抛物线复习课(优秀的)
- 格式:ppt
- 大小:1.83 MB
- 文档页数:41
高一数学复习考点知识讲解课件§3.3抛物线3.3.1抛物线的标准方程考点知识1.理解抛物线的定义、标准方程及其推导过程.2.掌握抛物线的定义及其标准方程的应用.3.了解抛物线定义的实际应用.导语通过前面的学习可以发现,如果动点M到定点F的距离与M到定直线l(不过点F)的距离之比为k,当0<k<1时,点M的轨迹为椭圆;当k>1时,点M的轨迹为双曲线.一个自然的问题是:当k=1时,即动点M到定点F的距离与M到定直线l的距离相等时,点M的轨迹会是什么形状?一、抛物线的定义与标准方程问题1利用信息技术作图,如图所示,F是定点,l是不经过点F的定直线,H是直线l 上任意一点,过点H作MH⊥l,线段FH的垂直平分线m交MH于点M,拖动点H,点M随之运动,你能发现点M满足的几何条件吗?它的轨迹是什么形状?提示点M随着点H运动的过程中,始终有MF=MH,即点M与定点F的距离等于它到定直线l的距离,点M的轨迹形状与二次函数的图象相似.知识梳理 抛物线的定义平面内到一个定点F 和一条定直线l (F 不在l 上)的距离相等的点的轨迹叫作抛物线(parabola),定点F 叫作抛物线的焦点,定直线l 叫作抛物线的准线(directrix). 问题2比较椭圆、双曲线标准方程的建立过程,你认为如何建立坐标系,可能使所求抛物线的方程形式简单?提示过F 作直线FN ⊥直线l ,垂足为N ,以直线NF 为x 轴,线段NF 的垂直平分线为y 轴,建立如图所示的直角坐标系xOy ,设焦点F 到准线l 的距离为p ,则F ⎝ ⎛⎭⎪⎫p 2,0,又设P (x ,y )为抛物线上任意一点.过点P 作PH ⊥l ,垂足为H ,则PF =PH ,得⎝ ⎛⎭⎪⎫x -p 22+y 2=⎪⎪⎪⎪⎪⎪x +p 2, 将上式两边平方并化简,得y 2=2px (p >0).知识梳理图形标准方程焦点坐标准线方程y 2=2px (p >0)⎝ ⎛⎭⎪⎫p 2,0 x =-p2y 2=-2px (p >0)⎝ ⎛⎭⎪⎫-p 2,0 x =p2x 2=2py (p >0)⎝ ⎛⎭⎪⎫0,p 2 y =-p2x 2=-2py (p >0)⎝ ⎛⎭⎪⎫0,-p 2 y =p2注意点:(1)p 的几何意义是焦点到准线的距离.(2)标准方程的结构特征:顶点在坐标原点、焦点在坐标轴上.(3)抛物线的开口方向:抛物线的开口方向取决于一次项变量(x 或y )的取值范围. 例1分别求满足下列条件的抛物线的标准方程. (1)准线方程为2y +4=0; (2)过点(3,-4);(3)焦点为直线x +3y +15=0与坐标轴的交点.解(1)准线方程为2y +4=0,即y =-2,故抛物线的焦点在y 轴的正半轴上,设其方程为x 2=2py (p >0).又p2=2,∴2p =8,故所求抛物线的标准方程为x 2=8y . (2)∵点(3,-4)在第四象限,∴抛物线开口向右或向下,设抛物线的标准方程为y2=2px(p>0)或x2=-2p1y(p1>0).把点(3,-4)的坐标分别代入y2=2px和x2=-2p1y中,得(-4)2=2p·3,32=-2p1·(-4),即2p=163,2p1=94.∴所求抛物线的标准方程为y2=163x或x2=-94y.(3)令x=0,得y=-5;令y=0,得x=-15.∴抛物线的焦点为(0,-5)或(-15,0).∴所求抛物线的标准方程为x2=-20y或y2=-60x.反思感悟求抛物线的标准方程主要利用待定系数法,其步骤为(1)依据条件设出抛物线的标准方程的类型.(2)求参数p的值.(3)确定抛物线的标准方程.提醒:当焦点位置不确定时,应分类讨论,也可以设y2=ax或x2=ay(a≠0)的形式,以简化讨论过程.跟踪训练1(1)若抛物线y2=2px(p>0)的焦点坐标为(1,0),则p=________,准线方程为________.答案2x=-1解析因为抛物线的焦点坐标为(1,0),所以p 2=1,p =2,准线方程为x =-p2=-1. (2)焦点在y 轴上,焦点到准线的距离为5的抛物线的标准方程为____________. 答案x 2=10y 和x 2=-10y解析设方程为x 2=2my (m ≠0),由焦点到准线的距离为5,知|m |=5,m =±5,所以满足条件的抛物线有两条,它们的标准方程分别为x 2=10y 和x 2=-10y .二、抛物线定义的应用例2(1)已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,AF =54x 0,则x 0等于() A .1B .2C .4D .8 答案A解析∵14+x 0=54x 0, ∴x 0=1.(2)已知点P 是抛物线y 2=2x 上的一个动点,求点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值.解由抛物线的定义可知,抛物线上的点到准线的距离等于它到焦点的距离.由题图可知,点P ,点(0,2)和抛物线的焦点F ⎝ ⎛⎭⎪⎫12,0三点共线时距离之和最小,所以最小距离d =⎝ ⎛⎭⎪⎫0-122+(2-0)2=172. 延伸探究1.