华东理工大学线性代数册答案届版
- 格式:docx
- 大小:50.80 KB
- 文档页数:10
【关键字】基础《2006线性代数》试卷A一、填空题(每小题4分,共20分)。
0.已知正交矩阵P使得,则1.设A为n阶方阵,是的个特征根,则det( )=2.设A是矩阵,是维列向量,则方程组有无数多个解的充分必要条件是:rank(A)=rank(A,B)<n 3.若向量组α=(0,4,2),β=(2,3,1),γ=(t,2,3)的秩为2,则t=-84.,则的全部根为:1、2、-3二、选择题(每小题4分,共20分)1.行列式的值为( c )。
DA,1,B,-1C,D,2.对矩阵施行一次行变换相当于( A )。
A,左乘一个m阶初等矩阵,B,右乘一个m阶初等矩阵C,左乘一个n阶初等矩阵,D,右乘一个n阶初等矩阵3.若A为m×n 矩阵,,。
则( C )。
DA,是维向量空间,B,是维向量空间C,是m-r维向量空间,D,是n-r维向量空间4.若n阶方阵A满足,=0,则以下命题哪一个成立(A )。
DA,,B,C,,D,5.若A是n阶正交矩阵,则以下命题那一个不成立( D )。
A,矩阵AT为正交矩阵,B,矩阵为正交矩阵C,矩阵A的行列式是1,D,矩阵A的特征根是1三、解下列各题(每小题6分,共30分)1.若A为3阶正交矩阵,为A的伴随矩阵,求det ()2.计算行列式。
(a+3)(a-1)^33.设,求矩阵B。
4、求向量组的一个最大无关组。
5、求向量=(1,2,1)在基下的坐标。
四、(12分)求方程组的通解(用根底解系与特解表示)。
六、证明题(6分)设,是线性方程组对应的齐次线性方程组一个根底解系,是线性方程组的一个解,求证线性无关。
《2006年线性代数A》参考答案一填空题(1)2-22006(2)λ12···λn2(3)r(A)=r(A,B)< n(4) t=-8 (5) 1,2,-3二 选择题(1) D (2) A (3) D (4) D (5) D 三 解答题(1) A·A* =|A|·E, |A|·|A*|=|A3| |A*|=|A|2=|A·A’|=|A·A -1|=1 (2)(3)由AB=A-B ,有, (4) 而故{,,}为一个极大无关组(5)6、求向量ω=(1,2,1)在基)1,1,1(),1,1,0(),1,1,1(-===γβα下的坐标。
《线性代数》课后习题答案第一章行列式习题1.11. 证明:(1)首先证明)3(Q 是数域。
因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。
任给两个复数)3(3,32211Q b a b a ∈++,我们有3)()3()3)(3(3)()()3()3(3)()()3()3(21212121221121212211212122 11b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。
因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以)3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221 121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。
如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。
又因为有理数的和、差、积、商仍为有理数,所以)3(33)(3)3()3)(3()3)(3(332222212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--=-+-+=++。
综上所述,我们有)3(Q 是数域。
(2)类似可证明)(p Q 是数域,这儿p 是一个素数。
(3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。
(反证法)如果)()(q Qp Q ?,则q b a p Q b a +=?∈?,,从而有q ab qb a p p 2)()(222++==。
由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。
所以有0=a 或0=b 。
华东理工大学线性代数 作业簿(第二册)学 院____________专 业____________班 级____________学 号____________姓 名____________任课教师____________1.4 矩阵的分块1.设002000030400100A ⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦,则1_____________________________________A -=. 解: 1211112001100041000210003A A A A A A ---⎡⎤⎢⎥⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥=⇒==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥-⎢⎥⎣⎦.2. 已知分块矩阵111221W W W W O ⎛⎫= ⎪⎝⎭,则TW =( ).(A) 112112W W W O ⎛⎫ ⎪⎝⎭; (B) 121121W O W W ⎛⎫ ⎪⎝⎭;(C) 111221TT TW W W O ⎛⎫⎪⎝⎭; (D) 112112T T T W W W O ⎛⎫⎪⎝⎭.