行星接近太阳时,它的速度会增加,而当行星离开太阳时,它的速度会减慢。
在现代科学中,第二定律广泛应用于卫星定位、导航系统等领域。
例如,通过分析人造卫星在轨道上扫过的面积和时间的关系,科学家们可以更准确地计算卫星的位置和速度,从而实现卫星导航系统的精确定位。
三、第三定律:调和定律第三定律也称为周期定律,它指出行星绕太阳运行的周期的平方与行星与太阳平均距离的立方成正比。
换句话说,行星绕太阳运行的周期和它与太阳的距离之间存在确定的数学关系。
在现代科学中,第三定律的应用也非常广泛。
例如,在航天工程中,工程师们可以通过利用第三定律来计算不同卫星的轨道周期,以确保卫星运行的稳定和协调。
此外,天文学家还可以利用第三定律来预测行星和卫星的运动规律,帮助科学家们更深入地探索宇宙的奥秘。
综上所述,开普勒的三大定律在现代科学中发挥着重要的作用。
通过运用这三大定律,科学家们可以更好地理解和预测天体运动规律,促进航天工程、卫星导航等领域的发展,为人类探索宇宙奠定了重要基础。
开普勒三大定律的适用范围
开普勒的三大定律是描述行星运动的基本定律,它们帮助我们理解了太阳系内
行星的运动规律。
这三大定律被认为是开启了现代天文学的大门,对后来的科学研究产生了深远的影响。
第一定律:行星轨道是椭圆形的
开普勒的第一定律表明,行星绕太阳运动的轨道是椭圆形的,而不是圆形。
这
意味着行星在运动轨道上并非匀速运动,它们在不同位置的速度是不同的。
这个定律揭示了行星运动的规律性,为后来的天体力学研究提供了基础。
第二定律:行星在轨道上的运动速度是变化的
第二定律规定了行星在轨道上的运动速度是变化的,行星距离太阳越近时,它
们的速度越快;反之,距离越远时,速度越慢。
这个定律表明了行星在不同位置上的运动速度并非恒定,而是随着位置的变化而变化的。
第三定律:行星轨道周期与半长轴的三次方成正比
开普勒的第三定律指出,行星绕太阳公转的周期的平方与它们轨道的长半轴的
立方成正比。
这个定律揭示了行星轨道运动周期与轨道大小之间的关系,为预测行星运动提供了重要依据。
总的来说,开普勒的三大定律适用于描述太阳系内行星绕太阳公转的运动规律。
这些定律可以帮助我们理解行星之间的相对位置、运动速度以及轨道周期等信息。
虽然这些定律是在研究太阳系行星运动时提出的,但它们在其他星系中也有广泛的适用性,可以帮助我们理解不同星系中行星的运动规律。
因此,开普勒的三大定律对于我们认识宇宙的运动规律和天文学的发展具有重要意义。
典型例题关于开普勒的三大定律例1 月球环绕地球运动的轨道半径约为地球半径的60倍,运行周期约为27天。
应用开普勒定律计算:在赤道平面内离地面多少高度,人造地球卫星可以随地球一起转动,就像停留在无空中不动一样.分析:月球和人造地球卫星都在环绕地球运动,根据开普勒第三定律,它们运行轨道的半径的三次方跟圆周运动周期的二次方的比值都是相等的.解:设人造地球卫星运行半径为R,周期为T,根据开普勒第三定律有:同理设月球轨道半径为,周期为,也有:由以上两式可得:在赤道平面内离地面高度:km点评:随地球一起转动,就好像停留在天空中的卫星,通常称之为定点卫星.它们离地面的高度是一个确定的值,不能随意变动。
利用月相求解月球公转周期例2 若近似认为月球绕地球公转与地球绕日公转的轨道在同一平面内,且都为正圆.又知这两种转动同向,如图所示,月相变化的周期为天(图是相继两次满月,月、地、日相对位置示意图).解:月球公转(2π+)用了天.故转过2π只用天.由地球公转知.所以=天.例3如图所示,A、B、C是在地球大气层外的圆形轨道上运行的三颗人造地球卫星,下列说法中正确的是哪个()A.B、C的线速度相等,且大于A的线速度B.B、C的周期相等,且大于A的周期C.B、C的向心加速度相等,且大于A的向心加速度D.若C的速率增大可追上同一轨道上的B分析:由卫星线速度公式可以判断出,因而选项A是错误的.由卫星运行周期公式,可以判断出,故选项B是正确的.卫星的向心加速度是万有引力作用于卫星上产生的,由,可知,因而选项C是错误的.若使卫星C速率增大,则必然会导致卫星C偏离原轨道,它不可能追上卫星B,故D也是错误的.解:本题正确选项为B。
点评:由于人造地球卫星在轨道上运行时,所需要的向心力是由万有引力提供的,若由于某种原因,使卫星的速度增大。
则所需要的向心力也必然会增加,而万有引力在轨道不变的时候,是不可能增加的,这样卫星由于所需要的向心力大于外界所提供的向心力而会作离心运动。
开普勒三大定律相关的应用与实例