若将本例(2)中的点(0,2)改为点A (3,2),求P A +PF 的最小值. 解将x =3代入y 2=2x ,得y =±6.所以点A 在抛物线内部.设点P 为其上一点,点P 到准线(设为l )x =-12的距离为d , 则P A +PF =P A +d .由图可知,当P A ⊥l 时,P A +d 最小,最小值是72. 即P A +PF 的最小值是72.2.若将本例(2)中的点(0,2)换为直线l 1:3x -4y +72=0,求点P 到直线3x -4y +72=0的距离与P 到该抛物线的准线的距离之和的最小值. 解如图,作PQ 垂直于准线l 于点Q ,P A1+PQ=P A1+PF≥A1F min.A1F的最小值为点F到直线3x-4y+72=0的距离d=⎪⎪⎪⎪⎪⎪3×12+7232+(-4)2=1.即所求最小值为1.反思感悟抛物线定义的应用实现距离转化.根据抛物线的定义,抛物线上任意一点到焦点的距离等于它到准线的距离,因此,由抛物线定义可以实现点点距与点线距的相互转化,从而简化某些问题.跟踪训练2(1)已知抛物线y2=2px(p>0)的焦点F1,若点A(2,-4)在抛物线上,则点A 到焦点的距离为________.答案4解析把点A(2,-4)代入抛物线y2=2px,得16=4p,即p=4,从而抛物线的焦点为(2,0).故点A到焦点的距离为4.(2)设点A的坐标为(1,15),点P在抛物线y2=8x上移动,P到直线x=-1的距离为d,则d+P A的最小值为()A.1B.2C.3D.4答案C解析由题意知抛物线y 2=8x 的焦点为F (2,0),点P 到准线x =-2的距离为d +1,于是PF =d +1,所以d +P A =PF -1+P A 的最小值为AF -1=4-1=3.三、抛物线的实际应用例3(1)探照灯反光镜的纵断面是抛物线的一部分,光源在抛物线的焦点处,已知灯口直径是60cm ,灯深40cm ,则光源到反光镜顶点的距离是() A .11.25cmB .5.625cm C .20cmD .10cm 答案B解析如图,建立平面直角坐标系,设抛物线方程是y 2=2px (p >0).∵A (40,30)在抛物线上, ∴302=2p ×40, ∴p =454,∴光源到反光镜顶点的距离为p 2=4542=458=5.625(cm).(2)某抛物线形拱桥跨度是20米,拱桥高度是4米,在建桥时,每4米需用一根支柱支撑,则其中最长支柱的长为________米.答案3.84解析如图,建立平面直角坐标系,设抛物线方程为x2=-2py(p>0).依题意知,点P(10,-4)在抛物线上,∴100=-2p×(-4),2p=25.即抛物线方程为x2=-25y.∵每4米需用一根支柱支撑,∴支柱横坐标分别为-6,-2,2,6.由图知,AB是最长的支柱之一.设点B的坐标为(2,y B),解得y B=-425,点A的坐标为(2,-4),∴AB=y B-(-4)=-425+4=3.84,∴最长支柱的长为3.84米.反思感悟涉及拱桥、隧道的问题,通常需建立适当的平面直角坐标系,利用抛物线的标准方程进行求解.跟踪训练3河上有一抛物线形拱桥,当水面距拱桥顶5m时,水面宽为8m,一小船宽4m,高2m,载货后船露出水面上的部分高0.75m,则水面上涨到与抛物线形拱桥顶相距多少米时,小船开始不能通航?解如图所示,以拱桥的拱顶为原点,以过拱顶且平行于水面的直线为x轴,建立平面直角坐标系.设抛物线方程为x2=-2py(p>0),由题意可知点B(4,-5)在抛物线上,故p=85,得x2=-165y.当船面两侧和抛物线接触时,船不能通航,设此时船面宽为AA′,则A(2,y A),由22=-165y A,得y A=-5 4.又知船面露出水面上的部分高为0.75m,所以h=|y A|+0.75=2(m).所以水面上涨到与抛物线形拱桥顶相距2m时,小船开始不能通航.1.知识清单:(1)抛物线的定义.(2)抛物线的标准方程.(3)抛物线的实际应用.2.方法归纳:待定系数法、定义法、转化化归.3.常见误区:混淆抛物线的焦点位置和方程形式.1.准线与x轴垂直,且经过点(1,-2)的抛物线的标准方程是() A.y2=-2x B.y2=2xC.x2=2y D.x2=-2y答案B解析由题意可设抛物线的标准方程为y2=ax,则(-2)2=a,解得a=2,因此抛物线的标准方程为y2=2x,故选B.2.抛物线y=2x2的焦点到准线的距离为()A.18B.12C.14D.4答案C解析根据题意,抛物线的方程为y=2x2,其标准方程为x2=12y,其中p=14,则抛物线的焦点到准线的距离p=14.3.设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是________.答案6解析由抛物线的方程得p2=42=2,再根据抛物线的定义,可知所求距离为4+2=6.4.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.答案2 6解析建立如图所示的平面直角坐标系,设抛物线的方程为x2=-2py(p>0),则点(2,-2)在抛物线上,代入可得p=1,所以x2=-2y.当y=-3时,x2=6,所以水面宽为26米.课时对点练1.