华东理工大学线性代数第2册
- 格式:doc
- 大小:397.13 KB
- 文档页数:8
习题一A 组1.计算下列二阶行列式 (1)521-12= (2)012896= (3)2222ba abbab a -= (4)11112322--=++-x x x x xx2.计算下列三阶行列式(1)132213321=1+8+27-6-6-6=18 (2)5598413111= (3)714053101-=- (4)00000=dc b a 3. 当k 取何值时,10143kk k-=0. 解:10143kk k-0)3(0)(02-----++=k k , 得 0342=+-k k , 所以 1=k 或 3=k 。
4.求下列排列的逆序数.解:(1) 512110)51324(=++++=τ.(2) 8142010)426315(=+++++=τ. (3) 21123456)7654321(=+++++=τ.(4) 1340423000)36715284(=+++++++=τ.5.下列各元素乘积是否是五阶行列式 ij a 中一项?如果是,该项应取什么符号? 解:(2) 不是. 因为 5145332211a a a a a 中有俩个元素在第一列. (3) 是. 对应项为534531*********)1(a a a a a )(τ-1021)24153(+++=τ 所以该项应取负号。
6.选择i , j 使j i a a a a a 54234213成为五阶行列式 ij a 中带有负号的项解: 当 )5,1(),(=j i 时, 30102)31425(=+++=τ, 是奇排列.当 )1,5(),(=j i 时, 81232)35421(=+++=τ, 是偶排列. 所以 i = 1, j = 5.8.利用行列式性质计算下列行列式.解: (1) 111212321-2343032123121----+-+-r r r r 6243032132-=--+-r r (2) 6217213424435431014327427246-621721100044354320003274271000123c c c ++621721144354323274271103=. 62110014431002327100110323c c +-621114431232711105=31212r r r r +-+-2942111032711105--=294105⨯ (3)1111111111111111---820000200002011114,3,21-=---=+-i r r i(4)1502321353140422-----1523213531402112-----=11203840553002112234413121-----+++r r r r r r11205100046100211223424-----+-+-r r r r 7130051000461002112242------+-r r 7130120046100211)5(2-----=27120046100211)5(2743----+r r 272100641020111043---↔c c 270-=.(5)yy x x -+-+1111111111111111yyy x x x c c c c --+-+-11011010110123412yy x x r r r r --+-+-011000010124321yy x x--=00011000101012232001000010101y x yy xxr r =--+(6)dc b a c b a ba ad c b a c b a b a a dc b a c b a ba a dc b a++++++++++++++++++3610363234232cb a b a ac b a b a a c b a b a ad c b ai r r i 36103630234232004,3,21+++++++++=+-ba ab a ac b a b a ad c b ar r r r 37302000324232++++++-+-443020003a ab a ac b a b a ad c b ar r =+++++-9.用行列式性质证明:(1) 333332222211111c c b kb a c c b kb a c c b kb a ++++++=333222111c b a c b a c b a 证明: 333332222211111c c b kb a c c b kb a c c b kb a ++++++33332222111123c b kb a c b kb a c b kb a c c ++++-33322211112c b a c b a c b a c kc +-. (2) efcf bf de cd bdaeac ab---=abcdef 4证明: ef cfbf de cd bdae ac ab---d cbe c b e c b abf---的公因子提取各行111111111---abfbce 的公因子提取各列 022001113121-++a b c d e f r r r r 202011123--↔a b c d e f r r a b c d e f 4=.(3)y y x x ++++1111111111111111y x xyy x 222222++=证明:y y x x++++1111111111111111=y y x x+++++++1110111101111011111y y x +++=1111111111111111 yy x x++++111011*********y y x 0000000001111=yy x x +++++++110101101011101101y y x x y y xxy +++++++=1010011001010101000000011101112yy x x yx x xyxy+++++=101001001001100110011011022yy x x y x xxy+++=10100100100000110011011022=+++=)1(2222y y x y x xy222222y x y x xy++.10.解下列方程:(1)0913251323222321122=--xx解: 由 2243212240005132320321129132513232223211xx r r r r x x ----+-+---223140131********2xx r r ------+-222212401310332003211xx x r r x -------+22223403320013103211xx xr r ------↔)4)(32(22x x ---=得 0)4)(32(22=---x x 所以 2=x 或 2-=x .(2)0011101101110=x x x x解: 由=++++=+01110110122224,3,20111011011101xx x x x x x i r r xx x x i 0111011011111)2(xx x x +11111010101111)2(413121-------++-+-+-x x x x x x r r r xr r r x x x x x x x r r -------++10011010101111)2(43xxx x x x x xxx x x x x x r r x ------+=----+----++-10)1(0010101111)2(10)1)(1(10010101111)2()1(32xxx x x x ----⨯-+=1)1(111)2(=})1(){1)(2(22x x x x -+-+2)2)(2(x x x -+-=得 0)2)(2(2=-+x x x , 所以 021==x x ,23=x , 24-=x . 15. 用克莱姆法则解下列线性方程组:(1)⎩⎨⎧=+=+2731322121x x x x解:由系数行列式57332==D 172311==D 123122==D5111==DD x , 5122==DD x .(3) ⎪⎩⎪⎨⎧=+-=+-=+-445222725 1243321321321x x x x x x x x x解: 由系数行列式 63871702112452181211245272524331212313=--+-+----+-+----=r r r r r r r r D=--+-+---=411437862200124454722224131211c c c c D 63 126002312545322442722521331212=---+-+-=r r r r D 18910717703112452148131124522225143312123133=--+-+---+-+----=r r r r r r r r D 得 111==DD x , 222==DD x ,333==DD x .16.判断下列齐次方程组是否有非零解: (1) ⎪⎪⎩⎪⎪⎨⎧=+-+=-+-=++--=+-+0320508307934321432143214321x x x x x x x x x x x x x x x x解:由系数行列式3211151118137931------=D 4728144022198079313413121------+-+-+r r r r r r 0472814422198=-----= (第一、二行对应元素成比例) 此齐次方程组有非零解. (2). ⎪⎪⎩⎪⎪⎨⎧=-++=+++=-++=+-0302430332022432143214321421x x x x x x x x x x x x x x x解:由系数行列式315111104)1(231511122)1(31501131321022113121433132102212234232---+----=----+-+----=+r r r r r r D 0131114≠=---=此齐次方程组只有唯一的非零解.17. 若齐次线性方程组 ⎩⎨⎧=-+=+-0)2(504)3(y x y x λλ 有非零解.则λ取何值?解:由系数行列式 )2)(7(14520)2)(3(25432+-=--=---=--=λλλλλλλλD其齐次线性方程组有非零解,则 7=λ 或 2-=λ.习题二A 组1.计算下列矩阵的乘积. (1) ⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-2312521131. 解: ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-2312521131⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫⎝⎛⨯+⨯⨯+-⨯⨯-+⨯⨯-+-⨯⨯+⨯⨯+-⨯=12111577251253)2(22)1(113)1()2(1231133)2(1. (2)()0111132=⎪⎪⎪⎭⎫⎝⎛---(3) ⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛-35002103531152112401321214. 解: ⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-35002103531152112401321214⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=10316665350021161167923. (4)()⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x 解:()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x =233322222111x a x a x a +++212112)(x x a a ++313113)(x x a a ++323223)(x x a a + 2. 计算下列各矩阵:(1) 52423⎪⎪⎭⎫⎝⎛--. 解: 52423⎪⎪⎭⎫ ⎝⎛--22423⎪⎪⎭⎫⎝⎛--=22423⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--2423⎪⎪⎭⎫⎝⎛--=4421⎪⎪⎭⎫ ⎝⎛--4421⎪⎪⎭⎫ ⎝⎛--2423⎪⎪⎭⎫⎝⎛--=81267⎪⎪⎭⎫ ⎝⎛--2423⎪⎪⎭⎫⎝⎛-=8423. (2)2210013112⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡ 解: 2210013112⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡433349447(3) n⎪⎪⎭⎫ ⎝⎛1011. 解: n⎪⎪⎭⎫⎝⎛1011n⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=00101001 =nn n nn n n ⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛--0010001010012)1(001010011001221+⎪⎪⎭⎫ ⎝⎛=1001⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛101000n n , 其中 20010⎪⎪⎭⎫ ⎝⎛ =⎪⎪⎭⎫ ⎝⎛=30010⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=00000010n. (4) n⎪⎪⎪⎭⎫⎝⎛λλλ001001解: n⎪⎪⎪⎭⎫⎝⎛λλλ001001=n⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫⎝⎛0001000100000λλλn⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=0010001010010001λ ⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=---- 222110001000101000100012)1(000100010100010001100010001n n n n nnn n n λλλ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=-00002)1(000000000000002n nnn nnn n n n λλλλλλ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=-nn nn nn n n n n λλλλλλ0002)1(1其中 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛0000001000001000102, ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛==⎪⎪⎪⎭⎫ ⎝⎛0000000000001000100001000103n. 5. 证明:对任意n m ⨯矩阵A ,A A T 与T AA 都是对称方阵;而当A 为n 阶对称方阵时,则对任意n 阶方阵C ,AC C T为对称方阵.