开普勒三大定律是描述物体运动的重要理论,它们分别是:
1.物体在匀加速直线运动中,路程与时间成正比。
2.在匀加速直线运动中,物体的加速度是恒定的。
3.任意两个天体之间的引力关系是相互的,且它们之间的引力大小与质量
成正比,距离的平方成反比。
这些定律在物理学中有广泛的应用,例如:
1.在空间飞行中,可以利用开普勒三大定律来规划飞行轨迹,使飞船能够
在最短的时间内到达目的地。
2.在地球物理学中,可以利用开普勒三大定律来解释地球与其他天体之间
的引力关系,从而推测出地球的轨道。
3.在电磁学中,可以利用开普勒三大定律来解释电磁波的传播规律。
4.在医学中,可以利用开普勒三大定律来解释人体内物质的运动规律,从
而辅助医生进行诊断。
第二十五讲 开普勒三定律 万有引力定律及应用知识点回顾1.“地心说”和“日心说”的发展过程2.开普勒行星运动定律(1)开普勒第一定律行星运动的轨道不是正圆,行星与太阳的距离一直在变。
有时远离太阳,有时靠近太阳。
它的速度的大小、方向时刻在改变。
示意图如下:所有的行星围绕太阳运行的轨道都是椭圆,太阳处在所有椭圆的一个焦点上,这就是开普勒第一定律。
(2)开普勒第二定律对于每一个行星而言,太阳和行星的联线在相等的时间内扫过相等的面积。
根据开普勒第二定律可得,行星在远日点的速率较小,在近日点的速率较大。
(3)开普勒第三定律所有行星的轨道半长轴的三次方跟公转周期的二次方的比值都相等,这是开普勒第三定律。
每个行星的椭圆轨道只有一个,但是它们运动的轨道的半长轴的三次方与公转周期的平方的比值是相等的。
我们用R 表示椭圆的半长轴,T 代表公转周期,表达式可为k TR =23显然k 是一个与行星本身无关的量,只与中心体有关。
开普勒第三定律对所有行星都适用。
对于同一颗行星的卫星,也符合这个运动规律。
3、万有引力定律(1)定律的推导(2)定律的内容: 自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比。
(3)定律的公式: 如果用m 1和m 2表示两个物体的质量,用r 表示它们的距离,那么万有引力定律可以用下面的公式来表示221r m m G F = (4)说明a .万有引力定律中的物体是指质点而言,不能随意应用于一般物体。
对于相距很远因而可以看作质点的物体,公式中的r 就是指两个质点间的距离;对均匀的球体,可以看成是质量集中于球心上的质点,这是一种等效的简化处理方法。
思考:在公式中,当r →0时,F →∞是否有意义?b .两物体间相互作用的引力,是一对作用力和反作用力。
引力的方向在两质点的连线上。
c.G为引力常量,适用于任何两个物体,在数值上等于两个质量都是1kg的物体相距1m时的相互作用力,其数值与单位制有关。
开普勒第三定律的应用例析
开普勒第三定律是物理学家开普勒提出来的根据斯托克斯定律和库伦定律而推导出来的一项定律,是描述天体运行轨道受到摩擦和重力作用时改变轨道和半径变化规律的理论。
这条定律是对现有物体运行轨道变化具有重要解释意义,也是奠定现代力学研究及应用的基础之一。
开普勒第三定律主要用于分析两个行星之间的轨道演变,即行星之间的距离可通过它们的相对运动(包括距离和角速度)来分析。
开普勒第三定律的作用是解释天体的运动轨道的改变由其它力的作用的累积效应,开普勒第三定律可以用于分析地球与月球之间的轨道变化。
有研究表明,恒星的运动方程就是开普勒定律在太阳系中的应用。
除此之外,开普勒第三定律还有一个重要应用,即结构动力学学科,它主要用于分析机械系统中物体运动轨迹变化规律。
例如,它可以用于分析复杂的系统中物体运动情况,包括航天飞机、汽车和火箭等动力学系统,开普勒第三定律具有建模识别、实时控制和信息处理等功能。
它的应用是非常广泛的,在高校与高等教育方面,开普勒第三定律经常被用作一个重要的理论框架和研究工具,用于教学和科学研究,因此,学习和掌握开普勒第三定律非常重要,能够大大提高学生和科研者们针对天体运动的理论研究能力。
开普勒第三定律在电学中的一个应用及证明开普勒第三定律是物理学中一项重要的定律,它的定义是:“任何物体以规律的恒定速率旋转,它的磁力矩和力矩之间的比率是一个定值”。
在电学中,开普勒第三定律有多种应用,包括电动机、发电机、电场计算等。
本文将介绍其中一个应用,即在计算发电机电场的情况下,开普勒第三定律可以用于证明该电场衰减。
一、开普勒第三定律及其在电学中的应用
1、什么是开普勒第三定律?