解:D .3. (1) 设10a A a ⎡⎤=⎢⎥⎣⎦,求nA ;(2)设2100020000310003C ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,求n C . 解:(1) 10100aA aI a ⎡⎤⎡⎤==+⎢⎥⎢⎥⎣⎦⎣⎦,而 2010101,000000B B O ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦所以110()nn nni in inn nni a n a A C B aI a I n a B a ---=⎡⎤⋅==+⋅=⎢⎥⎣⎦∑, (2)将C 分块得:12C C C ⎡⎤=⎢⎥⎣⎦,其中122131,,0203C C ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦ 于是由(1)得11122200020003303n n n nn n n n n n CC C n --⎡⎤⋅⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⋅⎣⎦⎢⎥⎣⎦.4. 求满足2AX X I A -+=的矩阵X ,其中101020101A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦. 解:由原式,整理得))(()(2I A I A I A X I A +-=-=-,而⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-001010100I A 可逆,故由上式可得201030.102X A I ⎡⎤⎢⎥=+=⎢⎥⎢⎥⎣⎦5. 设n 阶矩阵A ,B 满足A B AB +=.(1) 证明A I -可逆,且AB BA =;(2) 若已知130210002B -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求矩阵A . 解:(1)由,AB B A =+移项得O B A AB =--,即I I B A AB =+--,亦即,))((I I B I A =--从而得到I A -可逆;且由上式可得I I A I B =--))((,展开得,O B A BA =--即B A BA +=,结合条件知BA AB =.(2)由(1)知1)(--=-I B I A ,即,)(1I I B A +-=-而,1000031021010*******)(11⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=---I B 故⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=20001310211A . 6. 设()ij A a =是一个m n ⨯矩阵,(1)计算,,i j i j e A Ae e Ae T T,其中i e 为m 阶单位矩阵的第i 列,j e 为n 阶单位矩阵的第j 列;(2)试证:对任一m 维列向量,0x x A A O T =⇔=;(3)试证:对任一m 维列向量x 和任一n 维列向量y ,0x A y A O T =⇔=. 解:(1)[]1212,,,,,,,,Ti i i in j j j mj i j ij e A a a a Ae a a a e Ae a TT⎡⎤===⎣⎦(2)“⇐”显然;“⇒” 由向量x 的任意性,取(1,2,...,i x e i m ==且i e 为m 阶单位矩阵的第i 列),则由(1)得[]12,,...,0i i i im e A a a a ==T ,即A 的第i 行为零向量,取遍1,2,...,i m = 知A 的每一行均为零向量,即O A =. (3) “⇐”显然;“⇒” 由x 与y 的任意性,取,i j x e y e ==i e n j m i ;,...2,1,,...2,1(==与j e 分别为n m ,阶单位阵的第j i ,列),则由(1)得0==T ij j i a Ae e ,即A 的每一个元素都为零,亦即O A =. 7.设n 阶矩阵[]ij A a =,n 维向量T [1,1,,1]=α,(1)计算A α; (2)若A 可逆,其每一行元素之和都等于常数c ,试证:1A -的每一行元素之和也都相等,且等于1c .解:(1)设i e 为n 阶单位矩阵的第i 列,则有T 12[1,1,,1]n e e e ==+++α又设i α为A 的第i 列,则有A α=112112121n k k n kk n n n nkk a a Ae Ae Ae a ===⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+++=+++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦∑∑∑ααα(2)由题设及(1)的结论可得:11A c A c-=⇒=αααα,即1A -的每一行元素之和都等于1c.1.5初等变换与初等矩阵1. 用初等行变换求下列矩阵的逆矩阵.(1)1234⎡⎤⎢⎥-⎣⎦;(2)1122401611-⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦. 解:(1)构造分块矩阵12103401⎡⎤⎢⎥-⎣⎦,并对其进行初等行变换2121()(3)1010121012101231340101031011010r r ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦21(2)4210101001311010r -⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,即得112421;343110--⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦ (2)11122102401213611418--⎡⎤⎡⎤⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦.2. 