证明: (1)A A T 为n 阶方阵, 又A A A A T T T =)( A A T ∴为n 阶对称方阵同理T AA 为m 阶对称方阵(2)AC C T 为n 阶方阵, A 为n 阶对称方阵 A A T =∴ 又 AC C AC C T T T =)(AC C T ∴为n 阶对称方阵6.设C B A ,,均为n 阶方阵.证明:如果CA A C AB E B +=+=, 则.E C B =-解: 由已知 E B A E E AB B =-=-)(, 则 B A E =--1)(.且 A CA C =-即 A A E C =-)(, 则 AB A E A C =-=-1)(. 得 E AB B C B =-=-.8.(3)⎪⎪⎪⎭⎫⎝⎛--=122341213A 解:25=A 1011=A 521=A 531-=A712-=A 122-=A 1132=A 613-=A 823-=A 1333=A⎪⎪⎪⎭⎫⎝⎛-----=-1386111755102511A9. 解下列矩阵方程: (1) ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛23123512X 解: 由 ⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-251335121, 得 ⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-1161923122513231235121X . (3) ⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛02110234101100001100001010X 解: 由 ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛=--0110000102110234110000101001010000102110234110000101011X ⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛---=20143101201100001021341102, 即 ⎪⎪⎪⎭⎫⎝⎛---=201431012X . 11. 设 B A AB A -=⎪⎪⎪⎭⎫⎝⎛--=2,011002100, 求.B 解: 由已知 ,2)(,2A B E A A B AB =+=+因 01622)(3≠-===+=+A A B E A B E A1)(-+E A 存在, 则 A E A B 2)(1⋅+=-由 ()⎪⎪⎪⎭⎫⎝⎛----−→−++-⎪⎪⎪⎭⎫⎝⎛----=+22240420001021010120220042001110121012,3121r r r r A E A ⎪⎪⎪⎭⎫⎝⎛----−−→−++-⎪⎪⎪⎭⎫⎝⎛-----−→−+--31322211310010001216264042002210101321231332rr r r r r r所以 ⎪⎪⎪⎭⎫ ⎝⎛----=⋅+=-31322211132)(1A E AB . 12.设B A ,均为n 阶方阵,E 为n 阶单位阵,证明: (1) 若,AB B A =+ 则E A -可逆;(2) 若O E A A =+-432 则E A -可逆,并求-1)(E A -.解: (1)由已知 E E B A AB =+--, 即E E B E A E E B E B A =--=---))((,)()(,所以 E A -可逆,且E B E A -=--1)(.(2)由已知 E E A E A A E E A AE AA 2)(2)(,222-=----=+--,,2))(2(E E A E A -=-- 所以 E A -可逆,且A E E A E A 21)2(211--=--=-)(.14.设⎪⎪⎪⎪⎪⎭⎫⎝⎛---=110210000230012A , 求 4,A A 及1-A. 解: 33111212312=⨯=---=A ,由⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛7-48-7-11-2197168-56-9723-1-244,, 所以 ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=740870000971680056974A . 由⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛112-13111-21231223-1-2-1-1,, 所以 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=31310032-3100002300121-A . 15. 用初等变换把下列矩阵化为标准形: (1) ⎪⎪⎪⎭⎫⎝⎛=02-112321-1A解: ⎪⎪⎪⎭⎫⎝⎛=02-112321-1A ⎪⎪⎪⎭⎫⎝⎛-+-+⎪⎪⎪⎭⎫-- ⎝⎛+-+-10010001)1(1001101012-1-05-5021-133********r r r r r r r r r 16.求下列各矩阵的秩: (2)⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=61331311405133312A ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----↔3312311405136133141r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----+-+-+-152970275313018348061331243413121r r r r r r⎪⎪⎪⎪⎪⎭⎫⎝⎛-----+-152970275313035106133124r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-------+-+-6601212003510613317134232r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-------→121206600351061331⎪⎪⎪⎪⎪⎭⎫⎝⎛-----→0006600351061331 所以3)(=A R 17.设⎪⎪⎪⎭⎫⎝⎛=110101011A ,⎪⎪⎪⎭⎫⎝⎛=a a a B 111211,且矩阵AB 的秩为2,求a 解:因为2)(=AB R ,所以B A AB ==0 又因为0≠A , 所以0=B 即01=+-a 1=⇒a习题三A 组2. 设1233()2()5()αααααα-++=+,其中TTT123(2513)(101510)(4111),,,,,,,,,,,ααα===-, 求向量α.解:由已知 123325325αααααα-+-=--+, 即12312311325)325)66ααααααα=---+=+-((,所以 ().4,3,2,143215209510352152020661T=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+++-+-+=α3. 设向量组123,,ααα线性无关,而向量组 1121233132.,βααβαααβαα=+=-+=-,,试判断向量组123,,βββ的线性相关性.解:设数 321,,k k k 使得 1122330k k k βββ++= 成立,即 1122123313()()(2)0k kk ααααααα++-++-=, 1231122233()()(2)0.k k k k k k k ααα+++-+-=得线性方程组⎪⎩⎪⎨⎧=-=-=++02003221321k k k k k k k ,其系数行列式0.12-10011111≠= 线性方程组只有唯一解0321===k k k ,则向量组123,,βββ的线性无关.5.已知向量组 TTT123(123)(312)(23),,,,,,,,c ααα==-=问c 取何值时向量组123,,ααα线性无关或向量组123,,ααα线性相关.解:设数 321,,k k k 使得1122330k k k ααα++=成立,得线性方程组 ⎪⎩⎪⎨⎧=++=+-=++023032023321321321ck k k k k k k k k , 其系数行列式)5(732213321T--=-c c.所以 ⇔=-05c 线性方程组有非零解 ⇔向量组123,,ααα线性相关; ⇔≠-05c 线性方程组只有零解 ⇔向量组123,,ααα线性无关.6.设向量组123,,ααα线性无关,证明向量组122331,,αααααα+++也线性无关. 解:设数 321,,k k k 使得112223331()()0k k k αααααα+++++=()成立, 得线性方程组⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k , 其系数行列式02110011101T≠=线性方程组只有唯一解0321===k k k ,所以向量组122331,,αααααα+++线性无关.7. 设向量组123,,ααα线性无关,判断向量组12233441,,,αααααααα++++线性相关性 并证明之.解:设数 4321,,,k k k k 使得 112223334441()()()0k k k k αααααααα+++++++=() 成立 得线性方程组⎪⎪⎩⎪⎪⎨⎧=+=+=+=+0043322141k k k k k k k k 其系数行列式0110011000111001=则线性方程组有非零解,所以向量组12233441,,,αααααααα++++线性相关 .9.若向量组m ααα ,,21线性无关,而向量β不能由m ααα ,,21线性表示,证明向量组βααα,,,m 21线性无关.证明: 反证法.设βααα,,,m 21线性相关,由定理3.1向量β可由m ααα ,,21线性表示,这与已知条件矛盾.假设不成立.所以向量组βααα,,,m 21线性无关. 10.判断题(结论对的请在括号内打“√” ,错的打“×”)(1) 若当数021====m k k k 时,有02211=+++m m k k k ααα 则向量组m ααα ,,21线性无关. ( × ).(2) 若有m 个不全为零的数m k k k ,,,21 , 使得02211≠+++m m k k k ααα 则向量组m ααα ,,21线性无关 ( × ).(3) 若向量组m ααα ,,21线性相关,则1α可由其余向量线性表示. ( × ).(4) 设向量组r I ααα,,,)(21 ;m r r II ααααα,,,,,,)(121 +.若向量组r I ααα,,,)(21 线性无关,则向量组m r r II ααααα,,,,,,)(121 +也线性无关. ( × ). (5) 若向量组βααα,,,21m ,线性无关,则向量β不能由m ααα,,,21 线性表示. ( √ ). (6) 若向量组m ααα,,,21线性无关且向量1+m α不能由m ααα,,,21 线性表示,证明向量组121,,,,+m m αααα 线性无关. ( √ ).(7) 若向量β不能由m ααα,,,21 线性表示,则向量组βααα,,,21m ,线性无关. ( × ).提示: 利用向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1000,0020,0010,03024321αααα 讨论(1)—(4),(7),利用定理3.1和3.2讨论(5),(6).12.求下列向量组的秩,并求它的一个极大无关组.(1) T T T )3,3,1(,)2,2,0(,)0,1,1(321===ααα. 解: 取矩阵 ⎪⎪⎪⎭⎫⎝⎛==320321101),,(321αααA ⎪⎪⎪⎭⎫⎝⎛+-⎪⎪⎪⎭⎫ ⎝⎛+-1002201013202201013221r r r r 所以向量组的秩为3,极大无关组是321,,ααα.(2) T T T T )0,2,1,1(,)14,7,0,3(,)2,1,3,0(,)4,2,1,1(4321-===-=αααα. 解: 取矩阵),,,(4321αααα=A⎪⎪⎪⎪⎪⎭⎫⎝⎛-↔⎪⎪⎪⎪⎪⎭⎫-⎪⎪⎪⎪⎪⎭⎫⎝⎛-+-+-+⎪⎪⎪⎪⎪⎭⎫⎝⎛--=0004000011013014000000011013014220011003301301420142427121031130143413121r r r r r r r r 所以向量组的秩为3,极大无关组是421,,ααα.(3) TT T T )1,2,3,4(,)1,1,0,1(,)1,4,5,2(,)1,3,2,1(4321=--==-=αααα解: 取矩阵=A ⎪⎪⎪⎪⎪⎭⎫⎝⎛---=1111214330524121)),,,(4321αααα ⎪⎪⎪⎪⎪⎭⎫⎝⎛---+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----+-+⎪⎪⎪⎪⎪⎭⎫⎝⎛-----++-+-00020800521041212080208005210412132523104205210412132433232413121r r r r r r r r r r r r 所以向量组的秩为3,极大无关组是321,,ααα. 14.求解线性方程组.(1) .343326133053321321321321⎪⎪⎩⎪⎪⎨⎧=+-=+--=-+=-+x x x x x x x x x x x x解: 由增广阵⎪⎪⎪⎪⎪⎭⎫⎝⎛↔⎪⎪⎪⎪⎪⎭⎫ ⎝-+-⎪⎪⎭⎝⎛------+-++⎪⎪⎪⎪⎪⎭⎫⎝⎛------+-+-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------+-↔⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=000110020101001201011000000100161351066006600320137835101529701834806133123351033120513613312311433126133105134232314342431214321r r r r r r r r r r r r r r r r r r r A所以 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛121321x x x .(2) ⎪⎩⎪⎨⎧-=-+=-+=++12321323321321321x x x x x x x x x解:由增广阵 ⎪⎪⎪⎭⎫⎝⎛---+-⎪⎪⎪⎭⎫⎝⎛----+-+-⎪⎪⎪⎭⎫⎝⎛--=3000241031115410241031111212321321311132321r r r r r r A 得 3)(2)(=<=A r A r , 所以此方程组无解.