开普勒第三定律又被称为开普勒定律,据该定律规定,任何物体以规律的恒定速率旋转,它的磁力矩和力矩之间的比率是一个定值。
2、开普勒第三定律在电学中的应用
开普勒第三定律可以用来计算发电机的电场衰减,也可以用于计算电动机或变压器的工作原理,还可用于计算电流、电压等电学参数之间的关系。
二、在发电机电场的情况下,如何证明该电场衰减的原理
1、首先,可以将该电动机的电压与相对应的磁力矩做对比。
通常情况下,电压V与电机的磁力矩T之间的比率是一定的,而当调节磁力矩
T的大小时,由开普勒第三定律可知,电压V也会相应地衰减。
2、其次,我们可以根据发电机的原理,使用一定操作可以使发电机产生电流,其中包括使用一组磁铁和电流交换,是让发电机把可转换的磁能转换为可见的热量和动能。
在此情况下,发电机的磁力矩也会随着电场的大小而改变,它的变化情况满足开普勒第三定律。
因此,我们可以根据此定律证明发电机的电场随着磁力矩变化而衰减。
三、结论
综上所述,开普勒第三定律可以用于电学领域,在计算发电机电场时尤其有用。
根据开普勒第三定律,我们可以证明发电机电场随着磁力矩变化而衰减,这表明开普勒第三定律在电学中也有重要应用。
开普勒第三定律的适用范围开普勒第三定律,听上去有点高深,但其实说白了就是关于行星运动的一个规律。
大家可能听过,简单来说,它说的是行星距离太阳越远,公转周期就越长。
这就像我们在学校里上课,最后一排的同学总是要等到下课铃响才有机会走出教室,哈哈,开玩笑啦!不过,这个定律背后可不是那么简单,它其实是宇宙的一个奥秘,能够让我们更好地理解星星和行星之间的关系。
说到适用范围,咱们先得搞明白这个定律是在哪些情况下靠谱。
开普勒第三定律主要是针对太阳系里的大行星,比如地球、火星、木星等。
你可以想象一下,像木星那么庞大的家伙,它绕着太阳转的时间可真是“悠然自得”。
而那些小行星,或者说是像彗星这种不太“按套路出牌”的小家伙,开普勒的定律就不太管用啦,真是像街边小摊的生意,变化无常,谁也说不准。
再说了,这个定律主要是在牛顿万有引力法则的框架下成立的。
牛顿老爷子可是大名鼎鼎,定律一出,真是风靡一时,大家都开始用它来解释各种运动现象。
可想而知,开普勒的定律也沾了不少光。
对于那些受万有引力影响的天体,开普勒的定律就显得特别好使,犹如牛刀小试,简单又有效。
不过,咱们也不能把它当作万能钥匙。
开普勒的定律在某些情况下也有点“力不从心”。
比如,当你考虑那些质量巨大的天体,或者说是彼此之间相互作用的情况时,开普勒的定律就不太灵光了。
这就好比你和朋友一起打篮球,虽然你们有默契,但如果碰上一个超级巨星,那就得另当别论啦!所以,开普勒第三定律虽然很牛,但也有局限。
开普勒的定律就像一扇窗户,让我们看到一个更大的宇宙景象。
它的适用范围虽有限,但它揭示的却是宇宙中一种深邃的和谐美。
就像一首美妙的交响曲,虽然每个音符都有它的位置,但合在一起才能产生动人的旋律。
宇宙的舞蹈总是错综复杂,但开普勒的定律让我们在这复杂的舞步中找到了些许规律,真是让人感叹不已。
现代科学的发展让我们对这些定律有了更深的理解。
新发现的天体和现象不断涌现,咱们的视野也在不断扩展。
第22讲 开普勒三大定律应用1.(新课标)为了探测引力波,“天琴计划”预计发射地球卫星P ,其轨道半径约为地球半径的16倍;另一地球卫星Q 的轨道半径约为地球半径的4倍。
P 与Q 的周期之比约为( ) A .2:1B .4:1C .8:1D .16:1 一.知识回顾1.开普勒三定律定律内容图示或公式开普勒第一定律(轨道定律)所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上开普勒第二定律(面积定律)对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等开普勒第三定律(周期定律)所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等a 3T 2=k ,k 是一个与行星无关的常量(1)微元法解读开普勒第二定律:行星在近日点、远日点时的速度方向与两点连线垂直,若行星在近日点、远日点到太阳的距离分别为a 、b ,取足够短的时间Δt ,则行星在Δt 时间内的运动可看作匀速直线运动,由S a =S b 知12v a ·Δt ·a =12v b ·Δt ·b ,可得v a =v b b a 。
行星到太阳的距离越大,行星的速率越小,反之越大。
(2)行星绕太阳的运动通常按匀速圆周运动处理。
半径等于半长轴。
(3)开普勒行星运动定律也适用于其他天体,例如月球、卫星绕地球的运动。
