华理2011线性代数期终考试卷
- 格式:pdf
- 大小:160.77 KB
- 文档页数:10
2009至2010第 2 学期 课程名称 线性代数 信电学院期中考试试卷参考答案考试性质: 闭卷 考试时间 120 分钟说明:在本卷中,T A 表示矩阵A 的转置矩阵,*A 表示矩阵A 的伴随矩阵,E 表示单位矩阵,A 表示方阵A 的行列式,()R A 表示矩阵A 的秩。
一、单项选择题(本大题共10小题,每小题2分,共20分) 1.A; 2.A; 3.D; 4.D; 5. A; 6.C; 7.D; 8.C . 9. D; 10.A二、填空题(本大题共10小题,每小题2分,共20分)11,21)(-n n ; 12.35-; 13.A nλ; 14. A -; 15.⎪⎪⎪⎪⎭⎫⎝⎛-----1716213213012; 16..91;17. 1; 18. 1 ; 19. 1123324411233442,a a a a a a a a -. 20. 1;三、证明题(本大题共3小题,每小题10分,共计30分)21. 已知TTA ααββ=+,Tα为α的转置,T β为β的转置.(1)求证2≤)(A R ;(2)若,αβ线性相关,则2<)(A R . 证明: (1) 因为)1()1)(()()1)(()()1)(()(分分分分2≤+≤+≤+=βαββααββααR R R R R A R T T T T ,所以2≤)(A R (5分)。
(2) 由于,αβ线性相关,不妨设k αβ=(2分). 于是())1()()()1)(()()(分分2112<≤≤=+=+=βββββββααR R k R R A R T T T T ,即2<)(A R (3分)。
22、设向量组4321,,,ββββ线性无关,且43214432134321243211,,,ββββαββββαββββαββββα+---=-+--=--+-=---=证明向量组432,,,1αααα线性无关. 证明:[][]1234123411111111,,,,,,11111111ααααββββ---⎡⎤⎢⎥---⎢⎥=⎢⎥---⎢⎥---⎣⎦ …………………2分 111111110,11111111P P P ---⎡⎤⎢⎥---⎢⎥=≠⎢⎥---⎢⎥---⎣⎦设可逆 …………………2分 [][]112341234,,,,,,P ββββαααα-=,12341234,,,,,,,ββββαααα即可由线性表示 …………………2分 12341234,,,,,,.ααααββββ向量组与等价 …………………2分 1234,,,,αααα由等价的向量组秩相等所以线性无关. ………2分23. 设矩阵2221212n na a aA a a ⨯⎛⎫⎪⎪= ⎪⎪⎝⎭,现矩阵A 满足方程AX B =,其中()1,,Tn X x x =,T B ),,,(001 =,求证()1n A n a =+.证明: 记||n D A =,下面用数学归纳法证明(1)nn D n a =+.当1n =时,12D a =,结论成立(1分). 当2n =时,2222132a D a aa==,结论成立(2分). 假设结论对小于n 的情况成立.将n D 按第1行展开得2212102121212n n a a a aD aD a a-=-(3分)21221222(1)(1)n n n n n aD a D ana a n a n a ---- =-=--=+(3分)故 ||(1)nA n a =+(1分).四、解答题(共30分)24. 问λ取何值时, 非齐次线性方程组⎪⎩⎪⎨⎧=++=++=++23213213211λλλλλx x x x x x x x x ,(1)有唯一解; (2)无解;(3)有无穷多个解,并在无穷多个解时,求方程组的通解.解:⎪⎪⎭⎫⎝⎛=21111111λλλλλB⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011 ~λλλλλλλλλλr. ……………………………2分 (1)要使方程组有唯一解, 必须R (A )=3. 因此当λ≠1且λ≠-2时方程组有唯一解.……2分(2)要使方程组无解, 必须R (A )<R (B ), 故(1-λ)(2+λ)=0, (1-λ)(λ+1)2≠0. 因此λ=-2时, 方程组无解. …………………………………………………2分 (3)要使方程组有有无穷多个解, 必须R (A )=R (B )<3, 故 (1-λ)(2+λ)=0, (1-λ)(λ+1)2=0.因此当λ=1时, 方程组有无穷多个解.这时原来方程组等价于1231x x x ++=,所以原方程通解为 12123111100010x x c c x --⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,12,c c 为常数。