(3) ⎪⎪⎩⎪⎪⎨⎧=+++=++-=++-=--+323153423221234321432143214321x x x x x x x x x x x x x x x x解:由增广阵⎪⎪⎪⎪⎪⎭⎫⎝⎛--+-+⎪⎪⎪⎪⎪⎭⎫⎝⎛-----+-+-+-⎪⎪⎪⎪⎪⎭⎫⎝⎛----=000000000017410117501730747007470074701213132311231534123212121313212413121r r r r r r r r r r A得同解方程组 ⎪⎪⎩⎪⎪⎨⎧==+=--=443343243174751x x x x x x x x x x ;取 ,,72413k x k x == 得通解 ⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛101107450001214321k k x x x x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+2534432312432143214321x x x x x x x x x x x x解:由增广阵 ⎪⎪⎪⎭⎫⎝⎛------+-+-⎪⎪⎪⎭⎫ ⎝⎛-----↔⎪⎪⎪⎭⎫ ⎝⎛-----=59571018101402534123111124312325341253414312311112312131r r r r r r A⎪⎪⎪⎪⎭⎫⎝⎛----007579751076717101得同解方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧==-+-=++=4433432431797575717176x x xx x x x xx x取 ,7,72413k x k x == 得通解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛70910751007576214321k k x x x x . 15.求下列齐次线性方程组的基础解系及全部解. (1)⎪⎩⎪⎨⎧=--+=+--=--+02302022432143214321x x x x x x x x x x x x解:由系数阵⎪⎪⎪⎪⎭⎫⎛---+⎪⎫ ⎝⎛----+-+-⎪⎪⎪⎭⎫⎝⎛------=001511005301525155150212132121311122121123121r r r r r r A 得同解方程组 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==+==4433432315153x x xx x x x x x , 取 ,,52413k x k x ==得通解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10100013214321k k x x x x , 基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1010001321ηη,.(2) ⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x解:由系数阵 ⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛----+-+-⎪⎪⎪⎭⎫⎝⎛----=0000100102104040011215351105316311213121r r r r A 得同解方程组⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x 取 ,,2412k x k x ==得通解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10100012214321k k x x x x ,基础解系⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1010001221ηη,. (4) ⎪⎩⎪⎨⎧=---=++++=++++02202243022253215432154321x x x x x x x x x x x x x x解:由系数阵 ⎪⎪⎪⎭⎫⎝⎛--------+-+-⎪⎪⎪⎭⎫ ⎝⎛---↔⎪⎪⎪⎭⎫ ⎝⎛---=326532650224312102211221222431102212243112212312121r r r r r r A⎪⎪⎪⎪⎭⎫⎝⎛+000053525610515452015312r r 得同解方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧===---=---=55443354325431535256515452x x x x x x x x x x x x x x , 取 3524135,5,5k x k x k x ===,得基础解系⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=50031,0502400562321ηηη, , 通解 332211ηηηηk k k ++=.18.已知非齐次线性方程组⎪⎩⎪⎨⎧-=+++=+-+=++12)3(13)12(12321321321λλλλλλλλx x x x x x x x x 解: 由增广阵 ⎪⎪⎪⎭⎫⎝⎛---+-+-⎪⎪⎪⎭⎫⎝⎛-+-=22100110121231312123121λλλλλλλλλλλλλr r r r A 知: 当1=λ时, ⎪⎪⎪⎭⎫⎝⎛+-⎪⎪⎪⎭⎫⎝⎛=0000100101120000100121112r r A ,32)()(<==A r A r ,方程组有无穷多解, 通解为 ⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛0110011321k x x x ;当0=λ时, ⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛----++⎪⎪⎪⎭⎫⎝⎛---=300210020102120130002210011012002313r r r r A 则 3)(2)(=<=A r A r ,方程组无解;当1,0≠λ时, 有3)()(==A r A r ,方程组有唯一解. 19.问b a 、取何值时,线性方程组⎪⎩⎪⎨⎧=++=++=++4234321321321x bx x x bx x x x ax 有唯一解,无解,无穷多解(无穷多解时并求其解)解:(1)系数行列式1211111bb aA ==)1(-a b 当1,0≠≠a b 时方程组有唯一解(克拉默法则)(2)当0=b 时,−−→−⎪⎪⎪⎭⎫⎝⎛=+-324113101411rr aA ⎪⎪⎪⎭⎫ ⎝⎛1003101411a)()(A R A R ≠ 所以线性方程组无解(3)当1=a 时,⎪⎪⎪⎭⎫⎝⎛---+-+-⎪⎪⎪⎭⎫⎝⎛=0012010104111412131141113121b b r r r r bb A 当012=-b 时,即21=b 时 32)()(<==A R A R ,方程组有无穷多解,同解方程组为 ⎪⎩⎪⎨⎧-=-=++12142321x x x x令03=x 得方程组的特解⎪⎪⎪⎭⎫ ⎝⎛=0220X 取13=x 得基础解系⎪⎪⎪⎭⎫⎝⎛-=101η此时全部解为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛101022k 其中k 为任意常数20. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1111,1111,1111111111214321ααααβ,, 将β表示成向量组4321,,,αααα的线性组合.解: 设数 4321,,,k k k k 使得 βαααα=+++44332211k k k k 得 ⎪⎪⎩⎪⎪⎨⎧=+--=-+-=--+=+++11214321432143214321k k kk k k k k k k k k k k k k其增广阵 ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----↔+-+⎪⎪⎪⎪⎪⎭⎫⎝⎛------+-+-+-⎪⎪⎪⎪⎪⎭⎫⎝⎛------=022122000202010101210022002020122001111111111111112111111111324313413121r r r r r r r r r r r r A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--+-⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎛---4110210100410010450001411041010041001010101142111000101010101)21(132r r r 得41,41,41,454321-=-===k k k k , 即432141414145ααααβ--+=.21.设四元线性方程组β=AX 的系数矩阵的秩为3,321X X X ,,是其3个解向量,且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=80021X ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+432132X X .求其全部解 解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=+-123232321)(X X X 所以全部解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=123238002k ξ 其中k 为任意常数B 组1. 判断题(结论对的请在括号内打“√” ,错的打“×”)(1) 若n m >,则n 维向量组m ααα,,,21 线性相关. ( √ ) 提示:定理3.3的推论2.(2)若向量组线性相关,则它的任意一个部分组都相关. ( × ) 提示:利用上面(10)题解中的4321,,,αααα讨论.(3) 若向量组m ααα,,,21 线性相关,则它的秩小于m ,反之也对. ( √ ) 提示: 若向量组m ααα,,,21 的秩为m ,则若.(4) 向量组T T T )1,2,0,0(,)5,1,2,4(,)0,3,0,1(321===ααα的极大无关组为21,αα. ( × ) 提示: 向量组321,,ααα的秩为3.(5) 若n 阶方阵A 的行列式不等于零,则A 的列向量组线性相关. ( × ) 提示: 由n 阶方阵A 的行列式不等于零, 方阵A 的秩n =,和A 的列向量组的秩=方阵A 的秩n =, 则A 的列向量组线性相关. 2. 填空题(1) 向量组T T T )6,0,0(,)5,4,2(,)3,2,1(321===ααα的秩= 2 .解: 由()⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎪⎭⎫⎝⎛==000100321600100321600542321,,21321r r A ααα. (2) 若21,αα都是齐次线性方程组0=AX 的解向量,则)43(21αα-A = 0 . 解: 043)43(2121=-=-ααααA A A .(3) 若向量组T T T t t )1,0,0(,)0,2,1(,)0,1,1(2321+=+==ααα线性相关,则1 . 解: 由321,,ααα线性相关,有 0,,321==αααA .即 0)1)(1()1)](1(2[1021011,,222321=+-=++-=++==t t t t t t A ααα.(4) 方程组⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-00111032321x x x 的基础解系所含向量的个数= 1 . 解:由系数阵的秩是2,.(5) 方程组⎩⎨⎧=-=-004321x x x x 的基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1100,001121ηη .(6) 若线性方程组⎪⎩⎪⎨⎧=+=+=-kkx x x x x x 2121213122的有解,则长数=k 15/4 .解: 线性方程组⎪⎩⎪⎨⎧=+=+=-kkx x x x x x 2121213122的有解,则其系数阵的秩=增广阵的秩,有0=A所以 0154)3)(1()6(363130211331212112121=-=+---=-+--+-+--=k k k k k r r r r kkA . 3. 单项选择题(1) 向量组(I)线性相关的充分必要条件是( B ). (A) (I)中每个向量都可由其余向量线性表示.(B) (I)中至少有一个向量都可由其余向量线性表示. (C) (I)中只有一个向量都可由其余向量线性表示. (D) (I)中不包含零向量. 提示:定理3.2.习题四A 组10.下列矩阵是否为正交矩阵? (1)⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-61616221210313131 (2)⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--2102102131213121 解:(1)),,(321ααα=A ,其中),,(3211==i i α )(,),(j i j i ≠=0αα),,,(321=j i 所以A 为正交矩阵(2)),,(321ααα=A ,其中),,(3211=≠i i α )(,),(j i j i ≠≠0αα),,,(321=j i 所以A 不是正交矩阵11.设A 是n 阶对称矩阵,B 是n 阶正交矩阵,证明AB B 1-也是对称矩阵证明: 由题意可知A A T =, 1-=B B T因为AB BAB BT11--=)( 所以AB B1-也是对称矩阵习题五A 组1. 设矩阵 ⎪⎪⎪⎭⎫⎝⎛--=111131111A , 试证向量T)1,1,1(-=α为矩阵A 的属于特征值1=λ的特征向量.解:由 αα⋅=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛--=1111111111131111A所以向量T )1,1,1(-=α为矩阵A 的属于特征值1=λ的特征向量.3. 若0λ是矩阵A 的一个特征值, m 是正整数,试证m 0λ是矩阵m A 的一个特征值. 证明: 由0λ是矩阵A 的一个特征值,存在非零向量α,使得αλα0=A 成立,即α是矩阵A 的属于特征值0λ的特征向量.那么有αλαλαλαλαλαmm m m m m mAA AAAAm AA 02202010011)(=======-----所以m 0λ是矩阵m A 的一个特征值. 4. 若0λ是矩阵A 的一个特征值,试证(1)2020-+λλ是矩阵E A A 22-+的一个特征值; (2)若022=-+E A A ,矩阵A 的特征值只能等于-2或1.证明: 由0λ是矩阵A 的一个特征值,存在非零向量α,使得αλα0=A 成立,即α是矩阵A 的属于特征值0λ的特征向量.那么有(1) αλλααλαλαααα)2()2(02002022-+=-+=-+=-+E A A E A A 所以2020-+λλ是矩阵E A A 22-+的一个特征值. (2) 由022=-+E A A , 和 αλλα)2()2(0202-+=-+E A A , 00=α, 有02020=-+λλ, 得1200=-=λλ,,即矩阵A 的特征值只能等于-2或1. 7. 