【精品】3.5利用三角形全等测距离
- 格式:pdf
- 大小:3.94 MB
- 文档页数:21
《利用三角形全等测距离》教学设计一、教学内容《利用三角形全等测距离》是北师大版数学七年级(下)第三章第五节的内容。
二、教学目标及重难点1.教学目标:教学目标:(1)知识与技能会利用“边角边”,“角边角”,“角角边”来构造全等三角形测距离,培养学生把实际问题转化为数学问题的能力。
(2)过程与方法在经历从现实生活中抽象出几何模型的过程中,有意识地培养学生合作探究精神及有条理的思考、表达能力,以及创新意识,体会数学与实际生活的联系。
(3)情感态度与价值观通过情境创设,激发学生学习兴趣,体会数学来源于实际,又服务于实际生活的重大意义.教学重点――利用三角形全等测距离。
教学难点――如何把实际问题转化为数学问题(数学建模)。
三、教学方法:小组合作、探究式相结合四、教学工具:多媒体课件五、教学基本流程:一.回顾思考,温故知新二.创设情境,激发兴趣三.动手实践,探索新知四.小组合作,学以致用五.归纳总结,反思提高六.反馈练习,强化新知七.布置作业,课后延拓六、教学过程:教师活动学生活动设计意图一、回顾思考,温故知新(1)要判定两个全三角形全等有哪些方法?并思考在判定的三个条件中至少要有一个什么条件?(2)全等三角形有什么性质?学生独立思考后,举手回答问题(1)SSS,SAS,ASA,AAS 三个条件中至少需要一个边的条件(2)全等三角形的对应边相等,对应角相等。
通过提问可以温习与本节有关的知识,帮助基础较弱或掌握不牢的学生巩固旧知识,同时也是本节课的理论基础。
二.创设情境,激发兴趣出示一个玻璃瓶,两根等长的小棒,一把刻度尺提问:谁能利用我们所学的知识,用现在的这些器材测量出玻璃瓶的内径?这就是今天要学习的内容——利用三角形全等测距离。
启示:通过三角形的全等将不易测,不能到达的两点间的距离转化为可以测量的两点间的距离。
学生分小组讨论后派代表上前演示:把两根木棍的中点穿在一起,让木棍可以自由地活动,然后把两根木棍重叠在一起,插入瓶中,将两根木棍的角度打开,让木棍下面两端靠着瓶子内壁,只需测量外面两个点之间的距离就得到瓶子的内径。
利用三角形全等测距离2篇文章1一、什么是三角形全等测距离?三角形全等测距离是指通过观察和测量三角形的各个边长和角度,来确定两个或多个三角形之间的距离。
在实际应用中,我们常常需要测量一些无法直接测量的物体的距离,而三角形全等测距离提供了一种有效的方法。
通过观察和测量三角形的特征,我们可以推导出相似三角形之间的比例关系,从而计算出距离。
二、如何利用三角形全等测距离测量距离?要进行三角形全等测距离的测量,我们需要以下步骤:步骤一:选择一个可测量的标志物体。
在测量过程中,我们需要选择一个已知距离的标志物体作为参照。
这个标志物体可以是任何形状的物体,但是必须要有明确的测量标准。
例如,我们可以选择一根知道长度的杆子或测量单位已知的标尺作为参考。
步骤二:确定视角。
为了进行距离的测量,我们需要确定测量者与被测量物体之间的视角。
视角的选择将直接影响到后续的测量结果。
步骤三:观察和记录。
通过眼睛观察被测物体和标志物体之间的角度和边长关系,并将其记录下来。
这些记录将作为计算距离的依据。
步骤四:计算距离。
利用已知角度和边长的比例关系,我们可以通过简单的几何运算计算出待测物体与标志物体之间的距离。
具体的计算公式可以根据实际情况进行调整,但原理是相同的。
三、三角形全等测距离的应用领域三角形全等测距离在现实生活中有广泛的应用。
以下是其中一些应用场景:1.地图测量在绘制地图时,我们需要准确测量不同地理特征之间的距离,并将其绘制到比例尺上。
利用三角形全等测距离,我们可以通过测量一些关键标志物体之间的距离来计算出其他位置的距离。
2.建筑设计在建筑设计中,我们常常需要测量建筑物与周围地物的距离。
例如,在规划一片土地时,我们需要计算出建筑物与道路、河流等的距离。
通过利用三角形全等测距离,我们可以准确测算出各个位置之间的距离。
3.导航系统导航系统需要准确测量车辆或行人与目标地点之间的距离。
通过利用三角形全等测距离,我们可以在导航系统中引入三角测量的原理,从而提供准确的距离信息。
三角形全等测距离的方法
嘿,大家知道吗,三角形全等可是个超厉害的工具呢,能用来测距离哦!