华南理工大学2011-2012学年第二学期《高等数学》期中考试试卷评分标准一. 解答下列各题 (每小题5分,共20分) 1.求极限22()lim (e x y x y x y -+→+∞→+∞+).解:lim e 0k t t t -→+∞= 2'22()2()lim (e lim (e 20x y x y x yx x y y x y x y xe ye -+-+--→+∞→+∞→+∞→+∞⎡⎤+=+-=⎣⎦)) 3'2.求由方程组222222320z x yx y z ⎧=+⎪⎨++=⎪⎩所确定的()y x 及()z x 的导数d d y x 及d d z x . 解:()()226023220xdx z dz xdx ydy z xdx ydy -++=⎧⎪⎨+++=⎪⎩ 3' 6,1326dz x dy x xydx z dx y yz+==-++ 2'3.设,u f 可微,证明: ()()grad grad f u f u u '= 证明:()()()()()()(){}()()(){},,,,x y z xyzf u f u f u f u f u u f u u f u u '''''''''==⋅⋅⋅grad 3'(){}(),,x y z f u u u u f u u '''''==grad 2'4.求曲线23x ty t z t =⎧⎪=-⎨⎪=⎩的切线,使它与平面21z y z ++=平行.解:设切点为()23000,,M t t t -,则切向量为{}2001,2,3T t t =- . 1'_____________ ________学号学院 专业 座位号( 密 封 线 内 不 答 题 ) ……………………密………………………………………………封………………………………………线……………………………………{}{}2200001,2,31,2,11430T n t t t t ⋅=-⋅=-+=解得01t =或013t =,相应切点为()1,1,1-或111,,3927⎛⎫- ⎪⎝⎭, 2' 因此,所求切线为1111:123x y z L -+-==-, 21113927:321x y z L -+-==- 2'二. 解答下列各题 (每小题10分,共30分)5.设()()()()()22,,0,0,0,,0,0x y xy x y x y f x y x y -⎧≠⎪+=⎨⎪=⎩,试研究该函数在()0,0点的可微性. 解:()()()()0,00,00,0lim0,0,000x y x f x f f f x →-===- 4'又()()()()2222022(,)()limlim0(()())x x y y f x y x y x y x y x y x y ∆→∆→∆→∆→∆∆∆∆∆-∆=≠∆+∆∆+∆∆+∆ 5'函数(),f x y 在点()0,0处是不可微的 1'6.设函数(),f x y 具有二阶连续偏导数,满足等式2220x yy x y xy y xx f f f f f f f -+=,且0y f ≠,(,)y y x z =是由方程(,)z f x y =确定的函数.求 22yx∂∂.解:x yf yx f ∂=-∂ 4' 220yx ∂=∂ 6'7.在经过点12,1,3⎛⎫ ⎪⎝⎭的所有平面中求一个,使这个平面在第一卦限内与三个坐标平面所围成的四面体的体积最小.解:设该平面为1x y za b c++=, 1' 四面体的体积为16V abc =. 1'问题化为求16V abc =在约束条件21110,0,0,03a b c a b c++-=>>>下的最小值点.构造拉格朗日函数()1211,,,163f a b c abc a b c λλ⎛⎫=+++- ⎪⎝⎭3' 由22222110,0,0,1066633a b c bc ac ab f f f f a b c a b cλλλλ=-==-==-==++-= 3' 得唯一一组解6,3,1a b c ===,该实际问题的最小值一定存在,从而该点一定是要求的最小值点了.因此所要求的平面为163x yz ++= 2'三. 解答下列各题 (每小题8分,共32分) 8.计算11301ydy x dx +⎰⎰.解:21113330111x yDdy x dx x d dx x dy σ+=+=+⎰⎰⎰⎰⎰⎰4'()112333011113x x dx x d x =+=++⎰⎰ 3' ()22219=- 1' 9.计算22y Dx edxdy -⎰⎰,其中区域D 是由直线0,1,x y y x ===所围成的区域.解:22y Dx e dxdy -⎰⎰21200yy dy x e dx -=⎰⎰ 4’ 213013y y e dy -=⎰ 2’ 1163e =- 2’10.计算2()x y dV Ω+⎰⎰⎰.其中Ω是曲线22,0y z x ⎧=⎨=⎩绕z 轴旋转一周而成的曲面与两平面2,8z z ==所围成的区域.解:求出旋转面方程为222x y z += 1'2()x y dV Ω+⎰⎰⎰=()22x y dV Ω+⎰⎰⎰ 1' =()8222Dzdz x y dxdy +⎰⎰⎰ 3'82283220022336z dz d r dr z dz πθππ⎛⎫=== ⎪⎝⎭⎰⎰⎰⎰ 3' 11.计算三重积分2y dV Ω⎰⎰⎰,其中(){}222,,2x y z xy z z Ω=++≤.解:2y dV Ω⎰⎰⎰22cos 2342sin sin d d dr ππϕθθϕϕρ=⎰⎰⎰5'415π=3'四. 解答下列各题 (每小题9分,共18分)12.求由两圆周()22224x y a a +-=和()222(0)x y a aa +-=>所围的均匀薄片的质心.解:0x = 2'4sin 2202sin 11sin 3a a D Dy ydxdy d r dr S a πθθθθπ==⎰⎰⎰⎰5'=73a 2'13. 计算由曲面22x y az +=和222(0)z a x y a =-+>所围立体的表面积.解:22222224412x y a x y S dxdy a a+≤=+++⎰⎰6'2(2)3a a π=+ 3'。