已知211123120204212015A B --⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,,且有XA X B =+,求X . 解:1()()XA X B X A I B X B A I -=+⇒-=⇒=-111100111100[]110010~021110211001031201111100100121111~010~010111222001132113001222A I I --⎡⎤⎡⎤⎢⎥⎢⎥-=--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎡⎤⎢⎥--⎡⎤⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦⎢⎥--⎣⎦1123121295()2041112860151324149X B A I ----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥∴=-=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦. 3.已知123001100456,010,001789100010A P Q ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则100101___________________________P AQ =.解: 132465798⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ 4. 设111213212223212223111213313233311132123313,a a a a a a A a a a B a a a a a a a a a a a a ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥+++⎣⎦⎣⎦, 12010100100,010001101P P ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,则有( ). (A ) 12APP B =;(B ) 21AP P B =;(C ) 12PP A B =;(D ) 21P PA B =. 解:C .5. 解矩阵方程:010100143100001201001010120X -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦. 解:X 左右的两个矩阵均为初等矩阵,故而可逆且其逆也是初等矩阵,于是有11010143100100201001001120010X ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦= 010143100100201001001120010-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦=210134102-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦.6. 已知1231021001010,001,20010101P P P ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,求1123()PP P -.解:1111123321110210010211()00101000.220100011010PP P P P P -----⎡⎤⎡⎤-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦7. 设矩阵A 可逆,且A~ijr B . 试证:(1)矩阵B 可逆;(2)求1AB -;(3)试证1A -交换i 、j 列后可得矩阵1B -.解:(1)依题意,有ij B R A =,其中ij R 为对应于初等变换ij r 的行初等矩阵,则由ij R 及A 均可逆知B 必可逆.(2)由(1),得11111()ij ij ij B R A A R A R -----===,故而11()ij ij AB A A R R --==.(3)由(1),得11ij B A R --=,而ij ij R C =,故11ij A C B --=,即11ijc A B --.。
第二章 行列式一、习题解答2.1(1)解:逆序数(4132)4τ= (2)解:(36195)4τ= (3)解:(3)(2)(21(1)...3)12n n n n τ---=+2.2解:根据行列式的定义,每个乘积均由来自不同行不同列的元素组成,当来自不同行不同列的元素的行标为自然排列时,其列标的逆序数决定了该乘积项的符号,根据观察,出现4x 的只有主对角线上的四个元素的相乘项11223344a a a a ,该项为(1234)(1)236x x x x x τ-⋅⋅⋅⋅=,故4x 的系数为6,而可以出现3x 的乘积项有两项,它们是1221334414223341,,a a a a a a a a 即分别为3)4231(3)1234(33)1(,331)1(x x x x x x x x -=⋅⋅⋅⋅--=⋅⋅⋅⋅-ττ两项相加,即知3x 的系数为6-。