求下列矩阵的特征值与特征向量. (1) ⎪⎪⎭⎫⎝⎛--=2223A 解:由 0)2)(1(4)2)(3(2223=+-=+-+=⎪⎪⎭⎫⎝⎛--+=-λλλλλλλA E 得特征值.2,121-==λλ当11=λ时,对应的特征向量应满足齐次线性方程组()0=-X A E ,即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛--00122421x x ,其基础解系⎪⎪⎭⎫⎝⎛=211α.所以矩阵A 的属于特征值11=λ的全部特征向量为11αk , 其中1k 是任意非零常数.当22-=λ时,对应的特征向量应满足齐次线性方程组()02=--X A E , 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛--00422121x x ,其基础解系⎪⎪⎭⎫⎝⎛=122α.所以矩阵A 的属于特征值22-=λ的全部特征向量为22αk , 其中2k 是任意非零常数. (2) ⎪⎪⎭⎫⎝⎛-=4112A 解:由 0)3(1)2)(4(41122=-=+--=⎪⎪⎭⎫⎝⎛---=-λλλλλλA E 得特征值.321==λλ当321==λλ时,对应的特征向量应满足齐次线性方程组()03=-X A E , 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛--00111121x x ,其基础解系⎪⎪⎭⎫⎝⎛=11α.所以矩阵A 的属于特征值321==λλ的全部特征向量为αk , 其中k 是任意非零常数.(3) ⎪⎪⎪⎭⎫⎝⎛-=311111002A 解:由 3)2(]1)3)(1)[(2(3111112-=+---=⎪⎪⎪⎭⎫⎝⎛------=-λλλλλλλλA E 得特征值.2321===λλλ当.2321===λλλ时,对应的特征向量应满足齐次线性方程组()02=-X A E ,即⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---000111111000321x x x ,其基础解系⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=101,01121αα.所以矩阵A 的属于特征值.2321===λλλ的全部特征向量为2211ααk k +,其中21,k k 是任意不同时为零常数.8. 设A 为3阶矩阵,满足023,0,0=-=+=-A E A E A E , 求 (1)A 的特征值; (2)A 的行列式A .解: (1) 因,0=-A E 得;11=λ因(),0)1(3=---=---=+A E A E A E 即,0=--A E 得;12-=λ因,0232232233=-=⎪⎭⎫ ⎝⎛-=-A E A E A E 即,023=-A E 得.233=λ (2)由,23,1,1321=-==λλλ和321λλλ=A ,有23-=A .9. 已知矩阵 ⎪⎪⎪⎭⎫⎝⎛----=x A 44174147的特征值,12,3321===λλλ求x 的值,并求矩阵A 特征向量。
姓名学号院系级班大连理工大学课程名称线性代数与解析几何A卷考试形式闭卷授课院(系) 数学科学学院考试日期2013年11月18日试卷共6 页标准分得分一二三四五六七八总分一、填空题(每小题4分,共40分)装订线?11??33?T 设A=1?1, 则A A= 31113?214?T T T 3029设a=[1, ?1,2], b=[2,1,4], 则(ab )=92?1?4? 428?1?0设A=??0k?3k 1001?0k 100?0??, 则A=1?k 4 k 1?设A=, AB=B +3E , 则B=?123设A 为三阶矩阵,将A 的第1行加到第2行得到B ,再对调B 的2,3行得到E ,则?100?A=101?010已知a 1, a 2, a 3为三元列向量,a 1, a 2, a 3=1,则a 1+a 2, ?a 3, a 1+4a 2=1设A 为三阶方阵,A=2,则A +2A=32已知在空间直角坐标系下a=2i +j ?k , b=2i +j ?3k , 则a ?b=a ×b=?2i +4j .?120?12?2?则A ?1=?1?11?设A=111,?001?0018,10. 点(1,2,?1) 到平面2x +2y ?z=?5的距离为4二、单项选择题(每小题2分,共10分)设A 为n 阶方阵,则(2 )不是对称矩阵(1)A +A T (2)A ?A T (3)AA T (4)A T A设A 和B 都是n 阶方阵,下列选项正确的是(4 )(1)若A=E , 则A=E 或A=?E . (2)若A=O , 则A=O . (3)(A +B )=A +2AB +B . . (4)(A +E )=A +2A +E . . 设A 和B 都是n 阶方阵,下列选项正确的是(2 )(1)A +B=A +B . (2)AB=BA .2222222(3)?A=?A . (4)A B 22=A ?BB A??O A ?设A 和B 都是n 阶矩阵,A=2, B=3, 则=(B O 3)?O 3B (1)? (2)O 2A ?O 3A?O 2B?O 2B ?O 2A(3)? ? (4)A OB O 33设A 和B 为矩阵,下列选项正确的是(1 )(1)若A 和B 等价,且A 可逆,则B 也可逆. (2)(A +B ) (3)若AB 可逆,则A 和B 都可逆. (4)(AB ) 三、(8分)计算行列式?1?1=A ?1+B ?=A ?1B ?1+a b b b bb a b b b b b a b b b b b a b b bb=(a +3b )(a ?b ) 2+(a +4b )(a ?b ) 3=(a 2+3ab ?b 2+a +3b )(a ?b ) 2b a四、(8分)设A 为n 阶可逆矩阵,α为n 元列向量,P=?T ?αA?E0?,A?AM=?T?αα?,(1)计算并化简PM . (2)证明M 可逆的充要条件是αT A ?1α≠k . ?k ??A解(1)PM=??02?4分A (k ?αT A ?1α)α(2)PM=A (k ?αT A ?1α) ,P=A ≠0,M 可逆?M=A (k ?αT A ?1α) ≠0?αT A ?1α≠k . 4分?211??1?五、(9分)设A=022,B=A B +A ,求B .?2028?8?8解B=32?2416 ?1616?8?x=5?tx ?2y z ?1?,直线L 2的方程为?y=2t ,六、(12分)已知直线L 1的方程为==112?z=1+2t?(1)证明L 1和L 2为异面直线. (2)求经过直线L 1并平行于直线L 2的平面的方程。
华东理工大学线性代数作业簿(第一册)学院__________ 专业____________ 班级_______________ 学号__________ 姓名____________ 任课教师___________ 1.1 矩阵的概念1. 矩阵 A a ij 2i j 2 3.解:A2.设1 0 00 1 0 0 3 0 05 2A ,B 0 1 0 0 ,C 2 3 0, D0 3 00 40 0 10 0 4 1 0 0 3其中对角阵为___ ,三角阵有_解:对角阵为D;三角阵有A,C, D.1.2 矩阵的运算3 1 1 2 1 11. 已知2 3X O ,求矩阵X .2 0 23 1 1解:依题意,由3X 6422421311 4 3 3,1 1 1 5 ,41 1即得X 31 13 32. 如果矩阵A m n 与B t s 满足AB BA,试求m,n,t,s 之间的关系解:m nt s.3. 填空:4 3 1 7(1) 1 2 3 25 7 0 11(2) 1, 2, 3 23 ___________1(3) 2 1, 2 ;3__________________1 3 1214 0 0 1 2(4)1 1 3 4 1 3 14 0 235 1 2解:(1) 6 ;(2) 14;(3) 2 4 ;(4) 6 7820 5649 3 60104. 已知矩阵 A 0 0 1 ,试求与 A 可交换的所有矩阵 000解:由可交换矩阵的定义,知道所求矩阵必为 abc其为 B d e f ,于是有ghi010aAB 0 0 1 d000g abc0BA d e f 0ghi0def由 AB BA ,即得 g h i000由相应元素相等,则得 d gabc故 B 0 a b (a,b,c 均为任意常数) 为与 A 可交换的所有矩阵00a2a 33x 3 (a 12 a 21 )x 1x 2 (a 13 a 31) x 1 x 3 (a 23 a 32)x 2x 33 阶方阵,不妨设b c d e fe f = ghi ,h i 0 0 0 1 0 0 a b 0 1 0 d e , 0 00 g h0ab0 d e ,0gh h 0,a e i,b f ,a 11 a 12 a 13 x 1(1)x 1, x 2, x 3 a 21a 22 a 23 x 2 ;a 31a 32a 33x 35. 计算下列各题:解:原式等于: 2 a11x1 2 a22x21 33(2) A,求A 2008解:记 A,则A 2A 3 ,Q 2008 3669(3) 解: A9 200820071,1,13)669A .A 9.1,1,1 23 1,1,1 2328A2561 26. 利用等式17 62 3 2 0 7 335 1257 0 3 5 273 2 31 0,5 2 5 70 1,计算 1756.3512 .55解: 176 2 3 2 0 73 3197 12663512 5 7 0 3 527385 29227. 某公司为了技术革新,计划对职工实行分批脱产轮训,已知该 公司现有 2000 人正在脱产轮训,而不脱产职工有 8000人,若每 年从不脱产职工中抽调 30%的人脱产轮训, 同时又有 60%脱产轮 训职工结业回到生产岗位, 设职工总数不变, 令资料个人收集整理,勿做 商业用途0.7 0.6 8000 A , X0.3 0.42000试用 A 与 X 通过矩阵运算表示一年后和两年后的职工状况, 并据 此计算届时不脱产职工与脱产职工各有多少人 . 解:一年后职工状况为: AX 3200不脱产职工 6800 人,轮训职工 3200 人.6800 2 6680 两年后职工状况为: A A 2 X3200 3320不脱产职工 6680 人,轮训职工 3320 人. 218. 设矩阵 A 24 12 ,B求:(1) A T B T B T A T ; (2) A 2 B 2.解: (1) A T B T B T A T10 20 0 0 10 20 5 10 0 0 5 10 (2) A 2 B 22 1 2 13 1 314 24 2 6 2 620 0 15 5 15 5.0 0301030 10 .9. 设 A 是对称矩阵, B 是反对称矩阵,则( )是反对称矩阵(A ) AB BA; (B ) AB BA; (C ) (AB)2 ; (D ) BAB . 解:B.1 2 110.试将矩阵 A 3 0 12 23 解:11. 设 A 是反对称矩阵, B 是对称矩阵,试证: AB 是反对称矩阵 的充分必要条件为 AB BA. 证:必要性 :由(AB)Τ AB 及(AB)Τ B ΤA Τ B( A) BA 即得 AB BA. 充分性: 若 AB BA ,则(AB)Τ B ΤA Τ B( A) BA AB ,知 AB 是反对称阵 .表示成对称矩阵与反对称矩阵之和11A 12(A A T ) 12(A A T )1 5 3 0 1 12 2 2 2 53 1 0122 223 331 12 22212. 设 f (x) a m x m项式,f (A)1)2) 设A解:(1)f(a mm1am 1 1m a m 1xm a m A1L a1xm1a m 1A L证明 f (证明f (A)a0,记 f (A) 为方阵A的多a1A a0If ( 1)f ( 2)Pf ( )Pf(1) 0f ( 2)2) A A kf(A) f(P 1)Pf ( )P 13.设矩阵A a 1a m Pm11m12a1a1001aam 1m12 a1 a0k P 1mP1ma m 1P1P1a1P a0PP 1T2 T ,其中I 为n 阶单位阵,为n 维列向量,试证 A 为对称矩阵,且A2 I .证:A T(I 2 T )T I T2( T )T T2(T)T I 2 T 故 A 是对称矩阵,且T 2A2(I 2 T )(IT2T) 4T4 (( T T ))2 T I .(T)21.3 逆矩阵1. 设A为n 阶矩阵,且满足A2A ,则下列命题中正确的是().A) A O ;B) A I ;(C)若 A 不可逆,解:D.则A O ;( D )若 A 可逆,则A I.2. 设n阶矩阵A、(A)CA2B B、I;C 满足ABAC I ,则必有().(B)A T B T A T C T I ;(C)解:B.BA2C I;D)A2B2A2C2I .3.已知矩阵A 111111111111111,求A n及A 1(n是正整数).11证:由A2 4I ,即可得nnA n (A 2)2(4I)2 2nI, n 为偶数 An 1A n 1A (4I) 2 A 2n 1A, n 为奇数及 A (1A ) I ,亦即 A 1 1A . 444. 已知 n 阶矩阵 A 满足 A 2 2A 3I O ,求: A 1, (A 2I) 1, (A 4I) 1.( A 2I ) 解:依题意,有 A (A 2I ) 3I ,即 A(A 2I)I ,故311A 1 (A 2I );( A 2I )1A ,33再由已知凑出 (A 4I)(A 2I) 5I ,即得11(A 4I) 1 1(A 2I).55. 设 A 、 B、ABI 为同阶可逆阵, 试证: (1) A B 1 可逆;(2) AB 11A 1也可逆,且有AB1111A 1ABA 证:(1) AB 1ABB 1B 1(A B I)B1A B 1 可逆(2)证法 一:AB 11A 1A B11A B11A B 1 A 1AB11I IB1A 1AB A B 1(ABAA)1AB 11A 1可逆,且 AB 1 1A 11ABA A .证法二: 由(1)得 AB 11B(AB I) 1 ,因此1A B 1 A 1(ABA A) B(AB I) 1 A 1 (ABA A) 11B(AB I) 1(AB I)A A 1A(BA I) BA BA I I1 1 1 11A B 1 A 1可逆,且 A B 1 A 1 ABA A .。