2011级材料 学院《线性代数》期中考试试卷时间:120分钟 满分:100分一、单项选择题 (共10小题,每小题3分,共30分)1. 在下列构成5阶行列式展开式的各项中,取“-”的为 ( )(A) 5144322315a a a a a (B) 5344322511a a a a a (C) 3442155321a a a a a (D) 2544133251a a aa a2. 已知矩阵34 6 2 4 2 1 6 3 1 1 2 3- 0 21 1 1 1 1 =A ,则.)(=A r;1 )(A;2 )(B;3 )(C5 )(D3. 设四阶行列式111201110011111------=x D ,则其中x 的一次项的系数为 ( )(A) 1 (B) -1 (C) 2 (D) -24. 行列式0=nD 的一个必要条件是 ( )(A) D n 中各行元素之和等于零 (B) D n 中有一行(列)元素全为零(C) D n 中有两行(列)元素对应成比例 (D) 系数行列式为D n 的齐次线性方程组有非零解5. 设A , B 皆为n 阶方阵,且A 可逆,则下列运算一定正确的是 ( ) (A)kk kBA AB =)( (B)AA -=- (C)))((22A B A B AB-+=- (D)1**1)()(--=A A6. 设A , B 皆为n 阶方阵,则必有 ( )(A)BAAB = (B)AB B A -=- (C)BA B A +=+ (D)BA B A ⋅=⋅7. 设分块矩阵⎪⎪⎭⎫ ⎝⎛=231A AO AA ,其中的子块A 1, A 2为方阵,O 为零矩阵,若A 可逆,则 ( )(A) A 1可逆,A 2不一定可逆 (B) A 2可逆,A 1不一定可逆 (C) A 1,A 2都可逆(D) A 1,A 2都不一定可逆 8. 用初等矩阵⎪⎪⎪⎭⎫ ⎝⎛01100001左乘矩阵⎪⎪⎪⎭⎫ ⎝⎛=642113112A ,相当于对A 进行如下何种初等变换( )(A)21r r ↔ (B)32r r ↔ (C)21c c ↔ (D)32c c ↔9. 设A 为5×3矩阵,且2)(=A R ,下三角矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=424212347437221P ,则)(PA R 等于 ( )(A) 1 (B) 2 (C) 3 (D) 5 10. 非齐次线性方程组bx A=⨯55在以下哪种情形下有无穷多解. ( )(A)5),( ,4)(==b A A R R (B)4),( ,3)(==b A A R R (C)4),( ,4)(==b A A R R (D)5),( ,5)(==b A A R R二、填空题 (共5小题,每空3分,共15分)1. 设x 1,x 2,x 3,x 4是四次方程0234=+++c bxaxx的根,则行列式=0752340000014321x x x x ________.2. 若n 阶下三角行列式1111111111=nD)2(≥n ,则所有..元素的代数余子式之和等于_____.3. 设A , B 皆为n 阶方阵,2=A ,3=B,则=-1*3BA_____.4. 设⎪⎪⎪⎪⎪⎭⎫⎝⎛=004300002000010A ,则=-1A.5. 设⎪⎪⎪⎪⎪⎭⎫⎝⎛=n n n n n n b a b a b a b a b a b a b a b a b a212221212111A ,且02121≠n n b b b a aa ,则________)(=A R .三、计算题 (共5小题,每小题6分,共30分)1.yy x x x y y xyy x =+++x2. 设五次多项式1111111111111111111111111)(+++++=x x x x x x f ,求:①x 5的系数;②x 4的系数;③常数项.3. 设四阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=1612841296386424321A ,求A 99=__________4. 设⎪⎪⎪⎭⎫ ⎝⎛--=21110001A ,⎪⎪⎪⎭⎫ ⎝⎛-=322154B ,利用矩阵的初等变换.......求矩阵X ,使得AX =B .5. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=k k 12115210611A 的秩等于2,求k 的值.