已知抛物线的焦点坐标是(-1,0),则抛物线的标准方程为()A.x2=4y B.x2=-4yC .y 2=4xD .y 2=-4x答案D解析∵抛物线的焦点坐标是(-1,0),∴抛物线是焦点在x 轴负半轴上的抛物线,且p 2=1,得p =2.∴抛物线的标准方程为y 2=-4x .2.已知抛物线的标准方程为y 2=ax ,则其焦点坐标为()A.⎝ ⎛⎭⎪⎫a 4,0B.⎝ ⎛⎭⎪⎫0,a 4 C.⎝ ⎛⎭⎪⎫-a 4,0D.⎝ ⎛⎭⎪⎫0,-a 4 答案A3.抛物线y =14x 2的准线方程是() A .y =-1B .y =-2C .x =-1D .x =-2答案A解析因为y =14x 2,所以x 2=4y ,所以抛物线的准线方程是y =-1.4.已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线焦点坐标为()A .(-1,0)B .(1,0)C .(0,-1)D .(0,1)答案B解析∵抛物线的准线方程为x=-p 2,∴-p2=-1,∴p2=1,故抛物线的焦点坐标为(1,0).5.(多选)经过点P(4,-2)的抛物线的标准方程可以为()A.y2=x B.x2=8yC.x2=-8y D.y2=-8x答案AC解析若抛物线的焦点在x轴上,设抛物线的方程为y2=2px(p>0),又因为抛物线经过点P(4,-2),所以(-2)2=2p×4,解得p=12,所以抛物线的方程为y2=x.若抛物线的焦点在y轴上,设抛物线的方程为x2=-2py(p>0),又因为抛物线经过点P(4,-2),所以42=-2p×(-2),解得p=4,所以抛物线的方程为x2=-8y.6.点M(5,3)到抛物线y=ax2准线的距离为6,那么抛物线的方程是()A .y =12x 2B .y =12x 2或y =-36x 2C .y =-36x 2D .y =112x 2或y =-136x 2答案D解析当a >0时,开口向上,准线方程为y =-14a ,则点M 到准线的距离为3+14a=6,所以a =112,所以抛物线方程为y =112x 2;当a <0时,开口向下,准线方程为y =-14a ,点M 到准线的距离为|3+14a |=6,所以a =-136或112(舍去),所以抛物线方程为y =-136x 2.综上,抛物线方程为y =112x 2或y =-136x 2. 7.已知抛物线的准线过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点,而且与x 轴垂直.又抛物线与此双曲线交于点⎝ ⎛⎭⎪⎫32,6,则抛物线方程为________________,双曲线方程为________.答案y 2=4x 4x 2-43y 2=1解析因为交点在第一象限,其准线垂直于x 轴,所以可设抛物线方程为y 2=2px (p >0),将点⎝ ⎛⎭⎪⎫32,6代入方程得p =2,所以抛物线方程为y 2=4x ,准线方程为x =-1,由此知道双曲线方程中c =1,焦点为(-1,0),(1,0),点⎝ ⎛⎭⎪⎫32,6到两焦点距离之差2a =1,所以双曲线的标准方程x214-y234=1.8.在抛物线y2=-12x上,且与抛物线的焦点的距离等于9的点的坐标是________.答案(-6,62),(-6,-62)解析由方程y2=-12x,知抛物线的焦点为F(-3,0),准线为l:x=3.设所求点为P(x,y),则由抛物线的定义知PF=3-x,又PF=9,∴3-x=9,x=-6,代入y2=-12x,得y=±6 2.∴所求点的坐标为(-6,62),(-6,-62).9.已知抛物线C:x2=2py(p>0)上两点A,B且AB⊥y轴,OA⊥OB,△AOB的面积为16,求抛物线C的方程.解不妨设点A在第一象限且A(m,n),则B(-m,n),可得m2=2pn,AB⊥y轴,且OA⊥OB,即△AOB为等腰直角三角形,则OA的斜率为1,即m=n,由△AOB的面积为16,可得12·2m·n=16,解得m=n=4,p=2,所以抛物线C 的方程为x 2=4y .10.抛物线y 2=-2px (p >0)上有一点M 的横坐标为-9,它到焦点的距离为10,求此抛物线方程和M 点的坐标.解设焦点为F ⎝ ⎛⎭⎪⎫-p 2,0, M 点到准线的距离为d ,则d =MF =10,即9+p 2=10,∴p =2,∴抛物线方程为y 2=-4x .将M (-9,y )代入抛物线的方程,得y =±6.∴M 点坐标为(-9,6)或(-9,-6).11.为响应国家“节能减排,开发清洁能源”的号召,小华制作了一个太阳灶,如图所示.集光板由抛物面(抛物线绕对称轴旋转得到)形的反光镜构成,已知镜口圆的直径为2m ,镜深0.25m ,为达到最佳吸收太阳光的效果,容器灶圈应距离集光板顶点()A .0.5mB .1mC .1.5mD .2m答案B解析若使吸收太阳光的效果最好,容器灶圈应在抛物面对应轴截面的抛物线的焦点处, 如图,画出抛物面的轴截面,并建立坐标系,设抛物线方程为x 2=2py (p >0),集光板端点A (1,0.25) ,代入抛物线方程可得2×0.25p =1,解得p =2,所以抛物线方程为x 2=4y ,故焦点坐标是F (0,1).所以容器灶圈应距离集光板顶点1m.12.