首先说说具体步骤吧。
咱得先找两个全等的三角形,这就像找一对双胞胎一样,得长得一模一样才行呢!然后呢,通过测量其中一个三角形的边长等信息,就可以知道另一个三角形对应的边长啦,这不就相当于知道了我们要测的距离嘛!但是要注意哦,找全等三角形的时候可得仔细了,不能有一点点偏差,不然测出来的距离可就不准啦!这就好比盖房子,基础没打好,房子可就不结实喽!
再来说说安全性和稳定性。
这种方法可安全啦,不会像有些危险的测量方法那样让人提心吊胆。
而且只要我们操作正确,结果那是相当稳定的呀,就像一座稳稳的大山一样可靠!
那它都有啥应用场景和优势呢?哇塞,那可多了去啦!比如在建筑工地上,工人们可以用它来测量一些不容易直接量的距离,多方便呀!还有在野外探险的时候,要是想知道两个地方的距离,用这个方法不就轻松搞定啦!它的优势就是简单易懂好操作呀,不需要太复杂的设备和技术,咱普通人也能轻松掌握呢!
我给大家举个实际案例哈。
有一次,一群小朋友在公园里玩捉迷藏,其中一个小朋友藏在了一个很难直接到达的地方,其他小朋友想知道有多远,这时候就有人想到了用三角形全等测距离的方法,嘿,还真就测出来了,大家都觉得好神奇呀!这不就展示了它的实际应用效果嘛,真的超有用的!
三角形全等测距离的方法就是这么厉害呀,能帮我们解决好多实际问题呢,大家都快用起来吧!。
精选2019-2020年鲁教版初中数学七年级上册[第一章三角形5 利用三角形全等测距离]知识点练习[含答案解析]十八第1题【单选题】下列选项中,不是依据三角形全等知识解决问题的是( )A、利用尺规作图,作一个角等于已知角B、工人师傅用角尺平分任意角C、利用卡钳测量内槽的宽D、用放大镜观察蚂蚁的触角【答案】:【解析】:第2题【单选题】一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是( )A、带其中的任意两块去都可以B、带1、2或2、3去就可以了C、带1、4或3、4去就可以了D、带1、4或2、4或3、4去均可【答案】:【解析】:第3题【填空题】把两根钢条AA、BB的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳),如图,若得AB=6厘米,则槽宽为______厘米.【答案】:【解析】:第4题【填空题】玻璃三角板摔成三块如图,若到玻璃店在配一块同样大小的三角板,最省事的方法带______.【答案】:【解析】:第5题【解答题】已知:Rt△A′BC′≌Rt△ABC,∠A′C′B=∠ACB=90°,∠A′BC′=∠ABC=60°,Rt△A′BC′可绕点B旋转,设旋转过程中直线CC′和AA′相交于点D.(1)如图1所示,当点C′在AB边上时,判断线段AD和线段A′D之间的数量关系,并证明你的结论;(2)将Rt△A′BC′由图1的位置旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)将Rt△A′BC′由图1的位置按顺时针方向旋转α角(0°≤α≤120°),当A、C′、A′三点在一条直线上时,请直接写出旋转角的度数.【答案】:【解析】:第6题【解答题】如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.【答案】:【解析】:第7题【综合题】如图,在平面直角坐标系中,四边形ABCD的边AD在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=﹣2x﹣10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t≥0).