四、证明题 (共2小题,每小题6分,共12分)1. 已知TTA ααββ=+,Tα为α的转置,Tβ为β的转置.(1)求证2≤)(A R ;(2)若,αβ线性相关,则2<)(A R .2. 设A 为n 阶矩阵,且AA =2,证明:n R R =-+)()(A E A .五、解答题 (13分)用克莱姆法则解方程组⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x xx x x x x x x x x x x x x x一、单项选择题 (10×3=30分) 1. (D);解:选项(A)和(B)的行标排列为标准次序,列标排列的逆序数分别为8和4(偶排列);选项(C)的行标、列标排列都不是标准次序,调整相乘元素的次序,使行标排列为标准次序,则列标排列的逆序数为6(偶排列);选项(D)的列标排列为标准次序,行标排列的逆序数分别为7(奇排列),故选项(D)正确。
线性代数期中考试试题+答案.⼀、填空题(共30分,每填对⼀空得3分)1、函数23u xy z =在点(1,1,1)P 处沿⽅向(1,2,3)有最⼤⽅向导数,最⼤⽅向导数等于.2、设arctan x y z x y -=+,则 z x ?=?22y x y+, 22z x ?=?()2222xyx y -+..3、函数(,)z z x y =由⽅程230zx y z e ++-=确定;则 z x ?=?21z x e -, z y ?=?231z y e -.4、微分⽅程d 2d y xy x=的通解为2x y ce =;0d ()d yx y x xx -=>的通解为 ln y x x cx =+..5、设函数(,)f x y 连续,(,)(,)d d Df x y xy f u v u v =+??,其中D 由直线0y =,1x =和y x =所围,则(,)d d Df u v u v =??14,(,)f x y =14xy +.⼆、单项选择题(共20分,每题4分)=+,则点=的全微分d d dz f x yO(D) .(0,0)(A) 不是(,)f x y的连续点;(B) 不是(,)f x y的极值点;(C) 是(,)f x y的极⼤值点;(D) 是(,)f x y的极⼩值点...2、设函数(,)f x y =,则 (B) .(A) (0,0)x f '存在,(0,0)y f '不存在; (B) (0,0)x f '不存在,(0,0)y f '存在; (C) (0,0)x f '和(0,0)y f '都存在; (D) (0,0)x f '和(0,0)y f '都不存在..3、设积分域D :221x y +≤,221sin()d d DI x y x y =+??,332sin()d d DI x y x y =+??,443sin()d d DI x y x y =+??,则 (B) . (A) 123I I I >>; (B) 132I I I >>; (C) 213I I I >>; (D) 231I I I >>..4、设函数()f u 连续,D ={}22(,)2x y x y y +≤,则()d d D.(A)11d ()d x f xy y -??; (B) 2002d ()d y f xy x ??;(C) 2sin 20d (sin cos )d f r r πθθθθ??; (D)2sin 2d (sin cos )d r f r r πθθθθ??..5、函数(,)f x y 在点(0,0)O 处可微的⼀个充分条件是 (D) . (A) (,)(0,0)lim(,)(0,0)x y f x y f →=;(B) 0(,0)(0,0)lim 0x f x f x →-=, 0(0,)(0,0)lim 0y f y f y→-=;(C) 0lim (,0)(0,0)x x x f x f →''= 且 0lim (0,)(0,0)y y y f y f →''=;(D) (,)(0,0)(,)(0,0)0x y f x y f →-=..三、(10分)求微分⽅程 2(34)xy y x e ''-=+ 通解.解特征⽅程 210λ-=,特征根 121,1λλ=-=;------2分对应的齐次⽅程的通解 12x xy c e c e -=+ -----5分设原⽅程的特解* 2()xy ax b e =+并代⼊原⽅程,解得: *2xy xe = -----9分原⽅程的通解: 212xxxy c e c e xe -=++ -----10分四、(10分)求曲线L:2226x y zx y z++=++=在点(1,2,1)P-处的切线和法平⾯⽅程.解对x求导,得2220 10x yy zzy z''++=?''在点(1,2,1)P-处,211y zy z''-+=-''+=-,得0y'=,1z'=-------6分切线⽅程:121101x y z-+-==------8分法平⾯⽅程:0x z-=-----10分..