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP→=4FQ →,则QF 等于() A.72B.52C .3D .2答案C解析过点Q 作QQ ′⊥l 于点Q ′,如图.∵FP→=4FQ →, ∴PQ ∶PF =3∶4,又焦点F 到准线l 的距离为4,∴QF =QQ ′=3.13.设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,MF =5,若以MF 为直径的圆过点(0,2),则C 的标准方程为()A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x答案C解析由题意知,F ⎝ ⎛⎭⎪⎫p 2,0,抛物线的准线方程为x =-p 2,则由抛物线的定义知,x M =5-p 2,设以MF 为直径的圆的圆心为⎝ ⎛⎭⎪⎫52,y M 2,所以圆的方程为⎝ ⎛⎭⎪⎫x -522+⎝ ⎛⎭⎪⎫y -y M 22=254,又因为圆过点(0,2),所以y M =4,又因为点M 在C 上,所以16=2p ⎝ ⎛⎭⎪⎫5-p 2,解得p =2或p =8,所以抛物线C 的标准方程为y 2=4x 或y 2=16x ,故选C.14.对标准形式的抛物线,给出下列条件:①焦点在y 轴上;②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④由原点向过焦点的某直线作垂线,垂足坐标为(2,1).其中满足抛物线方程为y 2=10x 的是________.(要求填写适合条件的序号) 答案②④解析抛物线y 2=10x 的焦点在x 轴上,②满足,①不满足;设M (1,y 0)是y 2=10x 上一点,则MF =1+p 2=1+52=72≠6,所以③不满足; 由于抛物线y 2=10x 的焦点为⎝ ⎛⎭⎪⎫52,0, 设过该焦点的直线的斜率存在,方程为y =k ⎝ ⎛⎭⎪⎫x -52,若由原点向该直线作垂线,垂足为(2,1)时,则k =-2,此时存在,所以④满足.15.已知抛物线y =18x 2与双曲线y 2a 2-x 2=1(a >0)有共同的焦点F ,O 为坐标原点,P 在x轴上方且在双曲线上,则OP →·FP→的最小值为________. 答案3-2 3解析抛物线y =18x 2,即x 2=8y 的焦点为F (0,2).所以a 2=22-12=3,故双曲线的方程为y 23-x 2=1.设P (x ,y ),因为点P 在x 轴上方,故由双曲线的性质可得y ≥3,OP →=(x ,y ), FP →=(x ,y -2), OP →·FP →=x 2+y (y -2)=x 2+y 2-2y=y 23+y 2-2y -1=43y 2-2y -1=43⎝ ⎛⎭⎪⎫y 2-32y -1 =43⎝ ⎛⎭⎪⎫y -342-74. 因为y =34<3,故函数t =43⎝ ⎛⎭⎪⎫y -342-74在[3,+∞)上单调递增,当y =3时,取得最小值,最小值为43×(3)2-2×3-1=3-2 3.所以OP →·FP→的最小值为3-2 3. 16.一辆卡车高3m ,宽1.6m ,欲通过断面为抛物线形的隧道,如图所示,已知拱口宽AB 恰好是拱高OD 的4倍.若拱口宽为a m ,求能使卡车通过的a 的最小整数值.解以拱顶O 为原点,拱高OD 所在直线为y 轴,建立平面直角坐标系,如图所示.设抛物线方程为x 2=-2py (p >0).∵AB 是OD 的4倍,∴点B 的坐标为⎝ ⎛⎭⎪⎫a 2,-a 4. 由点B 在抛物线上,得⎝ ⎛⎭⎪⎫a 22=-2p ·⎝ ⎛⎭⎪⎫-a 4, ∴p =a 2.∴抛物线方程为x 2=-ay .设点E (0.8,y 0)为抛物线上一点,代入方程x 2=-ay ,得0.82=-ay 0,∴y 0=-0.64a ,∴点E 到拱底AB 的距离h =a 4-|y 0|=a 4-0.64a ,令h >3,则a 4-0.64a >3,解得a >6+22415或a <6-22415(舍去).∴a 的最小整数值为13.。
第六节 抛物线(一)一、抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的.轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线概念理解(1)定义的实质可以归纳为“一动三定”:一个动点M;一个定点F(焦点);一条定直线l(准线);一个定值(点M到点F的距离与它到定直线l的距离之比等于1).(2)定点F∉定直线l,否则动点M的轨迹不是抛物线,而是过点F且垂直于直线l的一条直线,如到点F(1,0)和到直线l:x+y-1=0的距离相等的点的轨迹方程是x-y-1=0,其轨迹是一条直线.二、抛物线的标准方程及其简单几何性质1.方程及其性质的理解(1)p 的几何意义:表示定点F 到定直线l 的距离,即焦点到准线的距离,p 值的大小(p>0),决定抛物线开口的大小,p 前面的符号决定抛物线开口的方向.(2)抛物线标准方程的特征与其他坐标系中位置之间关系:抛物线的标准方程只含有两项,分别是二次项和一次项,并位于等号两边.抛物线标准方程中一次项中变量的名称与抛物线对称轴名称相同,一次项系数的正负与对称轴所在坐标轴方向正负一致,简单记为“一次定轴,系数定向”.