1. (1)()17263540123219τ=+++++=,为奇排列. (2)()9854673218763222131τ=+++++++=,为奇排列. (3)()()()()121215311212n n n n n n τ++-=+-+++= , 当42n k =-或43n k =-时,为奇排列; 当41n k =-或4n k =时,为偶排列. 2.()()21211n n n n a a a a a a C ττ-+= ,()()21112n n n n n a a a C s s τ--=-=-∴ . 3. (1)()127435689002111005τ+++++++= =,8,3i j ∴==时为偶排列;(2)()132564897010200205τ+++++++= =,6,3i j ∴==时为偶排列.4.含23a 的所有项为()()1324112332441a a a a τ-、()()1342112334421a a a a τ-、()()2314122331441a a a a τ-、()()2341122334411a a a a τ-、()()4312142331421a a a a τ-、()()4321142332411a a a a τ-,()()()()()()13241,13422,23142,23413,43125,43216ττττττ====== , 23112332441223344114233142,,a a a a a a a a a a a a a ∴所有包含并带负号的项为---.5.证明 ()()121212121n n ni i i i i i n i i i D a a a τ=-∑()()()()()121212121n nni i i i i ni i i i a a a τ=----∑()()()1212121211n n n ni i i i i ni i i i a a a τ=--∑()1nD =-,当n 为奇数时,,20,0D D D D =-==.6.(1)2512371459274612----- ()()212313134142512152215223714173402162592729570113146121642012r r r c c r r r r r r ---+→-----↔+-→--+-→---()3232343442415221522152220113011301139021600300030012000330003r r r r r r r r r r r ---+-→↔+→=----+→-. (2)1200340000130051--()()121346115283451D -==--=- .(3)222111x xy xz xyy yz xzyzz +++ ()()()()()()222222222222222222111111D x y z x y z x y z x z y x y z y z x =+++++-+-+-+2221x y z +++=.(4)xy x y yx yx x yxy+++()()()3333332D xy x y x y x y x y =+-+--=-+.(5)0000x y z xz y y z x z y x ()12341010********010x y z x y z x y z x yz x z yx y z z y z y c c c c c x y z y z x x y z z x z x z y x x y zy xy x +++++++→=++++++()()()()()2123134141101010x y zr r r x z yy z x z y y zr r r x y z x y z z x y x z z x y x zy x x yzr r r y x x yz+-→------+-→++=++---------+-→--- ()12123200z x yy z c c c x y z z x yx y z x z c c c x y z z---+→++-----+→--- ()()()101101y z x y z z x y x y z x z z-=++------ ()()()()()21232310101100y z r r r x y z z x y x y z x y r r r y x z-+-→++-----+-→-- ()()()()444222222222x y z z x y x y z y x z x y z x y x z y z =++------=++---. (6)1111111111111111x x y y +-+-()()()14124234311110011111001111100111111111x x yr r r x x yr r r y y y r r r y y++-→--+-→++-→--000000000001110110x yyx yy x y y x y x y xy yy y y--=--=---- ()2222200011111xyyx yxy xy xy xy x y xy x y x x -=+=+=-+=--.7.(1)122222222232222n()()12121122210002222122222222010012232001000203,4,,22200020002i i n r r r r r r i n nn n --+-→+-→=-=--()22!n =--.(2)1231234111321221n n n n n n n n n n ------设此行列式的值为D , 将第2,3,,n 列均加于第一列, 则第一列的所有元素均为()112312n n n ++++=+ ,将此公因式提出, 因此有 121125411431321)1(21-+=n nn n D,再令第n 行减去第1n -行, 第1n -行减去第2n -行, …, 第2行减去第1行, 可得()()11231111110111111111110111122111110111111111n n n n n n n n n n D n n nn -----++==----()123111111111111121111111111n n n n n c c c c c n -----+++++→---()()()1210000000100000001112,3,,12210000000100000n i i n n n n n c c c n n n n i n n n n -------+→++=--=------()()()()()()()()32112212211111122n n n n n n n n n n n n n ---+---++=---=-.(3)123103121230n n n ------11231231030262!120322,3,,1230000i innn nr r r n n n i nn-+→=--=---. (4)0000000000000000x y x y x x y yx将行列式按第一列展开得nn n n n y x y x y x y y x y x y x x D 11)1(0000000)1(0000000++-+=-+= . 8. (1)11001010001x y zx y z =()()()2222221234111100100110100010001001xy zx y z x y z x c x c y c z c c x y z y z---+-+-+-→=---=2220x y z ∴++=,0x y z ===.(2)2222134526032113212x x ---=--+--22132222131223452625463211123132121232x x c c x x ------↔---+--+----()()212223134342224141223122320900090010052005200510001r r r x x r r r r r r x x r r r x --+-→--+-→-+→-----+→- ()()225910x x =---=31x x ∴=±=±或.9. (1)()11111111222222222333333331a b x a x b c a b c a b x a x b c x a b c a b xa xbc a b c ++++=-++证明 第二列乘以()x -加到第一列得()()()()21111111122222222222333333331111x aa xbc a a x b c D x aa xbc x a a x b c a a x b c x aa xbc -++=-+=-++-+ ()()11122122223331a b c c x c c x a b c a b c +-→-, 得证.(2)12111000100010nn k k k n na a x a x a x a x-=---=-∑.证明 用数学归纳法证明. 当2n =时, 212212121k k k a D a x a a x a x-=-==+=∑, 命题成立.假设对于()1n -阶行列式命题成立, 即 1111n n k n k k D a x ----==∑,则n D 按最后一行展开, 有111000001000001000(1)0001001n n nn xx D a xD x x+----=-+--11111(1)(1)n n n n k n k k a x a x -+---==--+∑11n n k n k k a a x --==+∑1nn k k k a x -==∑,因此, 对于n 阶行列式命题成立.(3)cos 100012cos 100012cos 00cos 0002cos 1012cos n αααααα=.证明 用数学归纳法证明.当1n =时, 1cos D α=, 命题成立. 假设对于1n -阶行列式命题成立, 即 1cos(1)n D n α-=-, , 则n D 按最后一列展开, 有11cos 100012cos 100012cos 00(1)2cos 0002cos 101n n n n D D ααααα+--=-+22cos cos(1)n n D αα-=--[]12cos cos(2)cos(2)2n n n ααα=+--- cos n α=,因此, 对于n 阶行列式命题成立.(4)121211111111(1)111nn i ina a a a a a a =++=++∑证明 法一11212121323131414111111111000011100001110000011100000001n n n na a a a r r r a a a r r r D a r r r a a a a a -+-+-→-+-→=--→+--+提取公因子123211211111111110000101000100000100010100001n n n n na a a a a a a a a a ---+----- 12321121121111111101000000100000000000001000001nk kn n n n n na a a a a a c c c c a a a a =---++++→∑1211(1)nn i ia a a a ==+∑. 法二122112133223243431100001000111100011110001111000100001n n n n n n a a a a c c c a a a c c c D a c c c a a a a a ---+-→-+-→=--→+--+按最后一列展开(由下往上)121(1)()n n a a a a -+ 12233422000000000000000000000000000n n na a a a a a a a a --------122331100000000000000n n na a a a a a a a ----+---22334110000000000000n n na a a a a a a a -----+--1211232123123(1)()n n n n n n n n n a a a a a a a a a a a a a a a a a -----=+++++1211(1)nn i ia a a a ==+∑. (5)()()12311231123111123112311n n n n nn n n ij j i j i i n nn nx a a a a a x a a a a a x a a a x a x a a a a x a a a a a x ---==--⎛⎫=-+ ⎪ ⎪-⎝⎭∑∏ . 证明 法一12311231123112311231n n n n n n n n n n n x a a a a a x a a a a a x a a D a a a x a a a a a x -----=1231112221211333134141111110000000000n n n n n nx a a a a a x x a r r r a x x a r r r r r r a x x a a x x a ------→---→-→----()()()3112112233111122110001010010010101n n n n n nn n a a a x a x a x a x a x a x a x a x a x a ---------------提取公因子()()()12122111211122101000000001001ni n n i i i n n n nn n n a a a a x a x a x a x a c c c c x a x a x a -=--+----+++→---∑()()111nn ij j i j i i a x a x a ==⎛⎫=-+ ⎪ ⎪-⎝⎭∑∏. 法二12311231123112311231n n n n n n n n n n nx a a a a a x a a a a a x a a D a a a x a a a a a x -----=121232343c c c c c c c c c -→-→-→ 1122223333111231000000000000n n n n n nx a a x x a a x x a x a a x a a a a x ----------按最后一行展开(由右往左)11222211()()()()n n n n n x x a x a x a x a -------- 1122223333122000000000000000000n n n n nx a a x x a a x x a a x a a x -----------11222233332111100000000000000n n n n n n n x a a x x a a x x a a a x x a a x ----------+----()22223313344111110000000100000n n n n n n na x x a a x x a a x a a x x a a x +---------+----1122221111222211()()()()()()()()()n n n n n n n n n n n x a x a x a x a x a a x a x a x a x a --------=-----+----12222112113311()()()()()()()()n n n n n n n n n n n n a x a x a x a x a a x a x a x a x a --------+----+----+ 111223322()()()()()n n n n n n a x a x a x a x a x a ----+-----()()111nn ij j i j i i a x a x a ==⎛⎫=-+ ⎪ ⎪-⎝⎭∑∏. 10.解:由范德蒙德行列式性质得21211112111111()1n n n n n n x x x a a a P x a a a ------=12111111211111n n n n n n x a a a x a a a ------=()()()1231121222212311111n n n n n n n a a a a x a x a x a a a a a ----------=,121,,,n a a a - 互不相同,∴由范德蒙德行列式性质得12312221123111110n n n n n n a a a a a a a a ------≠,故()P x 是x 的1n -次多项式,方程()0P x =的所有根为121,,,n x a x a x a -=== . 