2.3(1)解:将行列式的2,3,4列全加到第一列后,再提公因子,得原式=121314(1)(1)(1)3111111111113011101101003331(1)(1)(1)3310111010010311011100001r r r ----===⋅⋅-⋅-⋅-=--- (2)解:原式=5514000100200275(1)51(1)036036941011410115++⋅-=⋅⋅--=130352(1)10(01043)120410+-⋅⋅-=-⋅⋅-⋅=(3)解:原式=1213142112312311(1)359(1)(1)3293(1)32581752418252212215+++⋅-+-⋅-+⋅-=--=-----(4)解:原式=342312222222222222(1)22222222(1)(1)222222221234213243543243546543546576r r r -------=--------=14916149163579357905791122227911132222==(5)解:原式=12312312456133310025789333=⋅=⋅= 2.4(1)解:原式=2()12()2()12()1x y yx y yx y x y x yxx y x yx x y xyxy+++++=+++=12()02()10yx yx yx y xy x y x y xx yx+-+-=+⋅⋅----=22332()()2()x y x xy y x y ⎡⎤+--+=-+⎣⎦(2)解:原式=1411(1)0a b cb ac b a cb ac b a cc a a b b c c a a b b c b c ab c a+------=⋅------- =1()11ab c a b cbcc aa b b c c a b a b c a b bc a b c a c a -------==++ =21()0()()()()0bca b c a b b c a b c a b a c b c c b a c⎡⎤++--=++--+-⎣⎦--=3333a b c abc ++-(3)解:原式2143(1)(1)0011001111111100001111111111r r x x x xxyy y y y----==--= 22111111111100110000110011y x y x xy yx xy=--=--2.5(1)证:将左端行列式的底2,3列加到第一列,则第一列元素全为零,由行列式性质, 得证。
we 华东理工大学线性代数 作业簿(第一册)学 院____________专 业____________班 级____________学 号____________姓 名____________任课教师____________1.1 矩阵的概念1. 矩阵[]232ij A a i j ⨯⎡⎤==-=⎣⎦_____________________.解:101321A -⎡⎤=⎢⎥⎣⎦. 2.设1000100300520100230030040010041003A B C D ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,,,,其中对角阵为_________,三角阵有____________.解:对角阵为D ;三角阵有A ,C ,D .1.2矩阵的运算1. 已知31121123202311X O ---⎡⎤⎡⎤-+=⎢⎥⎢⎥-⎣⎦⎣⎦,求矩阵X . 解:依题意,由622211*************X ----⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦, 即得4113115333X ⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦.2. 如果矩阵m n A ⨯与t s B ⨯满足AB BA =,试求,,,m n t s 之间的关系. 解:m n t s ===.3. 填空:(1) 431712325701⎡⎤⎡⎤⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦__________; (2) []112323,,__________⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦; (3) []12123,__________⎡⎤⎢⎥-=⎢⎥⎢⎥⎣⎦; (4) 13121400121134131402__________⎡⎤⎢⎥-⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦⎢⎥-⎣⎦. 解: (1) 35649⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(2) 14;(3)122436-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦;(4) 6782056-⎡⎤⎢⎥--⎣⎦.4. 已知矩阵010001000A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,试求与A 可交换的所有矩阵. 