(4)开普勒第三定律a 3T 2=k 中,k 值只与中心天体的质量有关,不同的中心天体k 值不同,故该定律只能用在同一中心天体的两星体之间。
二.例题精讲:例1.地球的公转轨道接近圆,哈雷彗星的公转轨道则是一个非常扁的椭圆,如图所示.天文学家哈雷成功预言了哈雷彗星的回归,哈雷彗星最近出现的时间是1986年,预测下次飞近地球将在2061年左右.若哈雷彗星在近日点与太阳中心的距离为r 1,远日点与太阳中心的距离为r 2.下列说法正确的是( )A .哈雷彗星轨道的半长轴是地球公转半径的√753倍B .哈雷彗星在近日点的速度一定大于地球的公转速度C .哈雷彗星在近日点和远日点的速度之比为√r 2:√r 1D .相同时间内,哈雷彗星与太阳连线扫过的面积和地球与太阳连线扫过的面积相等例2.根据开普勒定律可知,火星绕太阳运行的轨道是椭圆,太阳在椭圆的一个焦点上,如图所示,下列说法正确的是( )A .火星运动到近日点时的线速度最小B .火星运动到远日点时的加速度最小C .太阳对火星的万有引力大小始终保持不变D .太阳对火星的万有引力大于火星对太阳的万有引力例3.“中国天眼”是目前世界上口径最大的单天线射电望远镜(FAST )。
万有引力及天体运动一.开普勒行星运动三大定律 1、开普勒第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。
2、开普勒第二定律(面积定律):对于每一个行星而言,太阳和行星的联线在相等的时间内扫过相等的面积。
3、开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
1、如图所示是行星m 绕恒星M 运动的情况示意图,则下面的说法正确的是: A 、速度最大的点是B 点 B 、速度最小的点是C 点C 、m 从A 到B 做减速运动D 、m 从B 到A 做减速运动 二、万有引力定律1、万有引力定律的建立①太阳与行星间引力公式 ②月—地检验③卡文迪许的扭秤实验——测定引力常量G 2、万有引力定律①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们之间的距离r的二次方成反比。
即: ②适用条件(Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。
(Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。
③运用地上:忽略地球自转可得: 2)计算重力加速度地球上空距离地心r=R+h 处 方法:在质量为M ’,半径为R ’的任意天体表面的重力加速度''g方法:(3)计算天体的质量和密度利用自身表面的重力加速度:天上:利用环绕天体的公转: 等等(注:结合 得到中心天体的密度)(4)双星:两者质量分别为m 1、m 2,两者相距L特点:距离不变,向心力相等,角速度相等,周期相等。
双星轨道半径之比:双星的线速度之比:三、宇宙航行1、人造卫星的运行规律2Mm F G r =11226.6710/G N m kg -=⨯⋅122m mF G r =2R Mm Gmg =2''''''R m M G mg =mg R MmG =2r T m r m r v m r Mm G 222224πω===334R M πρ⋅=2')(h R Mm G mg +=122121m m v v R R ==22(1) :M m GM v G m v r r r==卫地地卫由得rTm r m r v m r Mm G 222224πω===332T=2.GM GM GM r M v a G r r rωπ=== , , ,例.两颗人造卫星A 、B 绕地球作圆周运动,周期之比为T A :T B =1:8,则轨道半径之比和运动速率之比分别为( ) 2、宇宙速度第一宇宙速度:V 1=7.9km/s 第二宇宙速度:V 2=11.2km/s 脱离速度 第三宇宙速度:V 3=16.7km/s 逃逸速度注:(1)宇宙速度均指发射速度(2)第一宇宙速度为在地面发射卫星的最小速度,也是环绕地球运行的最大速度(环绕速度) 3、地球同步卫星(通讯卫星)(1)运动周期与地球自转周期相同,且T=24h ;(2)运转角速度等于地球自转的角速度,周期等于地球自转的周期; (3)同步卫星高度不变,运行速率不变(因为T 不变); (4)同步卫星的轨道平面必须与赤道平面平行,在赤道正上方。
开普勒三定律1. 开普勒三定律开普勒以第谷详细的天文观测数据为基础,总结出了开普勒行星运动三定律,为牛顿万有引力定律的提出奠定了基础。
其主要内容为:1)第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