11. (1)方程组的系数行列式504211217041201111D -==-≠, 所以方程组有唯一解.又130421121711200111D -==-,253421121741201011D ==,350321111741101101D -==,450431121741211110D -==-, 故可得解为111D x D ==,221D x D ==-,331D x D ==-,441Dx D==. (2)方程组的系数行列式2151130627002121476D ---==≠--,所以方程组有唯一解.又1815193068152120476D ---==---,22851190610805121076D --==----,3218113962702521406D --==--,4215813092702151470D --==---,故可得解为113D x D ==,224D x D ==-,331D x D ==-,441Dx D==. (3)方程组的系数行列式3200013200630013200013200013D ==≠,所以方程组有唯一解.又1120000320031013200013200013D ==,2310001020015003200013200013D ==-,332100130007010200003200013D ==,432010132003013000010200003D ==-,532001132001013200013000010D ==,故可得解为113163D x D ==,22521D x D ==-,3319D x D ==,44121D x D ==-,55163D x D ==. 12.设平面方程为ax by cz d ++=,则由题意知233a b c da b c d a b c d ++=⎧⎪+-=⎨⎪--=⎩, 方程组的系数行列式111231160311D =-=-≠--,所以方程组有唯一解.又11131811d D dd d=-=---,21121231dD d d d=-=--,31123631dD d d d==--,故可得解为12D d a D ==,28D db D ==,338D dc D == ,代入平面方程得438x y z ++=. 13. 证明充分性:若0a b c ++=,则把c a b =--带入方程组000ax by c bx cy a cx ay b ++=⎧⎪++=⎨⎪++=⎩(1) 可得1x y ==即三条直线相交于一点()1,1;必要性:若三条不同直线(1)相交于一点,则三个平面000ax by cz bx cy az cx ay bz ++=⎧⎪++=⎨⎪++=⎩(2) 相交于非零点,而由克莱姆法则,方程组(2)有非零解的必要条件是其行列式为零,又()()()()22212a bcb c a a b c a b b c c a c a b ⎡⎤=-++-+-+-⎣⎦, 所以,a b c ==或0a b c ++=,由题意a b c ==不满足, 故0a b c ++=.14.令()32f x ax bx cx d =+++,由()10f -=,()14f =,()23f =,()316f =知048423279316a b c d a b c d a b c d a b c d -+-+=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩ 方程组的系数行列式11111111480842127931D --==≠, 所以方程组有唯一解.又10111411196342116931D -==,2101114112408321271631D --==-,31101114108431279161D -==,4111011143368423279316D --==,故可得解为12D a D ==,25D b D ==-,30D c D ==,47Dd D==, 即()32257f x x x =-+.。
第2章 (之1)第2次作业教学内容: §2.1 导数概念**1. 设x x x f 2)(3+=,试用导数定义求)(x f '.解:lim ()()lim()()∆∆∆∆∆∆∆x x f x x f x x x x x x x xx →→+-=+++--003322 =+322x .**2. 试用导数定义计算下列函数的导数:(1)xx f 1)(=, 求)1(f '; (2)()38t t g -=,求()2g '; (3)()t t t -=23ϕ,求()1-'ϕ.解:(1)x f x f f x ∆-∆+='→∆)1()1(lim )1(0=+-→lim ∆∆∆x xx0111=-+=-→lim ∆∆x x 0111.(2) ()()()tt g t t g t g t ∆-∆+='→∆0lim()[][]()()tt t t t t t t tt t t t t t t t t t ∆∆+∆+∆+-=∆∆+-=∆--∆+-=→∆→∆→∆32233033033033lim lim 88lim()22033lim t t t t t ∆-∆--=→∆23t -=,即 ()23t t g -=', ()122-='∴g .(3) ()()()tt t t t t ∆-∆+='→∆ϕϕϕ0lim()()[][]ttt t t t t t ∆--∆+-∆+=→∆22033limttt t t t ∆∆-∆+∆=→∆2036lim()16136lim 0-=-∆+=→∆t t t t , ()16-='∴t t ϕ, ()71-=-'ϕ.**3. 求曲线22x y = 在点 ()2,1=P 处的切线方程.解:曲线在点P 处切线的斜率为 4122lim 21=--→x x x ,所以切线方程为 ()214+-=x y .**4. 化学反应速率通常是以单位时间内反应物浓度的减少或生成物浓度的增加来表征。
线性代数第二版答案(共10篇)线性代数第二版答案(一): 高等数学线性代数,概率统计第二版课后答案姚孟臣版最佳答案: 您好,我看到您的问题很久没有人来回答,但是问题过期无人回答会被扣分的并且你的悬赏分也会被没收!所以我给你提几条建议:线性代数第二版答案(二): 线性代数和概率论与数理统计教程答案线性代数(第二版)是张民选主编南京大学出版社概率论与数理统计教程周国利主编南京大学出版社教程答案线性代数第二版答案(三): 数学线性代数,举2阶矩阵的例子,它们有相同的特征值但是不相似。
注:不要复制粘贴,拍题搜出来的答案数学线性代数,举2阶矩阵的例子,它们有相同的特征值但是不相似。
注:不要复制粘贴,拍题搜出来的答案不对。
线性代数第二版答案(四): 线性代数第二版陈维新设ε1,ε2,...,εn为线性空间V的一组基,求这个基到基ε2,...,εn,ε1的过渡矩阵设ε1,ε2,...,εn为线性空间V的一组基,求这个基到基ε2,...,εn,ε1的过渡矩阵解:因为(ε2,...,εn,ε1)=(ε1,ε2,...,εn)AA =0 0 0 ... 0 11 0 0 ... 0 00 1 0 ... 0 0... ...0 0 0 ... 0 00 0 0 ... 1 0所以ε1,ε2,...,εn 到ε2,...,εn,ε1 的过渡矩阵为A.线性代数第二版答案(五): 线性代数:为什么二次型的标准形式不唯一的,而它的规范形唯一标准形对平方项的系数没有严格限制如 4x^2 = (2x)^2作一个变换其标准形就改变了.但规范型要求平方项的系数是1或-1而二次型的正负惯性指数是不变量所以规范型是唯一的(不考虑变量的顺序)线性代数第二版答案(六): 大二,线性代数习题,设二次型f(X1,X2,X3)=X1 +X2 +X3 -2(X1X2)-2(X2X3)-2(X3X1),1求出二次型f的矩阵A的全部特征值2求可逆矩阵P,使(P的逆阵乘以AP)成为对角阵3计算A的m次方的绝对值(m是正整数)很多数学符号我打不出来或者大不清楚题目中的“ ”是平方(1)A=|1,-1,-1||-1,1,-1||-1,-1,1|由特征方程|A-入E|=0,得到入(2-入)^(入+1)=0,所以三个特征值分别是-1,2,2代入(A-入E)x=0,求得三个x特征向量分别是(也就是方程的基础解系)-1对应的解系(1,1,1),2对应的解系(1,1,-2),(1,0,-1)(2)所以可逆矩阵P=|1,1,1||1,1,-2||1,0,-1|特征值矩阵B=|-1,0,0||0,2,0||0,0,2|使得A=P^(-1)BP(3)A的行列式|A|=|B|=-4所以|A^m|=|A|^m=(-4)的m次方线性代数第二版答案(七): 线性代数二次型方面的问题1、试证:可逆实对称矩阵A与A逆是合同矩阵.2、证明:一个实二次型可以分解成两个实系数一次齐次多项式乘积的充分必要条件是它的秩等于2,而且符号差为零;或者秩等于1.3、设A为n阶实对称矩阵,且满足A三次方 -2A平方 +4A-3E=0.证明A为正定矩阵.4、设A为正定矩阵,E为n阶单位阵,证明:A+E的行列式大于1.先解最后一道:因为:A是正定矩阵,则A的所有特征值均大于零.(λi>0)则对于矩阵(A+E),其特征值∧i>1.|A+E|=,所以,|A+E|是大于1的.线性代数第二版答案(八): 线性代数求逆序数题第一题:1,3……(2n-1)2,4……2n第二题:1,3......(2n-1)2n(2n-2) (2)第一题结果是n(n-1)/2首先,前n个数都是从小到大排列的,没有逆序数对.然后,看2,前面n个数除了1以外的n-1个数都比它大,每一个都与它组成一对逆序数对,就有n-1个;接着,看4,前面n个数除了1和3以外的n-2个数都比它大,每一个都与它组成一对逆序数对,就有n-2个;.到了2n-2时,就只有2n-1比它大,有一个逆序数对.2n 是0.加起来就是0+1+2+……(n-1)=n(n-1)/2第二题结果是n(n-1)首先,前n个数都是从小到大排列的,没有逆序数对.然后,看2,前面2n-1个数除了1以外的2n-2个数都比它大,每一个都与它组成一对逆序数对,就有2n-2个;接着,看4,前面2n-2个数除了1和3以外的2n-4个数都比它大,每一个都与它组成一对逆序数对,就有2n-4个;.到了2n-2时,有2个比它大,有2个逆序数对.2n 是0.加起来就是 2*【0+1+2+……(n-1)】=n(n-1)【线性代数第二版答案】线性代数第二版答案(九): 哪位大侠能帮我证眀下线性代数第52页推论2:若向量组1可由向量组2线性表示,则向量组1的秩不超过向量组2的秩【线性代数第二版答案】把向量组都用矩阵表示,组1记为A.矩阵记为B.向量组1可由向量组2线性表示说明,一定姑在个矩阵C.使得A=B*C再利用性质,做积之后秩变小了.所以A秩小于等于B秩.线性代数第二版答案(十): 线性代数矩阵计算[1 2 3][4 5 6][7 8 9]的答案是不是0是0,第三行减第二行,第二行减第一行,[1 2 3] [123][4 5 6] -----> [333][7 8 9] [333]第三行减第二行[1 2 3][3 3 3][0 0 0]线性代数第二版同济线性代数第二版戴斌祥。
第一章 行列式H2733-PKGKD-DTBW8-6B8R9-CP32P习题1.11. 证明:(1)首先证明)3(Q 是数域。
因为)3(Q Q ⊆,所以)3(Q 中至少含有两个复数。
任给两个复数)3(3,32211Q b a b a ∈++,我们有3)()3()3)(3(3)()()3()3(3)()()3()3(2121212122112121221121212211b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。
因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以)3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。
如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。
又因为有理数的和、差、积、商仍为有理数,所以 )3(33)(3)3()3)(3()3)(3(332222212122222121222222112211Q ba b a a b ba b b a a b a b a b a b a b a b a ∈--+--=-+-+=++。
综上所述,我们有)3(Q 是数域。
(2)类似可证明)(p Q 是数域,这儿p 是一个素数。
(3)下面证明:若q p ,为互异素数,则)()(q Q p Q ⊄。
(反证法)如果)()(q Q p Q ⊆,则q b a p Q b a +=⇒∈∃,,从而有q abqb a p p 2)()(222++==。
由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。
华东理工初试参考书目华东理工大学作为中国一流的高等学府,拥有丰富的学术资源和优质的教学团队。
对于准备参加华东理工大学初试的考生来说,选择合适的参考书目是非常重要的。
下面是一份为考生推荐的华东理工初试参考书目,希望能够帮助考生更好地备考。
1.数学类-《高等数学》(上、下册):作者:林鼎立等。
这是一本系统完整的高等数学教材,涵盖了华东理工大学初试所需的数学知识点。
-《线性代数》:作者:李尚志。
这本书详细介绍了线性代数的基本概念和方法,对于理解矩阵和向量空间等内容非常有帮助。
-《概率论与数理统计》:作者:吴喜之。
这本书介绍了概率论和数理统计的基本理论和应用方法,是初试考生进行数学统计分析的必备参考。
2.专业课-《物理学原理》:作者:郭硕鸿等。
这本书系统地介绍了物理学的基本原理和概念,适合初试考生夯实物理基础知识。
-《化学原理》:作者:王雪峰等。
这本书全面地介绍了化学的基本原理和实验方法,对于理解化学知识和解题能力的提升有很大帮助。
-《计算机科学导论》:作者:唐敬宇。
这本书系统地介绍了计算机科学的基本概念和技术,对于计算机类专业初试考生特别适用。
3.英语类-《新视野大学英语》(第三版):作者:徐洪磊等。
这是一套为大学英语学习编写的教材,包含了听力、口语、阅读、写作等方面的训练,对于提高英语水平非常有帮助。
-《剑桥商务英语》:作者:Ian MacKenzie等。
这本书主要针对商务英语的学习,包括商务会话、商务写作等内容,适合商科类专业初试考生参考。
总的来说,以上是一些适合华东理工大学初试考生参考的书目。
当然,考生在备考过程中还需要结合自身情况和专业要求,选择适合自己的参考资料。
希望考生们能够利用好这些参考书目,取得优异的成绩,顺利进入华东理工大学。
线性代数课后习题答案第二版线性代数课后习题答案第二版线性代数是一门重要的数学学科,广泛应用于各个领域。
而对于学习者来说,课后习题是巩固知识、提高能力的重要方式之一。
本文将为大家提供线性代数课后习题第二版的答案,希望能够帮助大家更好地理解和掌握这门学科。
一、矩阵与向量1. 习题:给定矩阵A = [1 2 3; 4 5 6; 7 8 9],求矩阵A的转置。
答案:矩阵A的转置为A^T = [1 4 7; 2 5 8; 3 6 9]。
2. 习题:给定向量x = [1; 2; 3]和向量y = [4; 5; 6],求向量x和y的内积。