如x 2=-3y,因一次项是-3y,所以对称轴是y 轴,因-3<0,所以该抛物线开口方向向下,即与y 轴负方向一致.抛物线焦点位于对称轴上,焦点纵横坐标中,不为零的坐标等于一次项系数的14. 2.与抛物线标准方程及几何性质相关结论(1)以y 2=2px 为例,抛物线上一点到焦点的距离为|PF|=2p +x 0或|PF|=2p -x 0(x 0为点P 横坐标),结合抛物线在坐标系中位置进行记忆,也即“右加左减”.(2)以y 2=2px 为例,焦点弦AB 的性质有:(其中A(x 1,y 1),B(x 2,y 2) ,F 为焦点,θ为直线AB 倾斜角) ①x 1x 2=24p ,y 1·y 2=-p 2;②1AF+1BF=2p ;③S △AOB =22sin p θ;④|AB|=x 1+x 2+p=22sin pθ;⑤以AB 为直径的圆与准线相切.1.过点A(4,-2)的抛物线的标准方程为( A ) (A)y 2=x 或x 2=-8y (B)y 2=x 或y 2=8x (C)y 2=-8x (D)x 2=-8y解析:因为A点在第四象限,故设抛物线的标准方程为y2=2px(p>0)或x2=-2my(m>0),将A点代入得2p=1或2m=8,所求抛物线方程为y2=x或x2=-8y.2.已知抛物线C与双曲线x2-y2=1有相同的焦点,且顶点在原点,则抛物线C的方程是( D )(A)y2=±(B)y2=±2x(C)y2=±4x (D)y2=±解析:由已知可知双曲线的焦点为设抛物线方程为y2=±2px(p>0),则2p=所以所以抛物线方程为y2=±故选D.3.已知点A是抛物线C:x2=2py(p>0)上一点,O为坐标原点.若A,B是以点M(0,10)为圆心,OA的长为半径的圆与抛物线C的两个公共点,且△ABO为等边三角形,则p的值是( C )(A)52(B)53(C)56(D)59解析: 如图,因为|MA|=|OA|,所以点A在线段OM的垂直平分线上.又因为M(0,10),所以可设A(x,5).由tan 30°=5x,得将,5)代入方程x2=2py,得p=56.4.若抛物线的焦点在直线x-2y-4=0上,则抛物线的标准方程是.解析:由x=0得y=-2,由y=0得x=4,即(0,-2)或(4,0)为抛物线的焦点.所以抛物线方程为y2=16x或x2=-8y.答案:y2=16x或x2=-8y5.过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点.若|AF|=3,则|BF|= .解析:由题意知,抛物线的焦点F的坐标为(1,0),又|AF|=3,由抛物线定义知,点A到准线x=-1的距离为3,所以点A的横坐标为2.将x=2代入y2=4x得y2=8,由图知点A的纵坐标所以所以直线AF的方程为由21),4,y x y x ⎧=-⎪⎨=⎪⎩解得1,2x y ⎧=⎪⎨⎪=⎩或x y ⎧=⎪⎨=⎪⎩由图知,点B 的坐标为(12所以|BF|=12-(-1)=32.答案:32考点一 抛物线的定义及应用【例1】 设P 是抛物线y 2=4x 上的一个动点.(1)求点P 到点A(-1,1)的距离与点P 到直线x=-1的距离之和的最小值;(2)若B(3,2),求|PB|+|PF|的最小值.解:(1)如图,易知抛物线的焦点为F(1,0),准线是x=-1.由抛物线的定义知:点P 到直线x=-1的距离等于点P 到焦点F 的距离. 于是,问题转化为:在曲线上求一点P,使点P 到点A(-1,1)的距离与点P 到F(1,0)的距离之和最小.显然,连接AF 交抛物线于点P, 则所求的最小值为|AF|,解:(2)如图,过点B作BQ垂直准线于Q,交抛物线于点P1,则|P1Q|=|P1F|.则有|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4.即|PB|+|PF|的最小值为4.(1)由抛物线定义,实现抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P(x,y)到焦点F的距离|PF|=|x|+2p或|PF|=|y|+2p.1.已知抛物线C:y2=4x的焦点为F,准线为l,点A∈l,线段AF交抛物线C于点B,若FA=3FB,则|AF|等于( B )(A)3 (B)4 (C)6 (D)7解析: 由已知B为AF的三等分点,作BH⊥l于H,如图,则|BH|=23|FK|=43,所以|BF|=|BH|=43,所以|AF|=3|BF|=4,故选B.2.已知点P是抛物线y2=4x上的动点,点P在y轴上的射影是M,点A 的坐标是(4,a),则当|a|>4时,|PA|+|PM|的最小值是.解析:将x=4代入抛物线的方程y2=4x,得y=±4.又|a|>4,所以A在抛物线的外部.由题意知F(1,0),设抛物线上点P到准线l:x=-1的距离为|PN|,由定义知,|PA|+|PM|=|PA|+|PN|-1=|PA|+|PF|-1.