解:由可交换矩阵的定义,知道所求矩阵必为3阶方阵,不妨设其为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=i hgf e dc baB ,于是有 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=i hg f ed c b aAB 000100010=000def g h i ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=h g e d b a i h gf e dc b a BA 000000100010, 由BA AB =,即得=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡00i h gf ed⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡h g e d b a 000, 由相应元素相等,则得,,,0f b i e a h g d ======故c b a a b a c b a B ,,(000⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=均为任意常数)为与A 可交换的所有矩阵.5. 计算下列各题:(1) []111213112321222323132333,,a a a x x x x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; 解:原式等于:222111222333122112133113233223()()()a x a x a x a a x x a a x x a a x x ++++++++(2) 13223122A ⎡⎤-⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,求2008A ; 解:记⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=21232321A ,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=212323212A , 31001A I -⎡⎤==-⎢⎥-⎣⎦,200836691=⨯+ 20082007131313222222313131222222⎡⎤⎡⎤⎡⎤---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥∴=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦66913223122I A ⎡⎤-⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎣⎦(). (3) 21121,,233A ⎡⎤⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,求9A . 解:89822132211112212122562123233333312,,,,A A ⎡⎤⎢⎥⎧⎫⎡⎤⎡⎤⎢⎥⎪⎪⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--==---⎨⎬⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎪⎪⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭⎢⎥⎢⎥⎣⎦.6. 利用等式176232073,3512570352732310,525701--⎡⎤⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦计算51763512-⎡⎤⎢⎥-⎣⎦. 解:51763512-⎡⎤⎢⎥-⎣⎦5232073570352-⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦3197126673852922-⎡⎤=⎢⎥-⎣⎦.7. 某公司为了技术革新,计划对职工实行分批脱产轮训,已知该公司现有2000人正在脱产轮训,而不脱产职工有8000人,若每年从不脱产职工中抽调30%的人脱产轮训,同时又有60%脱产轮训职工结业回到生产岗位,设职工总数不变,令0.70.68,0.30.42000A X ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦试用A 与X 通过矩阵运算表示一年后和两年后的职工状况,并据此计算届时不脱产职工与脱产职工各有多少人.解:一年后职工状况为:68003200AX ⎡⎤=⎢⎥⎣⎦不脱产职工6800人,轮训职工3200人.两年后职工状况为:26800668032003320A A X ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦不脱产职工6680人,轮训职工3320人.8. 设矩阵2142A ⎡⎤=⎢⎥--⎣⎦,3162B -⎡⎤=⎢⎥-⎣⎦, 求:(1);T T T T A B B A - 22(2).A B -解:24363624(1)12121212T T T T A B B A ----⎡⎤⎡⎤⎡⎤⎡⎤-=-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦⎣⎦10200010251000510--⎡⎤⎡⎤⎡⎤=-=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦; 2221213131(2)42426262A B --⎡⎤⎡⎤⎡⎤⎡⎤-=-⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦⎣⎦⎣⎦01551550030103010--⎡⎤⎡⎤⎡⎤=-=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦.9. 