说明:第一定律指出了行星运动局限在一个平面上,在高中阶段我们把该问题化简为平面上的圆周运动问题,这就保证了同学们前面学习圆周运动的知识与方法可以应用在本节中。
2)第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等。
说明:第二定律等效于指出在天体运动中,近星体点速度大而远星体点速度小。
要求同学们会根据第二定律进行定性的判定。
3)第三定律(周期定律):所有行星轨道的半长轴的三次方跟它的公转周期的二次方的比都相等。
说明:第三定律定量的指出了行星运动周期与距离中心天体的距离之间的关系,要求同学们会利用第三定律定量计算同一中心天体不同卫星的周期等与圆周运动相关的量。
2. 开普勒第三定律的应用所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。
32a k T = 注意:在应用开普勒第三定律的时候,应该注意其成立前提,即:对于同一个中心天体的不同环绕天体。
同时应明确,开普勒第三定律既可以讨论圆轨道,也可以讨论椭圆轨道上的运动,对于圆轨道表达式中的a 代表圆轨道半径,对于椭圆轨道表达式中的a 则代表椭圆轨道的半长轴。
1. 关于行星运动的规律,下列说法符合史实的是( ) A. 开普勒在牛顿定律的基础上,导出了行星运动的规律 B. 开普勒在天文观测数据的基础上,总结出了行星运动的规律C. 开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D. 开普勒总结出了行星运动的规律,发现了万有引力定律 答案:B解析:开普勒在天文观测数据的基础上,总结出了开普勒三定律,找出了行星运动的规律,但并未找出行星按照这些规律运动的原因,是牛顿发现了万有引力定律2. 对于开普勒第三定律的表达式32a k T=的理解正确的是( )A. k 与3a 成正比B. k 与2T 成反比C. k 值是与a 和T 无关的值D. k 值只与中心天体有关 答案:CD解析:由开普勒第三定律可知,所有行星的半长轴a 的三次方与公转周期T 的平方之比都是不变的,当a 增大时,T 也增大,使得k 值不变,所以A 、B 错误.k 是由与恒星有关的量决定,而与a 、T 及行星都无关,故C 、D 正确。
开普勒的三大定律典型例题(总3页) -本页仅作为预览文档封面,使用时请删除本页-典型例题关于开普勒的三大定律例1月球环绕地球运动的轨道半径约为地球半径的60倍,运行周期约为27天。
应用开普勒定律计算:在赤道平面内离地面多少高度,人造地球卫星可以随地球一起转动,就像停留在无空中不动一样.分析:月球和人造地球卫星都在环绕地球运动,根据开普勒第三定律,它们运行轨道的半径的三次方跟圆周运动周期的二次方的比值都是相等的.解:设人造地球卫星运行半径为R,周期为T,根据开普勒第三定律有:同理设月球轨道半径为,周期为,也有:由以上两式可得:在赤道平面内离地面高度:km点评:随地球一起转动,就好像停留在天空中的卫星,通常称之为定点卫星.它们离地面的高度是一个确定的值,不能随意变动。
利用月相求解月球公转周期例2 若近似认为月球绕地球公转与地球绕日公转的轨道在同一平面内,且都为正圆.又知这两种转动同向,如图所示,月相变化的周期为天(图是相继两次满月,月、地、日相对位置示意图).解:月球公转(2π+)用了天.故转过2π只用天.由地球公转知.所以=天.例3如图所示,A、B、C是在地球大气层外的圆形轨道上运行的三颗人造地球卫星,下列说法中正确的是哪个()A.B、C的线速度相等,且大于A的线速度B.B、C的周期相等,且大于A的周期C.B、C的向心加速度相等,且大于A的向心加速度D.若C的速率增大可追上同一轨道上的B分析:由卫星线速度公式可以判断出,因而选项A是错误的.由卫星运行周期公式,可以判断出,故选项B是正确的.卫星的向心加速度是万有引力作用于卫星上产生的,由,可知,因而选项C是错误的.若使卫星C速率增大,则必然会导致卫星C偏离原轨道,它不可能追上卫星B,故D也是错误的.解:本题正确选项为B。
点评:由于人造地球卫星在轨道上运行时,所需要的向心力是由万有引力提供的,若由于某种原因,使卫星的速度增大。
则所需要的向心力也必然会增加,而万有引力在轨道不变的时候,是不可能增加的,这样卫星由于所需要的向心力大于外界所提供的向心力而会作离心运动。
开普勒三大定律运用一、引言开普勒的三大定律是描述行星运动的关键理论之一,通过这三大定律可以精确描述行星在其轨道上的运动规律。
在现代科学领域,开普勒的三大定律不仅仅应用在行星运动的研究中,还在其他领域得到了广泛的应用。