四边形ABCD的面积为______;设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;当t=2时,直线EF上有一动点,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.【答案】:【解析】:第8题【综合题】在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过点A作AD⊥BP于点D,交直线BC于点Q.如图1,当P在线段AC上时,求证:BP=AQ;如图2,当P在线段CA的延长线上时,(1)中的结论是否成立?______(填“成立”或“不成立”)在(2)的条件下,当∠DBA=______度时,存在AQ=2BD,说明理由.【答案】:【解析】:第9题【综合题】连接EA、EC.如图1,若点P在线段AB的延长线上,求证:EA=EC;若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.【答案】:【解析】:第10题【综合题】定义1:把四边形的某些边向两边延长,其他各边有不在延长同一旁的部分,这样的四边形叫做凹四边形(如图1).根据凹四边形的定义,下列四边形是凹四边形的是(填写序号)______;定义2:两组邻边分别相等的凹四边形叫做燕尾四边形(如图2).特别地,有三边相等的凹四边形不属于燕尾四边形.小洁根据学习平行四边形、菱形、矩形、正方形的经验,对燕尾四边形的性质进行了探究.下面是小洁的探究过程,请补充完整:通过观察、测量、折叠等操作活动,写出两条对燕尾四边形性质的猜想,并选取其中的一条猜想加以证明;如图,在燕尾四边形ABCD中,AB=AD=6,BC=DC=4,∠BCD=120°,求燕尾四边形ABCD的面积(直接写出结果).【答案】:【解析】:。
5 利用三角形全等测距离1.我国的纸伞工艺十分巧妙,如图,伞不论张开还是缩拢,△AED与△AFD始终保持全等,因此伞柄AP始终平分同一平面内两条伞骨所成的∠BAC,从而保证伞圈D能沿着伞柄滑动.△AED≌△AFD的理由是( C )(A)SAS (B)ASA (C)SSS (D)AAS2.如图所示,小明为了测量河的宽度,他先在河边的C点面向河对岸,压低帽檐,使目光恰好落在河对岸的A点,如图①,然后他姿态不变,转过一个角度,正好看见了他所在岸上的一块石头B点,如图②他测量了BC=30米,可得河宽AC=30米,此做法中用到三角形的全等的依据是( C )(A)SAS (B)AAS(C)ASA (D)以上均不正确3.如图,是工人师傅用同一种材料制成的金属框架,已知∠B=∠E,AB= DE,BF=EC,其中△ABC的周长为24 cm,CF=3 cm,则制成整个金属框架所需这种材料的总长度为( A )(A)45 cm (B)48 cm(C)51 cm (D)54 cm4.刘老师拿着一张三角形的硬纸板(△ABC)让各小组自制一个与它全等的三角形,第一小组测量了∠A的度数和AB,BC的长度;第二小组分别测量了三边的长度;第三小组测量了三个角的度数;第四小组测量了BC,AC的长度及∠C的度数,那么你认为第二、四小组能制作出符合要求的三角形.5.如图所示,工作人员要测量河中礁石A点离岸边B点的距离,采用如下的方法:顺着河岸的方向任取一条线段BC,利用测倾器作∠CBE= ∠CBA,∠BCF=∠BCA,BE,CF相交于点A′,可得△A′BC≌△ABC,所以A′B=AB,因此测量A′B的长就是A,B间的距离,则△A′BC≌△ABC的理由是ASA .6.杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下,如图,AB∥OH∥CD,相邻两平行线间的距离相等.AC,BD相交于O,OD⊥CD垂足为D.已知AB=20米.根据上述信息,标语CD的长度为20 米.7.如图,两根长度为12 m的绳子,一端系在旗杆上的同一位置A点,另一端分别固定在地面上的两个木桩B,C上(绳结处的误差忽略不计),现在只有一把卷尺,如何检验旗杆是否垂直于BC?