设A 是对称矩阵,B 是反对称矩阵,则( )是反对称矩阵. (A )AB BA -; (B )AB BA +; (C )2()AB ; (D )BAB . 解:B .10.试将矩阵121301223A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦表示成对称矩阵与反对称矩阵之和. 解:5311102222115311()()002222223311302222T T A A A A A ⎡⎤⎡⎤--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=++-=+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦. 11. 设A 是反对称矩阵,B 是对称矩阵,试证:AB 是反对称矩阵的充分必要条件为AB BA =. 证:必要性:由AB AB Τ-=)(及BA A B A B AB ΤΤΤ-=-==)()(即得BA AB =. 充分性: 若BA AB =,则AB BA A B A B AB ΤΤΤ-=-=-==)()(,知AB 是反对称阵.12. 设1110()m m m m f x a x a x a x a --=++++ ,记()f A 为方阵A 的多项式,即1110()m m m m f A a A a A a A a I --=++++(1) 设1200λΛλ⎡⎤=⎢⎥⎣⎦,证明12()0()0()f f f λΛλ⎡⎤=⎢⎥⎣⎦; (2) 设1A P P Λ-=,证明1()()f A Pf P Λ-=.解:(1)1200kk k λΛλ⎡⎤=⎢⎥⎣⎦1111110122201000()00100mm m m m m f a a a a λλλΛλλλ---⎡⎤⎡⎤⎡⎤⎡⎤∴=++++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦111111012121201200()00()m m m m m m m m a a a a a a a a f f λλλλλλλλ----⎡⎤++++=⎢⎥++++⎣⎦⎡⎤=⎢⎥⎣⎦ (2)11k k A P P A P P ΛΛ--=⇒=111111110()()m m m m f A f P P a P P a P P a P P a PP ΛΛΛΛ-------∴==++++ 1()Pf P Λ-=13.设矩阵2TT A I αααα=-,其中I 为n 阶单位阵,α为n 维列向量,试证A 为对称矩阵,且2A I =.证:2(2)2()()2T T T TT T T T TT T T T A I I I I Aαααααααααααααααα=-=-=-=-=故A 是对称矩阵,且22()(2)(2)44()T T T T TT T T T A I I I I αααααααααααααααααα=--=-+=.1.3逆矩阵1. 设A 为n 阶矩阵,且满足2A A =,则下列命题中正确的是( ). (A )A O =; (B )A I =;(C )若A 不可逆,则A O =; (D )若A 可逆,则A I =. 解:D.2. 设n 阶矩阵C B A 、、满足ABAC I =,则必有( ).(A )2CA B I =; (B )T T T TA B A C I =; (C )2BA C I =; (D )2222A B A C I =.解:B.3.已知矩阵1111111111111111A ---⎡⎤⎢⎥---⎢⎥=⎢⎥---⎢⎥---⎣⎦,求n A 及1A -(n 是正整数). 证:由I A 42=,即可得⎪⎩⎪⎨⎧=====---为奇数为偶数n A A I A A n I I A A n n n n nn n,2)4(,2)4()(1211222 及I A A =⋅)(41,亦即A A 411=-.4. 已知n 阶矩阵A 满足223A A I O +-=, 求: 11,(2),A A I --+ 1(4)A I -+.解:依题意,有I I A A 32=+)(,即23A I A I +=(),故 A I A I A A 31223111=++=--));((,再由已知凑出I I A I A 5)2)(4(-=-+,即得)2(51)4(1I A I A --=+-.5. 设A B AB I -、、为同阶可逆阵,试证:(1) 1A B --可逆; (2) ()111A BA -----也可逆,且有()1111A B A ABA A ----⎡⎤--=-⎢⎥⎣⎦. 证:(1) 11111()A B ABB B AB I B A B ------=-=-⇒-可逆.(2) 证法一:()()()()()()()1111111111111111()A B A A BA B A B AA BI I B A AB A B ABA A ------------------=----⎡⎤=--+=-⎣⎦=- ()111A B A ---⇒--可逆,且()1111A B A ABA A ----⎡⎤--=-⎢⎥⎣⎦. 证法二:由(1)得()111()A BB AB I ----=-,因此()1111111()()()()()()A B A ABA A B AB I A ABA A B AB I AB I A A A BA I BA BA I I-------⎡⎤⎡⎤---=---⎣⎦⎢⎥⎣⎦=----=-+= ()111A B A ---⇒--可逆,且()1111A B A ABA A ----⎡⎤--=-⎢⎥⎣⎦.。