画出简图(图略),易知当A,P,F三点共线时,|PA|+|PF|取得最小值,此时|PA|+|PM|也最小,最小值为答案考点二抛物线的标准方程【例2】 (1)设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则该抛物线的方程为( )(A)y2=±4x (B)y2=±8x(C)y2=4x (D)y2=8x(2)抛物线C:y2=2px(p>0)的焦点为F,点O是坐标原点,过点O,F的圆与抛物线C的准线相切,且该圆的面积为36π,则抛物线的方程为;(3)已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的方程为.解析:(1)抛物线y 2=ax(a ≠0)的焦点F 的坐标为 (4a ,0),则直线l 的方程为y=2(x-4a ),它与y 轴的交点为A(0,-2a ),所以△OAF 的面积为12·4a ·2a=4, 解得a=±8,所以抛物线的方程为y 2=±8x.故选B. (2)设满足题意的圆的圆心为M(x M ,y M ). 根据题意可知圆心M 在抛物线上. 又因为圆的面积为36π,所以圆的半径为6,则|MF|=x M +2p =6,即x M =6-2p , 又由题意可知x M =4p ,所以4p =6-2p ,解得p=8.所以抛物线方程为y 2=16x. 解析:(3)设A(x 1,y 1),B(x 2,y 2), 则有21y =2px 1,22y =2px 2,两式相减得(y 1-y 2)(y 1+y 2)=2p(x 1-x 2), 又因为直线的斜率为1, 所以1212yy xx --=1,所以有y 1+y 2=2p,又线段AB 的中点的纵坐标为2, 即y 1+y 2=4,所以p=2, 所以抛物线的方程为y 2=4x.答案:(1)B (2)y2=16x (3)y2=4x求抛物线方程的基本方法(1)定义法:根据抛物线的定义得到p的值、焦点位置,然后根据抛物线方程的标准形式写出其方程.(2)待定系数法:焦点在x轴上的抛物线方程可以用y2=λx(λ≠0)表示,焦点在y轴上的抛物线方程可以用x2=λy(λ≠0)表示,根据已知得到关于λ的方程,求出λ.用“一次定轴,系数定向”确定抛物线的方程,然后用待定系数法求p 的值.在解决涉及焦点、顶点、准线等问题时,要注意利用几何图形的形象、直观的特点.焦点在直线3x-4y-12=0上的抛物线的标准方程为( C )(A)x2=16y或y2=16x (B)y2=16x或x2=12y(C)y2=16x或x2=-12y (D)x2=16y或y2=-12x解析:因为抛物线的焦点在坐标轴上,又在直线3x-4y-12=0上,所以令x=0得y=-3,令y=0,得x=4,所以焦点为(0,-3)或(4,0),所以抛物线方程为x2=-12y或y2=16x.考点三抛物线的焦点弦问题【例3】已知过抛物线y2=2px(p>0)的焦点,斜率为线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.(1)求该抛物线的方程;(2)O为坐标原点,C为抛物线上一点,若OC=OA+λOB,求λ的值.思路点拨:(1)利用焦点弦长公式求解.(2)由点C为抛物线上一点,可设出C点的坐标,利用OC=OA+λOB表示出点C的坐标,将点C的坐标代入抛物线方程求解.p),解:(1)直线AB的方程是与y2=2px联立,从而有4x2-5px+p2=0,p.所以x1+x2=54p+p=9,由抛物线定义得|AB|=x1+x2+p=54所以p=4,从而抛物线的方程为y2=8x.(2)由于p=4,4x2-5px+p2=0可化简为x2-5x+4=0,从而x1=1,x2=4,则y12从而设C(x3,y3),则OC=(x3,y3λ=(4λ又2y=8x3,即λ-1)]2=8(4λ+1),3即(2λ-1)2=4λ+1,解得λ=0或λ=2.解决与抛物线y 2=2px(p>0)的焦点弦有关的问题,常用到x 1x 2=24p ,y 1y 2=-p 2,|AB|=x 1+x 2+p=22sin p(θ为直线AB 的倾斜角),1AF+1BF =2p这些结论,就会带来意想不到的效果.1. 已知抛物线y 2=4x,圆F:(x-1)2+y 2=1,过点F 作直线l,自上而下顺次与上述两曲线交于点A,B,C,D(如图所示),则|AB|·|CD|的值正确的是( A )(A)等于1 (B)最小值是1 (C)等于4 (D)最大值是4解析:设直线l:x=ty+1,代入抛物线方程, 得y 2-4ty-4=0. 设A(x 1,y 1),D(x 2,y 2), 根据抛物线定义|AF|=x 1+1, |DF|=x 2+1,故|AB|=x 1,|CD|=x 2, 所以|AB|·|CD|=x 1x 2=214y ·224y =212()16y y ,而y 1y 2=-4,代入上式,得|AB|·|CD|=1. 故选A.2.已知抛物线y 2=4x 的焦点为F,过焦点的直线与抛物线交于A,B 两点,则当|AF|+4|BF|取得最小值时,直线AB 的倾斜角的正弦值为 .解析:由题意知F(1,0),当直线的斜率存在时, 设直线方程为y=k(x-1)(k ≠0), 由2(1),4,y k x y x =-⎧⎨=⎩消去y,得k 2x 2-(2k 2+4)x+k 2=0.