请说明理由.解:用卷尺测量DB,DC的长,看它们是否相等,若DB=DC,则AD⊥BC. 理由:在△ADB和△ADC中,所以△ADB≌△ADC(SSS).所以∠ADB=∠ADC.又因为∠ADB+∠ADC=180°,所以∠ADB=∠ADC=90°,即AD⊥BC.8.如图,两棵大树AB和DC间相距13 m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他用测角仪测量两棵大树的顶点A 和D,所成的夹角正好为90°,且EA=ED.已知大树AB的高为5 m,小华行走的速度为1 m/s,小华走的时间是( B )(A)13 s (B)8 s (C)6 s (D)5 s9.如图,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的B 点处打开,墙壁厚是35 cm,B点与O点的铅直距离AB长是20 cm,工人师傅在旁边墙上与AO水平的线上截取OC=35 cm,画CD⊥OC,使CD=20 cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从B点处打出,这是什么道理呢?请你说出理由.解:因为OC=35 cm,墙壁厚OA=35 cm,所以OC=OA,因为墙体是垂直的,所以OA⊥AB,CD⊥OC,所以∠OAB=∠OCD=90°,在Rt△OAB和Rt△OCD中,所以Rt△OAB≌Rt△OCD(ASA),所以DC=AB,因为DC=20 cm,所以AB=20 cm,所以钻头正好从B点处打出.10.某校七年级学生到野外活动,为测量一池塘两端A,B的距离,甲、乙两位同学分别设计出如下两种方案:甲:如图①,先在平地取一个可直接到达A,B的点C,再连接AC,BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的长即为A,B 的距离.乙:如图②,过点B作BD⊥AB,再由点D观测,在AB的延长线上取一点C,使∠BDC=∠BDA,这时只要测出BC的长即为A,B的距离.(1)以上两位同学所设计的方案,可行的有 ;(2)请你选择一可行的方案,说说它可行的理由.解:(1)两位同学所设计的方案,可行的有甲、乙.(2)答案不唯一.选甲:在△ABC和△DEC中,AC=DC,∠ACB=∠DCE,BC=EC,所以△ABC≌△DEC(SAS),所以AB=DE.选乙:在△ABD和△CBD中,因为∠ABD=∠CBD,BD=BD,∠BDA=∠BDC,所以△ABD≌△CBD(ASA),所以AB=BC.11.(方法设计题)如图,小明和小月两家位于A,B两处隔河相望,要测得两家之间的距离,小明设计方案如下:①从点A出发沿河画一条射线AE;②在AE上截取AF=FE;③过E作EC∥AB,使得B,F,C点在同一直线上;④则CE的长就是AB之间的距离.(1)请你说明小明的设计原理;(2)如果不借助测量仪,小明的设计中哪一步难以实现;(3)你能设计出其他的方案吗?解:(1)因为EC∥AB,所以∠A=∠E.因为AF=FE,∠BFA=∠EFC,所以△BAF≌△CEF(ASA),所以小明运用了全等三角形(角边角)原理.(2)如果不借助测量仪,小明无法使得EC∥AB.(3)还可以这样设计:①从点A出发沿河画一条射线AE;②在AE上截取AF=5FE;③过E作EC∥AB,使得B,F,C点在同一直线上;④则CE的5倍的长就是AB之间的距离.。
利用三角形全等测距离教学目标:知识与技能:能利用三角形的全等解决实际问题。
过程与方法:通过让学生体会教科书中提供的情境,明白战士的具体做法,并尝试思考其中的道理,体会数学与实际生活的联系。