华东理工大学线性代数 作业簿(第八册)学 院____________专 业____________班 级____________学 号____________姓 名____________任课教师____________6.1 二次型及其标准型1. 填空题(1)设三阶矩阵A 的行列式为0,且有两个特征值为1,1-,矩阵A 与B 合同,B 与C 合同,则矩阵C 是_____阶矩阵,其秩_____)(=C r .解:三,2.(2) 设n 阶矩阵A 与正交阵B 合同,则_____)(=A r . 解:n . 因B 为正交阵,故B 可逆.A 与B 合同即存在可逆矩阵C ,使得B AC C =T ,故)()(B r A r ==n .(3)二次型211221)(),,,(∑∑==-=⋅⋅⋅ni i ni i n x x n x x x f , 则此二次型的矩阵=A , 二次型的秩为______, 二次型的正交变换标准型为________________.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------1 (11)...1...111...11n n n ,1-n ,222121,n ny ny ny -++⋅⋅⋅+ 提示:二次型的秩就是二次型的矩阵的秩,也是其标准型中非零项的个数(注:标准型不唯一). 因此求二次型的秩有两种方法:1) 直接求二次型的矩阵A 的秩,2)先求A 的特征值,A 有几个非零特征值(重根按重数计算),二次型的秩就是几.(4) 二次型,)(T Ax x x f = 其中A A ≠T ,则二次型的矩阵为_____ ____.解:)(21T A A +. 提示:A 不是二次型的矩阵,因A 不是对称阵。
注意到Ax x x f T )(=的值是一个数,即)()(T x f x f =,故有x A A x x f x f x f )(21)]()([21)(T T +=+=. 而)(21T A A +为对称阵.(5) 设n 元(n >2)实二次型()T f x x Ax = )(T A A =其中的正交变换标准型为22212y y -,则=A ______,矩阵A 的迹为 _____.解:0, 1-. 提示:A 的特征值为11,λ=22,λ=-30n λλ=⋅⋅⋅==,根据A A tr ni ini i ==∏∑==11),(λλ 易得.(6) 如果二次型2221231231213(,,)5526f x x x x x cx x x x x =++-+ 236x x - 的秩为2,则参数c = _____,1),,(321=x x x f 表示的曲面为__________.解:3, 椭圆柱面. 提示:二次型的矩阵33⨯A 的秩为2,故0||=A ,由此可求得c = 3. 再求出A 的特征值为9,4,0321===λλλ,即标准型为232294y y f +=,由此知1),,(321=x x x f 为椭圆柱面.2. 已知二次型322322213212332),,(x ax x x x x x x f +++=(0a >) 通过正交变换化成标准型23222152y y y f ++=,求a 的值及所用的正交变换矩阵Q .解:二次型的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3030002a a A ,)9(22a A -=,由123A λλλ=即10)9(22=-a 得 2=a .A 有三个不同的特征值1,2,5,故对应这三个特征值的特征向量线性无关。
华东理工大学线性代数作业簿(第一册)学院__________ 专业____________ 班级_______________ 学号__________ 姓名____________ 任课教师___________ 1.1 矩阵的概念1. 矩阵 A a ij 2i j 2 3.解:A2.设1 0 00 1 0 0 3 0 05 2A ,B 0 1 0 0 ,C 2 3 0, D0 3 00 40 0 10 0 4 1 0 0 3其中对角阵为___ ,三角阵有_解:对角阵为D;三角阵有A,C, D.1.2 矩阵的运算3 1 1 2 1 11. 已知2 3X O ,求矩阵X .2 0 23 1 1解:依题意,由3X 6422421311 4 3 3,1 1 1 5 ,41 1即得X 31 13 32. 如果矩阵A m n 与B t s 满足AB BA,试求m,n,t,s 之间的关系解:m nt s.3. 填空:4 3 1 7(1) 1 2 3 25 7 0 11(2) 1, 2, 3 23 ___________1(3) 2 1, 2 ;3__________________1 3 1214 0 0 1 2(4)1 1 3 4 1 3 14 0 235 1 2解:(1) 6 ;(2) 14;(3) 2 4 ;(4) 6 7820 5649 3 60104. 已知矩阵 A 0 0 1 ,试求与 A 可交换的所有矩阵 000解:由可交换矩阵的定义,知道所求矩阵必为 abc其为 B d e f ,于是有ghi010aAB 0 0 1 d000g abc0BA d e f 0ghi0def由 AB BA ,即得 g h i000由相应元素相等,则得 d gabc故 B 0 a b (a,b,c 均为任意常数) 为与 A 可交换的所有矩阵00a2a 33x 3 (a 12 a 21 )x 1x 2 (a 13 a 31) x 1 x 3 (a 23 a 32)x 2x 33 阶方阵,不妨设b c d e fe f = ghi ,h i 0 0 0 1 0 0 a b 0 1 0 d e , 0 00 g h0ab0 d e ,0gh h 0,a e i,b f ,a 11 a 12 a 13 x 1(1)x 1, x 2, x 3 a 21a 22 a 23 x 2 ;a 31a 32a 33x 35. 