设A(x 1,y 1),B(x 2,y 2),x 1>0,x 2>0, 则x 1+x 2=2224k k +, ①x 1x 2=1, ②1AF+1BF =111x ++211x +=12121221x x x x x x +++++=22222422411k k k k +++++=1. 当直线的斜率不存在时,易知|AF|=|BF|=2, 故1AF+1BF=1.设|AF|=a,|BF|=b,则1a +1b=1, 所以|AF|+4|BF|=a+4b=(1a +1b )(a+4b)=5+4b a+a b ≥9,当且仅当a=2b 时取等号,故a+4b 的最小值为9,此时直线的斜率存在,且x 1+1=2(x 2+1), ③ 联立①②③得,x 1=2,x 2=12,k=±故直线AB答案考点四 易错辨析【例4】 设抛物线y 2=mx 的准线与直线x=1的距离为3,求抛物线方程.解:①当m>0时,准线方程为x=-4m , 因为准线与直线x=1的距离为3, 所以准线方程为x=-2即-4m =-2,m=8, 所以抛物线方程为y 2=8x. ②当m<0时,准线方程为x=-4m =4, 所以m=-16,此时抛物线方程为y 2=-16x,综上,所求抛物线方程为y 2=8x 或y 2=-16x.只考虑m>0的情况,忽视m<0属于知识错误,对y 2=2px(p>0)中p 几何意义的误解.抛物线C:y 2=2px(p>0)的焦点为F,A 是抛物线上一点,若A 到F 的距离是A 到y 轴距离的两倍,且△OAF 的面积为1,O 为坐标原点,则p 的值为( B )(A)1 (B)2 (C)3 (D)4 解析:不妨设A(x 0,y 0)在第一象限,由题意可知0002,211,22OAF p x x p S y ∆⎧+=⎪⎪⎨⎪=⋅⋅=⎪⎩即00,24,px y p⎧=⎪⎪⎨⎪=⎪⎩所以A(2p ,4p ),又因为点A 在抛物线y 2=2px 上,所以216p =2p ×2p ,即p 4=16, 又因为p>0,所以p=2, 故选B.抛物线的综合应用【例题】 已知抛物线C:y 2=2px(p>0)的焦点为F,直线y=4与y 轴的交点为P,与C 的交点为Q,且|QF|=54|PQ|. (1)求C 的方程;(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线 l ′与C 相交于M,N 两点,且A,M,B,N 四点在同一圆上,求l 的方程. 解:(1)设Q(x 0,4),代入y 2=2px 得x 0=8p. 所以|PQ|=8p ,|QF|=2p +x 0=2p +8p . 由题设得2p +8p =54×8p, 解得p=-2(舍去)或p=2. 所以C 的方程为y 2=4x.解:(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x=my+1(m ≠0). 代入y 2=4x 得y 2-4my-4=0. 设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=4m,y 1y 2=-4. 故AB 的中点为D(2m 2+1,2m),1-y 2|=4(m2+1).又l ′的斜率为-m,所以l ′的方程为x=-1m y+2m 2+3.将上式代入y 2=4x,并整理得y 2+4m y-4(2m 2+3)=0.设M(x 3,y 3),N(x 4,y 4),则y 3+y 4=-4m ,y 3y 4=-4(2m 2+3). 故MN 的中点为E(22m +2m 2+3,-2m ),|y 3-y 4,由于MN 垂直平分AB,故A,M,B,N 四点在同一圆上等价于|AE|=|BE|=12|MN|, 从而14|AB|2+|DE|2=14|MN|2, 即4(m 2+1)2+(2m+2m )2+(22m +2)2=22244(1)(21)m m m ++. 化简得m 2-1=0, 解得m=1或m=-1.所求直线l 的方程为x-y-1=0或x+y-1=0.规范要求:利用待定系数法求抛物线的标准方程时,既要定位(确定抛物线开口方向),又要定量(确定参数p 的值). (1)中,需要计算p 值.(2)中,A,M,B,N 四点共圆,等价于|AE|=|BE|=12|MN|. 温馨提示: (1)问解答中,需要注意p>0的条件,即应舍去p=-2. (2)问解答中,要注意分析直线的斜率不存在的情形.【规范训练】 (2017·浙江卷) 如图,已知抛物线x 2=y,点A(-12,14),B(32,94),抛物线上的点P(x,y)(-12<x<32),过点B 作直线AP的垂线,垂足为Q.(1)求直线AP 斜率的取值范围; (2)求|PA|·|PQ|的最大值. 解:(1)设直线AP 的斜率为k, k=21412x x -+=x-12, 因为-12<x<32, 所以直线AP 斜率的取值范围是(-1,1). 解:(2)联立直线AP 与BQ 的方程110,24930,42kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩解得点Q 的横坐标是x Q =22432(1)k k k -+++.因为12(x Q2,所以|PA|·|PQ|=-(k-1)(k+1)3. 令f(k)= -(k-1)(k+1)3, 因为f ′(k)=-(4k-2)(k+1)2,所以f(k)在区间(1,12)单调递增,在(12,1)上单调递减,因此当k=12时,|PA|·|PQ| 取得最大值2716.