本文将重点探讨开普勒三大定律在不同领域中的具体应用。
二、开普勒第一定律的应用开普勒第一定律也被称为椭圆轨道定律,即行星轨道是一个椭圆,太阳位于椭圆的一个焦点上。
这一个简单的规律在各种领域都有着广泛的应用。
例如,在天文学中,我们可以利用开普勒第一定律来预测行星的运动轨迹,评估地球和其他行星之间的相对位置。
此外,在航天技术中,也可以通过开普勒第一定律来规划卫星的轨道,在地球和其他天体之间建立通信和导航系统。
三、开普勒第二定律的应用开普勒第二定律也被称为面积速率定律,即在相等的时间内,行星与太阳连线所扫过的面积相等。
这个定律在动力学领域有着重要的应用,例如在飞行学中,我们可以通过这个定律来优化飞行轨迹和节约燃料。
另外,开普勒第二定律也被广泛应用在天体运动的数值模拟中,通过计算行星与太阳之间的相对位置来预测宇宙中天体的运动。
四、开普勒第三定律的应用开普勒第三定律也被称为立方定律,即行星公转周期的平方与它们之间的平均距离的立方成正比。
这个定律在科学研究领域有着重要的应用,例如在地球科学中,我们可以借助开普勒第三定律来研究行星之间的相对运动和轨道的稳定性。
此外,在工程学中也可以通过这个定律来设计卫星轨道,实现卫星之间的通信和观测。
五、结论总的来说,开普勒的三大定律是描述行星运动的基础理论,但其应用远不止于天文学领域。
在现代科学和工程技术中,开普勒三大定律被广泛运用,为我们解决各种复杂问题提供了重要的理论基础。
通过深入研究并灵活运用这些定律,我们可以更好地探索宇宙的奥秘,推动科学技术的发展。
开普勒第三定律的意义嘿,朋友们!今天咱来唠唠开普勒第三定律的意义。
你说这开普勒第三定律啊,就像是宇宙这个大舞台上的一个神奇规则。
想象一下,那些星球就像舞台上的演员,它们在各自的轨道上旋转、舞动。
而开普勒第三定律呢,就是给这些演员的表演定下了一个特别的节奏。
咱平时看那些星星,一闪一闪的,好像没啥特别。
但你可别小瞧了这定律,它可厉害着呢!它就像一把神奇的钥匙,能让我们解开宇宙运行的秘密。
比如说吧,我们可以通过它知道不同行星之间的关系。
就好像我们能通过一个人的行为习惯了解他的性格一样。
这定律能让我们更清楚地看到宇宙的秩序和规律。
你想啊,如果没有这个定律,那宇宙不就乱套啦?行星们可能会横冲直撞,那还得了!有了它,我们就能更好地理解宇宙的运行机制,就像我们了解自己家里的电器怎么工作一样。
它还能帮助我们预测一些天文现象呢!这不就跟天气预报似的,让我们提前知道可能会发生啥。
这多有意思呀!而且啊,这开普勒第三定律可不是孤立存在的。
它和其他的科学知识相互配合,就像一个团队里的成员,共同为我们揭示宇宙的奥秘。
咱再想想,要是没有这定律,我们对宇宙的探索得有多迷茫呀!就像在黑夜里没有手电筒,只能瞎摸。
但有了它,我们就像有了一盏明灯,照亮我们探索的道路。
它让我们知道,宇宙虽然无比广阔,但也是有章可循的。
这不就给我们人类一种安全感吗?让我们觉得,虽然宇宙那么大,但我们还是能慢慢去了解它的。
这开普勒第三定律啊,真的是太重要啦!它让我们对宇宙的好奇有了方向,让我们的探索有了依据。
它就像一个无声的老师,默默地教给我们宇宙的知识。
所以说啊,我们可得好好珍惜这个神奇的定律,好好利用它去探索更多的宇宙奥秘。
让我们一起在宇宙的大舞台上,跟着开普勒第三定律的节奏,跳好我们探索的舞蹈吧!。
万有引力及天体运动一.开普勒行星运动三大定律 1、开普勒第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。
2、开普勒第二定律(面积定律):对于每一个行星而言,太阳和行星的联线在相等的时间内扫过相等的面积。
3、开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
1、如图所示是行星m 绕恒星M 运动的情况示意图,则下面的说法正确的是: A 、速度最大的点是B 点 B 、速度最小的点是C 点C 、m 从A 到B 做减速运动D 、m 从B 到A 做减速运动 二、万有引力定律1、万有引力定律的建立①太阳与行星间引力公式 ②月—地检验③卡文迪许的扭秤实验——测定引力常量G 2、万有引力定律①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们之间的距离r的二次方成反比。
即: ②适用条件(Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。
(Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。