情感与态度: 通过生动、有趣、现实的例子激发学生的兴趣,引发他们去思考,并能在利用三角形全等解决实际问题的过程中进行有条理的思考和表达。
教学重点:能利用三角形的全等解决实际问题.教学难点:能在解决问题的过程中进行有条理的思考和表达.一、 目标导学① 复习全等三角形的性质及判定条件② 在下列各图中,以最快的速度画出一个三角形,使它与△ABC 全等,比比看谁快!二、自主探学引入一位经历过战争的老人讲述的一个故事,(图片显示);在一次战役中,为了炸毁与我军阵地隔河相望的敌军碉堡,需要测出我军阵地到敌军碉堡的距离。
由于没有任何测量工具,我军战士为此绞尽脑汁,这时一位聪明的战士想出了一个办法,为成功炸毁碉堡立了一功。
提出问题:你知道聪明的战士用的是什么方法吗?能解释其中的原理吗?B ACB A CA C B三、合作研学、展示赏学小明在上周末游览风景区时,看到了一个美的池塘 ,他想知道最远两点A 、B 之间的距离, 但是他没有船,不能直接去测。
手里只有一根绳子和一把尺子,他怎样才能测出A 、B 之间的距离呢?1. 写出这位叔叔的思路。
2.把你的设计方案在图上画出来。
要求:① 画出此种测量方法的图形。
② 标出此方法中需要的数据。
③ 展示各组方案,小组成员代表讲述画法和原理。
四、检测评学如图要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD=BC ,再定出BF 的垂线DE ,可以证明△EDC ≌△ABC ,得ED=AB ,因此,测得ED 的长就是AB 的长。
判定△EDC ≌△ABC 的理由是( )A 、SSSB 、ASAC 、AASD 、SAS五、小结师生互相交流利用全等三角形测量距离的合理性,在解决问题的过程中,采用了那些方案使不能直接测量的物体间的距离转化为可以测量的距离。
《利用全等三角形测距离》教学设计教学设计:利用全等三角形测距离一、教学目标:1.知识与技能目标:理解全等三角形的定义和性质,掌握利用全等三角形测距离的方法。
2.过程与方法目标:通过实际问题的解决,培养学生观察、分析和推理的能力。
3.情感态度与价值观目标:培养学生认真思考问题、合作探究和创新解决问题的学习态度。
二、教学内容:1.全等三角形的定义和性质。
2.利用全等三角形测距离的方法。
三、教学过程:步骤一:导入(15分钟)1.引出直角三角形的定义和勾股定理,复习相似三角形的知识。
2.引出全等三角形的定义,通过举例说明全等三角形的性质。
步骤二:讲解(20分钟)1.通过教师讲解和板书,复习全等三角形的判定条件。
2.理论说明如何利用全等三角形测距离:a.同样条件下的两个全等三角形的对应边长成比例。
b.利用等边三角形和等腰三角形的全等性质测距离。
步骤三:示范演练(30分钟)1.选择一个实际问题:从一个点到河边测量距离。
2.分组合作,通过测量方法和全等三角形的性质,推导出测量距离的方法。
a.学生观察问题,提出解决方案。
b.分析问题的关键点。
c.列出解决问题的步骤。
步骤四:小组探究(30分钟)1.将学生分成小组,提供不同的实际问题,要求利用全等三角形测量距离。
2.学生分析问题、解决问题过程中的关键点。
3.各小组交流分享解决问题的方法和答案。
步骤五:归纳总结(20分钟)1.小组汇报解决问题的方法和答案。
2.整理和归纳全等三角形测距离的方法。
3.分享优秀解决方法和解答。
四、教学资源:1.教师准备:黑板、彩色粉笔、演示材料。
2.学生准备:教材、笔、纸。
五、教学评价与反思:1.教师通过听讲和课堂练习,评价学生对全等三角形和测距离的理解和掌握程度。
2.教师针对学生的表现进行及时的反馈和指导,帮助学生克服困难,提高学习效果。
3.教师通过课后作业的批改和讲评,总结学生在全等三角形测距离中的常见错误和不足,调整教学策略。
六、拓展延伸:1.引导学生思考如何利用全等三角形解决其他实际问题。