计算下列各题:解:原式等于: 2 a11x1 2 a22x21 33(2) A,求A 2008解:记 A,则A 2A 3 ,Q 2008 3669(3) 解: A9 200820071,1,13)669A .A 9.1,1,1 23 1,1,1 2328A2561 26. 利用等式17 62 3 2 0 7 335 1257 0 3 5 273 2 31 0,5 2 5 70 1,计算 1756.3512 .55解: 176 2 3 2 0 73 3197 12663512 5 7 0 3 527385 29227. 某公司为了技术革新,计划对职工实行分批脱产轮训,已知该 公司现有 2000 人正在脱产轮训,而不脱产职工有 8000人,若每 年从不脱产职工中抽调 30%的人脱产轮训, 同时又有 60%脱产轮 训职工结业回到生产岗位, 设职工总数不变, 令资料个人收集整理,勿做 商业用途0.7 0.6 8000 A , X0.3 0.42000试用 A 与 X 通过矩阵运算表示一年后和两年后的职工状况, 并据 此计算届时不脱产职工与脱产职工各有多少人 . 解:一年后职工状况为: AX 3200不脱产职工 6800 人,轮训职工 3200 人.6800 2 6680 两年后职工状况为: A A 2 X3200 3320不脱产职工 6680 人,轮训职工 3320 人. 218. 设矩阵 A 24 12 ,B求:(1) A T B T B T A T ; (2) A 2 B 2.解: (1) A T B T B T A T10 20 0 0 10 20 5 10 0 0 5 10 (2) A 2 B 22 1 2 13 1 314 24 2 6 2 620 0 15 5 15 5.0 0301030 10 .9. 设 A 是对称矩阵, B 是反对称矩阵,则( )是反对称矩阵(A ) AB BA; (B ) AB BA; (C ) (AB)2 ; (D ) BAB . 解:B.1 2 110.试将矩阵 A 3 0 12 23 解:11. 设 A 是反对称矩阵, B 是对称矩阵,试证: AB 是反对称矩阵 的充分必要条件为 AB BA. 证:必要性 :由(AB)Τ AB 及(AB)Τ B ΤA Τ B( A) BA 即得 AB BA. 充分性: 若 AB BA ,则(AB)Τ B ΤA Τ B( A) BA AB ,知 AB 是反对称阵 .表示成对称矩阵与反对称矩阵之和11A 12(A A T ) 12(A A T )1 5 3 0 1 12 2 2 2 53 1 0122 223 331 12 22212. 设 f (x) a m x m项式,f (A)1)2) 设A解:(1)f(a mm1am 1 1m a m 1xm a m A1L a1xm1a m 1A L证明 f (证明f (A)a0,记 f (A) 为方阵A的多a1A a0If ( 1)f ( 2)Pf ( )Pf(1) 0f ( 2)2) A A kf(A) f(P 1)Pf ( )P 13.设矩阵A a 1a m Pm11m12a1a1001aam 1m12 a1 a0k P 1mP1ma m 1P1P1a1P a0PP 1T2 T ,其中I 为n 阶单位阵,为n 维列向量,试证 A 为对称矩阵,且A2 I .证:A T(I 2 T )T I T2( T )T T2(T)T I 2 T 故 A 是对称矩阵,且T 2A2(I 2 T )(IT2T) 4T4 (( T T ))2 T I .(T)21.3 逆矩阵1. 设A为n 阶矩阵,且满足A2A ,则下列命题中正确的是().A) A O ;B) A I ;(C)若 A 不可逆,解:D.则A O ;( D )若 A 可逆,则A I.2. 设n阶矩阵A、(A)CA2B B、I;C 满足ABAC I ,则必有().(B)A T B T A T C T I ;(C)解:B.BA2C I;D)A2B2A2C2I .3.已知矩阵A 111111111111111,求A n及A 1(n是正整数).11证:由A2 4I ,即可得nnA n (A 2)2(4I)2 2nI, n 为偶数 An 1A n 1A (4I) 2 A 2n 1A, n 为奇数及 A (1A ) I ,亦即 A 1 1A . 444. 已知 n 阶矩阵 A 满足 A 2 2A 3I O ,求: A 1, (A 2I) 1, (A 4I) 1.( A 2I ) 解:依题意,有 A (A 2I ) 3I ,即 A(A 2I)I ,故311A 1 (A 2I );( A 2I )1A ,33再由已知凑出 (A 4I)(A 2I) 5I ,即得11(A 4I) 1 1(A 2I).55. 设 A 、 B、ABI 为同阶可逆阵, 试证: (1) A B 1 可逆;(2) AB 11A 1也可逆,且有AB1111A 1ABA 证:(1) AB 1ABB 1B 1(A B I)B1A B 1 可逆(2)证法 一:AB 11A 1A B11A B11A B 1 A 1AB11I IB1A 1AB A B 1(ABAA)1AB 11A 1可逆,且 AB 1 1A 11ABA A .证法二: 由(1)得 AB 11B(AB I) 1 ,因此1A B 1 A 1(ABA A) B(AB I) 1 A 1 (ABA A) 11B(AB I) 1(AB I)A A 1A(BA I) BA BA I I1 1 1 11A B 1 A 1可逆,且 A B 1 A 1 ABA A .。