类型一 抛物线的定义及应用1.已知直线l 1:4x-3y+6=0和直线l 2:x=-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( A ) (A)2 (B)3 (C)115(D)3716解析: 如图所示,过点P 作PM ⊥l 1,PN ⊥l 2,过抛物线焦点F(1,0)作FQ ⊥l 1于Q.由抛物线定义知|PN|=|PF|.显然点F,P,Q 三点共线时,动点P 到直线l 1和直线l 2的距离之和最小,最小值为465+=2,故选A.2.已知抛物线关于x 轴对称,它的顶点为坐标原点O,并且经过点M(2,y 0).若点M 到该抛物线焦点的距离为3,则|OM|等于( B )(C)4 解析:因为抛物线关于x 轴对称,且M(2,y 0)在抛物线上, 所以抛物线的标准方程可设为y 2=2px(p>0),其准线方程为x=-2p .由抛物线的定义, M 到准线x=-2p 的距离为3,即2+2p =3,故p=2,所以抛物线的标准方程为y 2=4x. 因为M(2,y 0)在抛物线上,所以2y =8.由两点间的距离公式知.故选B.3.若点P 到点F(0,2)的距离比它到直线y+4=0的距离小2,则P 的轨迹方程为( C ) (A)y 2=8x (B)y 2=-8x (C)x 2=8y (D)x 2=-8y解析:由题意,P 到F(0,2)的距离与它到直线y+2=0的距离相等,故P 的轨迹是以F 为焦点,y=-2为准线的抛物线,所以P 的轨迹方程为x 2=8y.4.过抛物线y 2=2x 的焦点作一条直线与抛物线交于A,B 两点,它们的横坐标之和等于2,则这样的直线( B ) (A)有且只有一条 (B)有且只有两条 (C)有且只有三条 (D)有且只有四条 解析:设该抛物线焦点为F,A(x A ,y A ),B(x B ,y B ),则|AB|=|AF|+|FB|=x A +2p +x B +2p=x A +x B +1=3>2p=2.所以符合条件的直线有且只有两条.故选B.5. 如图,设抛物线y 2=4x 的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( A )(A)11BF AF --(B)2211BF AF --(C)11BF AF ++ (D)2211BF AF ++解析: 由题可知抛物线的准线方程为x=-1.如图所示,过A 作AA 1⊥y 轴于点A 1,过B 作BB 1⊥y 轴于点B 1, 则BCF ACFSS∆∆=1sin 21sin 2CF BC FCB CF AC FCB ∠∠=BC AC=11BB AA =11BF AF --.类型二 抛物线的标准方程6.若抛物线y 2=2px(p>0)上一点P(2,y 0)到其准线的距离为4,则抛物线的标准方程为( C ) (A)y 2=4x (B)y 2=6x (C)y 2=8x (D)y 2=10x解析:因抛物线y 2=2px(p>0),其准线方程为x=-2p,点P(2,y 0)到准线的距离为4,所以︱-2p -2︱=4,得p=4.故抛物线的标准方程为y 2=8x.7.设抛物线C:y 2=2px(p>0)的焦点为F,点M 在C 上,|MF|=5.若以MF 为直径的圆过点(0,2),则抛物线C 的方程为( C ) (A)y 2=4x 或y 2=8x (B)y 2=2x 或y 2=8x(C)y 2=4x 或y 2=16x (D)y 2=2x 或y 2=16x解析:由已知得抛物线的焦点F(2p,0),设点A(0,2),M(x 0,y 0),则AF =(2p ,-2),AM =(22y p,y 0-2).由已知得,AF ·AM =0, 即20y -8y 0+16=0,因而y 0=4,M(8p,4). 由|MF|=5得,8p +2p =5, 又p>0,解得p=2或p=8,所以抛物线C 的方程为y 2=4x 或y 2=16x. 类型三 抛物线的焦点弦问题8.过抛物线y 2=2px(p>0)的焦点作直线交抛物线于P(x 1,y 1),Q(x 2,y 2)两点,若x 1+x 2=2,|PQ|=4,则抛物线的方程是( A ) (A)y 2=4x (B)y 2=8x (C)y 2=2x (D)y 2=6x解析:由抛物线定义知|PQ|=x 1+x 2+p=4, 又x 1+x 2=2, 所以p=2,所以抛物线方程为y 2=4x. 故选A.9.已知抛物线y 2=4x 的焦点为F,过焦点F 的直线交该抛物线于A,B 两点,O 为坐标原点,若|AB|=6,则△AOB 的面积为( A )(D)4解析:因为抛物线y 2=4x 的焦点F 的坐标为(1,0),当直线AB 垂直于x 轴时,|AB|=4,不满足题意,所以设直线AB 的方程为y=k(x-1),与y 2=4x 联立,消去x 得ky 2-4y-4k=0.设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=4k,y 1y 2=-4,所以|y 1-y 2因为1-y 2|=6,所以4(1+21k)=6,解得k=所以|y 1-y 2所以△AOB 的面积为12×1×故选A.。