③运用地上:忽略地球自转可得: 2)计算重力加速度地球上空距离地心r=R+h 处 方法:在质量为M ’,半径为R ’的任意天体表面的重力加速度''g方法:(3)计算天体的质量和密度利用自身表面的重力加速度:天上:利用环绕天体的公转: 等等(注:结合 得到中心天体的密度)(4)双星:两者质量分别为m 1、m 2,两者相距L特点:距离不变,向心力相等,角速度相等,周期相等。
双星轨道半径之比:双星的线速度之比:三、宇宙航行1、人造卫星的运行规律2Mm F G r =11226.6710/G N m kg -=⨯⋅122m mF G r =2R Mm Gmg =2''''''R m M G mg =mg R MmG =2r T m r m r v m r Mm G 222224πω===334R M πρ⋅=2')(h R Mm G mg +=122121m m v v R R ==22(1) :M m GM v G m v r r r==卫地地卫由得rTm r m r v m r Mm G 222224πω===332T=2.GM GM GM r M v a G r r rωπ=== , , ,例.两颗人造卫星A 、B 绕地球作圆周运动,周期之比为T A :T B =1:8,则轨道半径之比和运动速率之比分别为( ) 2、宇宙速度第一宇宙速度:V 1=7.9km/s 第二宇宙速度:V 2=11.2km/s 脱离速度 第三宇宙速度:V 3=16.7km/s 逃逸速度注:(1)宇宙速度均指发射速度(2)第一宇宙速度为在地面发射卫星的最小速度,也是环绕地球运行的最大速度(环绕速度) 3、地球同步卫星(通讯卫星)(1)运动周期与地球自转周期相同,且T=24h ;(2)运转角速度等于地球自转的角速度,周期等于地球自转的周期; (3)同步卫星高度不变,运行速率不变(因为T 不变); (4)同步卫星的轨道平面必须与赤道平面平行,在赤道正上方。
对同步卫星:运动规律:由于同步卫星的运动周期确定(为T=24h ),故而 其 r 、 v 、ω、T 、a 等均为定值。
3)卫星的变轨问题卫星绕中心天体稳定运动时万有引力提供了卫星做匀速圆周运动的向心力,有.当卫星由于某种原因速度突然增大时,,卫星将做离心运动;当突然减小时,,卫星做向心运动。
变轨处机械能会改变四、小专题剖析1、测天体的质量及密度:1.继神秘的火星之后,今年土星也成了全世界关注的焦点!经过近7年35.2亿公里在太空中风尘仆仆的穿行后,美航空航天局和欧航空航天局合作研究的“卡西尼”号土星探测器于美国东部时间6月30日(北京时间7月1日)抵达预定轨道,开始“拜访”土星及其卫星家族。
这是人类首次针对土星及其31颗已知卫星最详尽的探测!若“卡西尼”号探测器进入绕土星飞行的轨道,在半径为R 的土星上空离土星表面高h 的圆形轨道上绕土星飞行,环绕n 周飞行时间为t 。
试计算土星的质量和平均密度。
3、人造卫星、宇宙速度:将卫星发射至近地圆轨道1(如图所示),然后再次点火,将卫星送入同步轨道3。
轨道1、2相切于Q 点,2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:223(2) :M m GM Gm r r r ωω==卫地地卫由得23224 2(3) :M m r G m r T r T GM ππ==卫地卫地由得r Tm r m r v m r GMm 2222)2(πω===P123 ∙∙QA .卫星在轨道3上的速率大于轨道1上的速率。
B .卫星在轨道3上的角速度大于在轨道1上的角速度。
C .卫星在轨道1上经过Q 点时的加速度大于它在轨道2上经过Q 点时的加速度。
D .卫星在轨道2上经过P 点的加速度等于它在轨道3上经过P 点时的加速度。
2.“神舟六号”飞行到第5圈时,在地面指挥控制中心的控制下,由近地点250km 圆形轨道1经椭圆轨道2转变到远地点350km 的圆轨道3。
设轨道2与1相切于Q 点,与轨道3相切于P 点,如图3所示,则飞船分别在1、2、轨道上运行时( )A .飞船在轨道3上的速率大于在轨道1上的速率B .飞船在轨道3上的角速度大于在轨道1上的角速度C .飞船在轨道1上经过Q 点时的加速度大于在轨道2上经过Q 点的加速度D .飞船在轨道2上经过P 点时的加速度等于在轨道3上经过P 点的加速度2008年9月25日至28日我国成功实施了“神舟”七号载入航天飞行并实现了航天员首次出舱。
飞船先沿椭圆轨道飞行,后在远地点343千米处点火加速,由椭圆轨道变成高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟。