答案:向量x和y的内积为x·y = 1*4 + 2*5 + 3*6 = 32。
3. 习题:给定矩阵A = [1 2 3; 4 5 6; 7 8 9]和向量x = [1; 1; 1],求矩阵A和向量x的乘积。
答案:矩阵A和向量x的乘积为Ax = [6; 15; 24]。
二、线性方程组与矩阵运算1. 习题:给定线性方程组:2x + 3y - z = 14x + 2y + z = -2x - y + 2z = 0求解该线性方程组。
答案:解为x = 1, y = -1, z = 2。
2. 习题:给定矩阵A = [1 2; 3 4]和矩阵B = [5 6; 7 8],求矩阵A和矩阵B的乘积。
答案:矩阵A和矩阵B的乘积为AB = [19 22; 43 50]。
3. 习题:给定矩阵A = [1 2; 3 4]和矩阵B = [5 6; 7 8],求矩阵A和矩阵B的和。
答案:矩阵A和矩阵B的和为A + B = [6 8; 10 12]。
三、特征值与特征向量1. 习题:给定矩阵A = [2 1; 1 2],求矩阵A的特征值和特征向量。
答案:矩阵A的特征值为λ1 = 3, λ2 = 1,对应的特征向量为v1 = [1; 1],v2 = [-1; 1]。
2. 习题:给定矩阵A = [1 2; 2 4],求矩阵A的特征值和特征向量。
5.1 (1)0)1)(4(43,23212=+-=--=-⎥⎦⎤⎢⎣⎡--=-λλλλλλλλI A I A 由得特征值为4,121=-=λλ;以11-=λ代入方程(I A λ-)x=0,由⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=-0011~33221I A λ解得)0(1121≠⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡c c x x 亦即对应于11-=λ的全体特征向量。
以42=λ代入方程(I A λ-)x=0,由⎥⎥⎦⎤⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡--=-00321~23232I A λ解得)0(32132'''21≠⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡c c c x x 亦即对应于41=λ的全体特征向量。
(2)20)2(,2001210023213====-=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-λλλλλλλλλ得特征值为由I A I A ,以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-=-=000000101~0001010002,023,2,1I A x I A 由)代入方程(λλ得解为()01010102121321≠⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡c c c c x x x ,它即对应于2321===λλλ的全体特征向量。
(3)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=-111111111111,111111111111λλλλλλλλλλI A I A 由0)3()1()3)(1(0001100101011111101100101011132=+-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-------=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------=λλλλλλλλλλλλλλλλλ得1,34,3,21=-=λλ。
由⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=-0000110010101001~8440440040403111~31111311113111131I A λ 得对应于31-=λ的全部特征向量为[])0(,1,1,1,11≠--=c c Tη。
矩阵在实际中的应用班级:小组成员:指导老师:目录摘要 (3)问题提出 (4)实际应用举例 (4)论文总结 (10)参考文献 (10)【摘要】随着科学技术的发展,数学也越来越贴近我们的生活,可以说是息息相关。
我们在学习数学知识的同时,也不能忘记将数学知识应用于生活。
在学习高等代数的过程中,我们发现代数在生活和实践中都有不可缺少的的位置。
本篇论文中,我们就对代数中的矩阵在人口流动,电阻电路,加密解密,文献管理方面的应用进行了探究。
【关键词】高等代数,矩阵,实际,应用【Abstract】With the development of science and technology, mathematics is more and more close to our life. While we are learning mathematics knowledge,we cannot forget the application of mathematical knowledge in life. In learning theadvanced algebra course, we found the algebra in the life and practices have an indispensable position. In this thesis, we do research on the matrix about the population flow, resistance and circuit, encryption and decryption and document management 。
【Key words】Advanced Algebra, matrix, practical, application【问题提出】接触高等代数一个学期以来,并未感觉其与实际生活有多大联系。
关于方阵多项式的特征问题施劲松;王圣强【摘要】对方阵及其矩阵多项式,给出了它们特征值、特征向量之间关系的刻画.【期刊名称】《大学数学》【年(卷),期】2018(034)004【总页数】6页(P62-67)【关键词】方阵;矩阵多项式;特征值;特征向量【作者】施劲松;王圣强【作者单位】华东理工大学理学院,上海200237;华东理工大学理学院,上海200237【正文语种】中文【中图分类】O151.221 引言线性代数是普通高等学校工科、管科、商科等专业大学生的数学类必修课程之一. 线性代数的教学过程中,方阵的特征值与特征向量问题,既是线性代数中矩阵、行列式、线性方程组与向量空间这四大基础知识点的综合性应用,又有新的知识点贯穿其中,并通过(实对称)矩阵可对角化的判定与求解,实现了二次型到标准形的转换. 可以说,方阵的特征问题是个综合性、应用性很强的知识点,在每年的全国硕士生入学考试数学(一、二、三)中,它都会以较高频率出现. 所以有必要理清其中各种性质,特别是(实对称)方阵和其衍生矩阵多项式之间特征值和特征向量之间的关系.2 问题的提出先来看两道例题:例1 设矩阵正交矩阵Q使得QTAQ为对角矩阵,若矩阵Q的第1列为求a及Q.例2 设3阶实对称矩阵A的特征值λ1=1,λ2=2,迹tr(A)=1,α1=[1,-1,1]T是A的属于λ1的一个特征向量,记B=A5-4A3+E,其中E是单位矩阵,(i) 验证α1是矩阵B的特征向量;并求B的全部特征值与特征向量.(ii) 求矩阵B.可以看出,两道题目都是常见的3阶实对称矩阵的问题,好像并无特别之处. 难道其中还有什么值得探寻的地方?先看解答.解(例1) 注意到A实对称,利用实对称矩阵与二次型的一一对应关系,结合“正交变换化二次型为标准形的系数一定是A的特征值”这一性质,可知正交矩阵Q 的列即分别对应于A的特征值λ1,λ2,λ3的特征向量,故成立Aε1=λ1ε1. 解之即得,a=-1,λ1=2.再求正交矩阵Q.解法一由a=-1,可知A被完全确定,接下来可按部就班地由|A-λE|=0解得A的另两个特征值λ2=-4,λ3=5. 分别解线性方程组(A-λiE)x=0 (i=2,3),求得对应λ2,λ3的特征向量;再单位化得到ε2,ε3. 记Q=[ε1,ε2,ε3],即为所求(略,注意Q 不唯一.).有人觉得解法一是舍近求远,认为完全可以从性质“n阶实对称矩阵必存在n个两两正交的特征向量”出发,直接求出正交阵Q. 解答如下:解法二利用性质“n阶实对称矩阵必存在n个两两正交的特征向量”,由线性方程组解得其基础解系为δ2=[-2,1,0]T,δ3=[-1,0,1]T. 对δ2,δ3进行施密特正交化,单位化,可得记Q=[ε1,ε2,ε3],即为所求.很可惜,对刚刚求出来的矩阵Q,经过验算,QTAQ根本就不是一个对角矩阵!这说明这个Q不正确. 那问题出在哪儿呢?奇怪的是,在得到线性方程组的基础解系为δ2=[-2,1,0]T,δ3=[-1,0,1]T之后,若以的顺序做正交化,再单位化得到记Q1=[ε1,ε′2,ε′3],倒能得到符合题意. 这又是为什么呢?原来,经检验(即计算Aδ2)发现,δ2根本就不是A的特征向量!所以前面那个Q 当然不是正确答案. 毕竟,几乎所有线性代数教材中只给出性质“实对称矩阵不同特征值对应的特征向量必正交”而没有说“实对称矩阵中与其某特征向量正交的非零向量都是其余特征值的特征向量”. 事实上,若3阶实对称矩阵A的三个特征值λ1,λ2,λ3互不相等,且η1,η2,η3是分别属于λ1,λ2,λ3的特征向量,则向量(η2+η3)也与η1正交,但容易证明η2+η3却不再是A的特征向量(反证法). 这就解释了为什么δ2不是A的特征向量.可以猜测,δ3=[-1,0,1]T是A的特征向量. 经检验,发现果然有Aδ3=-4δ3. 但不得不指出,这是一个巧合!因为完全可以取δ2,δ2+δ3作为线性方程组的基础解系,但此刻,显然它们两个都不再是A的特征向量. 这就意味着,解法二并不总是有效. 而是有,结论1 对3阶实对称矩阵,若它的特征值全是单根,且只知道其中某一个单根对应的特征向量,则与这个单根对应特征向量正交的非零向量不再一定是其他特征值的特征向量.再来看例2的解答.解(例2) (i) 依题意,成立故α1是矩阵B的特征向量,且它对应于B的特征值μ1=-2.对矩阵A,由性质“”,及λ1=1,λ2=2,可得A的第三个特征值λ3=-2.由B=A5-4A3+E,可知B的特征值以A的特征值λ2=2,λ3=-2分别代入,即得μ2=μ3=1.再由A为实对称矩阵,可知B=A5-4A3+E亦为实对称矩阵. 故B的属于μ2=μ3=1的特征向量必与μ1=-2对应的特征向量α1正交,即它们满足线性方程组亦即[1,-1,1]x=0,解得其基础解系为ξ2=[1,1,0]T,ξ3=[-1,0,1]T. 故有B的属于特征值μ1=-2的全部特征向量为k1α1 (k1≠0);B的属于特征值μ2=μ3=1的全部特征向量为k2ξ2+k3ξ3(k2,k3不同时为零).(ii) 为求矩阵B,可构造正交矩阵以避免求逆运算. 对ξ2,ξ3正交化得再对α1,α2,α3作单位化,得进而构造出正交矩阵Q=[ε1,ε2,ε3],于是由QTBQ=Λ=diag[-2,1,1],解得即为所求.解题到此结束. 但为了通过这道题目更深入地理清方阵及其衍生矩阵多项式的特征值与特征向量之间的关系,还可以问出以下三个问题:问题1 本例中μ1=-2,μ2=1是B=f(A)的特征值毋庸置疑,但为什么μ2=1就是B的二重特征值呢?也就是说,B会不会还有另外的特征值?推广即:若f(x)是个多项式函数,则n阶矩阵多项式f(A)的特征值是否完全由A的特征值λi(i=1,2,…,n)所确定?问题2 例1中的解法二,已经告诉人们,对性质“实对称矩阵不同特征值对应的特征向量必正交”需要谨慎使用. 那为何对本例中的3阶实对称矩阵B,就可以将线性方程组的基础解系,作为它的二重特征值μ2=μ3=1的特征向量?问题3 为作一题多解的尝试,虽然可能麻烦些,能否先将矩阵A求出来,再利用关系式B=A5-4A3+E求出B呢?或者直接问能否求出矩阵A?如果A能求出来,那它是否唯一?3 结论与证明接下来,分别考虑上述三个问题.先看问题1.我们知道,“若Aξ=λξ (ξ≠0),f(x)是个多项式,则对矩阵多项式f(A),成立f(A)ξ=f(λ)ξ”. 这意味着f(λ)是f(A)的特征值,且ξ是对应特征值f(λ)的特征向量. 但现行常见的线性代数教材中,似乎没有哪本上探究过“矩阵多项式f(A)的特征值f(λi)是否完全由A的特征值λi (i=1,2,…,n)所确定(含重数)?”这个问题. 当然,答案是肯定的. 为此,先给出约当矩阵的概念,以及一个引理.称形如的矩阵为一个约当块. 而如果一个分块对角矩阵J的所有子块都是约当块,则称J为约当矩阵,即其中约当块且不同约当块的主对角线元素可以相等.引理[1] 任意的n阶方阵A都相似于一个约当矩阵. 也就是说,存在可逆矩阵R使R-1AR=J是一个约当矩阵.下面给出本文的主要结论,即定理若n阶方阵A的全部特征值为λi(i=1,2,3,…,n),f(x)是个多项式,则矩阵多项式f(A)的特征值被f(λi)(i=1,2,3,…,n)完全确定.证 (i) 若矩阵A可对角化,即存在可逆矩阵R,使得R-1AR=Λ =diag[λ1,λ2,…,λn],于是必有R-1f(A)R=f(Λ)=diag[f(λ1),f(λ2), …,f(λn)].由相似矩阵具有相同的特征值可知,f(A)的特征值必为f(λ1),f(λ2),…,f(λn).(ii) 若矩阵A不可对角化,则由引理可知,存在可逆矩阵R,使是一个约当矩阵,其中,λ1,λ2,…,λs为A的所有互异特征值,且它们的代数重数分别为m1,m2,…,ms,满足(rt是特征值λt的几何重数,t=1,2,…,s.),约当块J(λt)具体写出来之后的阶数等于mt. 于是,由分块对角矩阵乘法的性质,可得结合约当块的上三角形属性,以及两个上三角形矩阵的乘积仍然为上三角形矩阵,且其主对角线元素为两个原矩阵对应位置主对角线元素的乘积,可知f(J)的主对角线元素必为f(λ1),f(λ2),…,f(λn). 定理得证.至此有,问题1的回答由上述定理,可知矩阵B的特征值只能是μ1=-2,μ2=μ3=1.再来看问题2.事实上,对3阶实对称矩阵B,根据性质,它的二重特征值μ2=μ3=1,一定有两个线性无关的特征向量γ2,γ3,均与μ1=-2的特征向量α1正交,所以它们必能由的基础解系ξ2=[1,1,0]T,ξ3=[-1,0,1]T线性表示,亦即存在方阵C,使成立[γ2,γ3]=[ξ2,ξ3]C,我们说C必可逆(否则可得γ2,γ3线性相关,矛盾.),于是有[ξ2,ξ3]=[γ2,γ3]C-1,故而两个向量组γ2,γ3与ξ2,ξ3可以互相线性表示,即等价,也就是说ξ2,ξ3完全可作为B的对应二重特征值μ2=μ3=1的特征向量.于是有,问题2的回答对3阶实对称矩阵,若它的特征值为一个单根和一个二重根,则和单特征值对应特征向量正交的非零向量都是二重特征值对应的特征向量.类似地,上述问题2的回答很容易被推广为以下结论:结论2 对n阶实对称矩阵,设它所有互不相同的特征值为λ1,λ2,…,λs,这些特征值的代数重数分别是m1,m2,…,ms(此时有m1+m2+…+ms=n);并且对每个特征值λi(i=1,2,…,s-1),已知λi的mi个线性无关的特征向量,则和所有这些已知特征向量都正交的非零向量必是λs对应的特征向量.注利用文献[2]文末关于唯一性的证明,还可以知道,本文例2中的矩阵B是唯一的.再来看问题3.对问题3,有人从性质“实对称矩阵不同特征值对应的特征向量必正交”出发,通过几乎完全相同的解答,尝试取前述解答所求正交矩阵Q=[ε1,ε2,ε3]的列向量组ε1,ε2,ε3,分别作为矩阵A的对应λ1=1,λ2=2,λ3=-2的特征向量,结合A的实对称性,便有QTAQ=V=diag[1,2,-2],进而求得对比本文例1的结论1,我们并不知道这个矩阵A到底对不对. 但将A代入等式B=A5-4A3+E,得到的B居然和前述解答结果一样!这又是一个巧合?!在线性方程组的基础解系ξ2=[1,1,0]T,ξ3=[-1,0,1]T中,经验证,ξ2恰好是最终所求得的这个矩阵A的特征向量;而经过正交化之后得到的因为满足既与α1正交,又与α2=ξ2=[1,1,0]T正交,结合性质“实对称矩阵不同特征值对应的特征向量必正交”以及“方阵单特征值的代数重数等于几何重数”这两个性质,即知A的特征值λ3=-2对应的特征向量必为的非零常数倍,所以α3也恰为λ3=-2的特征向量. 于是,求得的A正确,进而B也正确.不出所料,经验证,向量ξ3=[-1,0,1]T果然就不再是刚刚求得的这个矩阵的特征向量!那么类似于本文例1的解法二,换个角度,若是在正交化过程中令再单位化,也可得到正交矩阵Q2,但可以想象,再由以期求出A,似乎必然是无据可依了.但有意思的是,从等式倒也可以求得矩阵(为有所区别,带个下标1). 虽然和前面那个不一样,但以其代入等式B=A5-4A3+E,得到的矩阵B,却和前述解答结果一样!仔细分析,这样的结果并不意外: 因为例1中的A是确定的;而例2中的A不确定.事实上,只要取由ξ2=[1,1,0]T,ξ3=[-1,0,1]T所生成向量空间中的任一标准正交基σ2,σ3,则存在2阶的正交矩阵P,使成立[σ2,σ3]=[ε2,ε3]P;再配上σ1=ε1,构成正交矩阵则由确定的A,不妨记为则考虑由算出的B,不妨记为则容易算出即通过这样构造的可以计算出无穷多个A来,但是最终代入多项式得到的B总是一样的.综上所述,可得,问题3的回答能求出矩阵A,但A不唯一.结合问题3的回答,还可得到结论3 对已知方阵A,矩阵多项式f(A)的属于特征值f(λ)的特征向量,未必是矩阵A的属于特征值λ的特征向量. 即性质“若Aξ=λξ,(ξ≠0),f(x)是个多项式,则对矩阵多项式f(A),成立f(A)ξ=f(λ)ξ.”的逆命题不成立.[参考文献]【相关文献】[1] 刘剑平, 施劲松,钱夕元,鲍亮. 线性代数 [M].2版上海:华东理工大学出版社,2014: 128-134.[2] 施劲松,孙军,薛以锋. 线性代数解题过程中的发散思维[J]. 大学数学, 2006,22(1): 120—123.。
华东理工大学线性代数 作业簿(第二册)学 院____________专 业____________班 级____________学 号____________姓 名____________任课教师____________1.4 矩阵的分块1.设3400320043004500,0020004100220062A B ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,求(1)AB ;(2)4A . 解:11112222444211424242526000700(1);008200206(2),(25)625,101010161621214162500006250000160006416AB A B AB A B A B A A A I I A A A ⎡⎤⎢⎥-⎡⎤⎡⎤⎡⎤⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦⎡⎤===⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥⎢⎥∴=⎢⎥⎢⎥⎣⎦2.设0020000304001000A ⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦,则1_____________________________________A -=. 解: 1211112001100041000210003A A A A A A ---⎡⎤⎢⎥⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥=⇒==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥-⎢⎥⎣⎦.3. 已知分块矩阵111221W W W W O ⎛⎫= ⎪⎝⎭,则TW =( ). (A) 112112W W W O ⎛⎫ ⎪⎝⎭; (B) 121121W O W W ⎛⎫ ⎪⎝⎭;(C) 111221TT TW W W O ⎛⎫⎪⎝⎭; (D) 112112T T T W W W O ⎛⎫⎪⎝⎭. 解:D .4. 求满足2AX X I A -+=的矩阵X ,其中101020101A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦. 解:由原式,整理得))(()(2I A I A I A X I A +-=-=-,而⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-001010100I A 可逆,故由上式可得201030.102X A I ⎡⎤⎢⎥=+=⎢⎥⎢⎥⎣⎦5. 设n 阶矩阵A ,B 满足A B AB +=.(1) 证明A I -可逆,且AB BA =;(2) 若已知130210002B -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求矩阵A . 解:(1)由,AB B A =+移项得O B A AB =--,即I I B A AB =+--,亦即,))((I I B I A =--从而得到I A -可逆;且由上式可得I I A I B =--))((,展开得,O B A BA =--即B A BA +=,结合条件知BA AB =.(2)由(1)知1)(--=-I B I A ,即,)(1I I B A +-=-而,1000031021010*******)(11⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=---I B 故⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=2001310211A .6. 设()ij A a =是一个m n ⨯矩阵,(1) 计算,,T Ti j i j e A Ae e Ae ,其中i e 为m 阶单位矩阵的第i 列,j e 为n 阶单位矩阵的第j 列; (2) 试证:对任一m 维列向量,0T x x A A O =⇔=;(3)试证:对任一m 维列向量x 和任一n 维列向量y ,0T x A y A O =⇔=. 解:(1)[]TTT1212,,,,,,,,ii i in j j j mj i j ij e A a a a Ae a a a e Ae a ⎡⎤===⎣⎦ (2)“⇐”显然;“⇒” 由向量x 的任意性,取(1,2,...,i x e i m ==且i e 为m 阶单位矩阵的第i 列),则由(1)得[]T 12,,...,0i i i im e A a a a ==,即A 的第i 行为零向量,取遍1,2,...,i m = 知A 的每一行均为零向量,即O A =. (3) “⇐”显然;“⇒”由x 与y 的任意性,取,i j x e y e ==ie n j m i ;,...2,1,,...2,1(==与j e 分别为n m ,阶单位阵的第j i ,列),则由(1)得0==T ij j i a Ae e ,即A 的每一个元素都为零,亦即O A =.7.设n 阶矩阵[]ij A a =,n 维向量[1,1,,1]T α= ,(1) 计算A α; (2) 若A 可逆,其每一行元素之和都等于常数c ,试证:1A -的每一行元素之和也都相等,且等于1c.解:(1)设i e 为n 阶单位矩阵的第i 列,则有T 12[1,1,,1]n e e e ==+++α又设i α为A 的第i 列,则有A α=112112121n k k n k k n n n nkk a a Ae Ae Ae a ===⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+++=+++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦∑∑∑ααα (2) 由题设及(1)的结论可得:11A c A c-=⇒=αααα,即1A -的每一行元素之和都等于1c.1.5初等变换与初等矩阵1. 用初等行变换求下列矩阵的逆矩阵.(1)1234⎡⎤⎢⎥-⎣⎦;(2)1122401611-⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦. 解:(1)构造分块阵12103401⎡⎤⎢⎥-⎣⎦ ,并对其进行初等行变换 2121()(3)1010121012101231340101031011010r r ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦ 21(2)4210101001311010r -⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,即得112421;343110--⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦(2)11122102401213611418--⎡⎤⎡⎤⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦2. 已知211123120204212015A B --⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,,且有XA X B =+,求X . 解:1()()XA X B X A I B X B A I -=+⇒-=⇒=-111100111100[]110010~021110211001031201A I I --⎡⎤⎡⎤⎢⎥⎢⎥-=--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦111100*********~010~010111222001132113001222⎡⎤⎢⎥--⎡⎤⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦⎢⎥--⎣⎦1123121295()2041112860151324149X B A I ----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥∴=-=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦.3. 已知101841100010,059,011102007021A B C -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,计算 1111()()()TT T TU B C I AB BA ----⎡⎤⎡⎤=-+⎣⎦⎣⎦.解:T11T 11TTT 111T 1T 1T T 1T T1T (())()()()()()100101101011010112021102122U AB B C I BA A C AB AB C A B A B A C A -----------⎡⎤⎡⎤=-+⎣⎦⎣⎦⎡⎤=-+⎣⎦⎡⎤=-+⎣⎦---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦4.已知123011456,010,001789100010A P Q ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则100101___________________________P AQ=.解: 132465798⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ 5. 设111213212223212223111213313233311132123313,a a a a a a A a a a B a a a a a a a a a a a a ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥+++⎣⎦⎣⎦, 12010100100,010001101P P ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,则有( ). (A )12APP B =;(B )21AP P B =;(C )12PP A B =;(D )21P PA B =. 解:C .6. 解矩阵方程:010100143100001201001010120X -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦. 解:X 左右的两个矩阵均为初等矩阵,故而可逆且其逆也是初等矩阵,于是有11010143100100201001001120010X ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦010143100100201001001120010-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦=210134102-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦.7. 已知,A B 为三阶方阵,且满足124A B B I -=-.(1)证明2A I -可逆;(2)若120120002B -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求矩阵A .解:1(1)2424(2)(48)8A B B I B AB A AB B A I I -=-⇒=-⇒---=(2)(4)8A I B I I ⇒--=所以2A I -可逆且11(2)(4)8A IB I --=-.111(2)(2)(4)82200208(4)21302110.004002A I B I A B I I I ---=--⎡⎤⎡⎤⎢⎥⎢⎥⇒=-+=--+=--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦8. 设矩阵A 可逆,且A~ijr B . 试证:(1)矩阵B 可逆; (2)求1AB -;(3)试证1A -交换第i 、j 列后可得矩阵1B -. 解:(1)依题意,有ij B R A =,其中ij R 为对应于初等变换ij r 的行初等矩阵,则由ij R 及A 均可逆知B 必可逆.(2)由(1),得11111()ij ij ij B R A A R A R -----===,故而11()ij ij AB A A R R --==.(3)由(1),得11ij B A R --=,而i j i j R C =,故11ij A C B --=,即11ijc A B -- .。