下列判断正确的是 ( )A .飞船变轨前后的机械能相等B .飞船在圆轨道上时航天员出舱前后都处于失重状态C .飞船在此圆轨道上运动的角度速度小于同步卫星运动的角速度D .飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度4、双星问题:【例4】两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动。
现测得两星中心距离为R ,其运动周期为T ,求两星的总质量。
5、有关航天问题的分析:无人飞船“神州二号”曾在离地高度为H =3. 4⨯105m 的圆轨道上运行了47小时。
求在这段时间内它绕行地球多少圈?(地球半径R =6.37⨯106m ,重力加速度g =9.8m/s 2)P地球Q 轨道1 轨道2作业1.火星的质量和半径分别约为地球的101和21,地球表面的重力加速度为g ,则火星表面的重力加速度约为 A .0.2g B .0.4g C .2.5g D .5g2.1990年4月25日,科学家将哈勃天文望远镜送上距地球表面约600 km 的高空,使得 人类对宇宙中星体的观测与研究有了极大的进展。
假设哈勃望远镜沿圆轨道绕地球运行。
已知地球半径为6.4×106m ,利用地球同步卫星与地球表面的距离为3.6×107m 这一事实可得到哈勃望远镜绕地球运行的周期。
以下数据中最接近其运行周期的是A .0.6小时B .1.6小时C .4.0小时D .24小时3.天文学家新发现了太阳系外的一颗行星。
这颗行星的体积是地球的4.7倍,是地球的25倍。
已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G=6.67×10-11N ·m 2/kg 2,,由此估算该行星的平均密度为 ( )A.1.8×103kg/m 3B. 5.6×103kg/m3C. 1.1×104kg/m 3D.2.9×104kg/m 34.英国《新科学家(New Scientist )》杂志评选出了2008年度世界8项科学之最,在XTEJ1650-500双星系统中发现的最小黑洞位列其中,若某黑洞的半径R 约45km ,质量M 和半径R 的关系满足22M c R G=(其中c 为光速,G 为引力常量),则该黑洞表面重力加速度的数量级为( ) A .8210m/s B .10210m/s C .12210m/s D .14210m/s5.我国探月的“嫦娥工程”已启动,在不久的将来,我国宇航员将登上月球。
假如宇航员在月球上测得摆长为l 的单摆做小振幅振动的周期为T ,将月球视为密度均匀、半径为r 的球体,则月球的密度为A .2π3l GrT B .23πlGrT C .216π3l GrT D .23π16l GrT6.我们的银河系的恒星中大约四分之一是双星。
某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动。
由于文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知引力常量为G 。
由此可求出S 2的质量为 ( )A .2122)(4GT r r r -πB .23124GTr π C .2324GTr πD .21224GTr r π 7.已知地球质量大约是月球质量的81倍,地球半径大约是月球半径的4倍。
不考虑地球、月球自转的影响,由以上数据可推算出A.地球的平均密度与月球的平均密度之比约为9∶8B.地球表面重力加速度与月球表面重力加速度之比约为9∶4C.靠近地球表面沿圆轨道运行的航天器的周期与靠近月球表面沿圆轨道运行的航天器的周期 之比约为8∶9D.靠近地球表面沿圆轨道运行的航天器线速度与靠近月球表面沿圆轨道运行的航天器线速度之 比约为81∶48.(15分)天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。
双星系统在银河系中很普遍。
利用双星系统中两颗恒星的运动特征可推算出它们的总质量。
已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量。
(引力常量为G )9.在勇气号火星探测器着陆的最后阶段,着陆器降落到火星表面上,再经过多次弹跳才停下来。
假设着陆器第一次落到火星表面弹起后,到达最高点时高度为h ,速度方向是水平的,速度大小为υ0,求它第二次落到火星表面时速度的大小,计算时不计大气阻力。
已知火星的一个卫星的圆轨道的半径为r ,周期为T 。
火星可视为半径为r 0的均匀球体。
10.(10分)宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处。