五、(10分)计算⼆重积分 2(3)d d DI x y x y =+??,其中D :221x y +≤.22(96)d d (9)d d DDI x y xy x y x y x y =++=+(奇偶性+对称性)-------2分2222221(9)(9)d d 5()d d 2D Dx y x y x y x y x y ??=+++=+ (轮换对称性) -------4分213055d d 2r r πθπ==?------10分.六、(10分)在曲⾯S :22221x y z ++=上求距离平⾯26x y z +-=的最近点、最远点.解点(,,)x y z 到平⾯的距离26x y z +--,---2分设 2222(,,,)(26)(21)L x y z x y z x y z λλ=+--+++-------2分.令 2224(26)402(26)202(26)20210xyz L x y z x L x y z y L x y z z L x y z λλλλ'=+--+=??'=+--+=??'=-+--+=??'=++-=? ------6分解得最近点1111(,,)222P -,最远点2111(,,)222P -- -----10分.六、(10分)在曲⾯S :22221x y z ++=上求距离平⾯∏:26x y z +-=的最近点、最远点.解令 0000(,,)P x y z S ∈, 椭球⾯S 过0P 切平⾯⽅程1000:2 1.x x y y z z ∏++=令12//∏∏,有:0002211x y z ==-, (1)⼜: 22221x y z ++=, (2)解得最近点1111(,,)222P -,最远点2111(,,)222P --.定理设0000(,,)P x y z S ∈,⽽S 为实⼆次曲⾯22222 2 A x B xy C x z Dy E y z F z +++++2 2 20,G x H y I z J ++++=若 Ax 0 + By 0 + Cz 0 + G,Bx 0 + Dy 0 + Ez 0 + H, Cx 0 + Ey 0 + Fz 0 + I ,不全为零, P 0 称为S 的寻常点. 则⼆次曲⾯S 在0000(,,)P x y z 处的切平⾯⽅程为:()()()00000000 A x x B x y xy C x z x z Dy y E y z y z +++++++()()()0000 0.F z z G x x H y y I z z J ++++++++=.七、(10分)设函数()f u 在(0,)+∞内⼆阶连续可微,(1)0f =,(1)1f '=,且z f =满⾜22220z zx y+=,求()f u .解u =,则()z xf u x u'=,222232()()z y x f u f u x u u ?'''=+?; ()z y f u y u'=,222232()()z x y f u f u y u u ?'''=+?. --4分.代⼊原⽅程并化简,得 1()()0f u f u u'''+=,即()()(())0u f u f u u f u '''''+==, ------5分从⽽ 1()u f u c '=。
线性代数期中考试试卷F班级 学号 姓名 成绩 一、填空题(每小题3分共15分)1.设4阶行列式4a b c d b a c dD d b c a b d c a=,则11213141M M M M -+-= 。
2.已知2A O =,则()1A I --= 。
3.设行列式304022220705322D =--,则第4行各元素余子式之和的值为 。
4.设A 为n 阶可逆矩阵, I 为n 阶单位矩阵,若满足等式363A A I -=,则1A -= 。
5 .设1245101A -⎛⎫=⎪-⎝⎭, 24810202B -⎛⎫= ⎪-⎝⎭,则k = 时,B kA =成立。
二、选择题(每小题3分共15分)1.设D 为n 阶行列式,则( )化为上三角形行列式。
A .只能;B .不能;C .不一定能;D .一定能。
2.设12,D D 均为2阶行列式,且111222122a a D a a =,若1112122122xa xa D D ya ya =,则下列结论中不正确的是( )。
A .100x D y =;B .100x D y =;C .110xD y =; D .100xD y -=。
3. A 为n 阶方阵,则下列命题中正确的是( )。
A .若2A O =,则A O =;B .若A O ≠;则||0A ≠C .若2A =A ,则A O =或A I =;D .若||0A ≠,则A O ≠。
4.设A 是反对称阵,则下列结论不正确的是( )。
A .若||0A =,则n 必为奇数;B .若||0A ≠,则n 必为偶数;C .若n 为奇数,则||0A =;D .A 的对角线元素之和为零。
5.设n 行矩阵110022C ⎛⎫= ⎪⎝⎭,n 矩阵,2T TA I C CB IC C =-=+,则AB = ( )。
A .I -;B .I ;C .O ;D .3I 。
三、计算题(每小题10分共50分)1.设123312()231123x x f x x x=,求(4)f 。
华东理工大学2010–2011学年第二学期《高等数学(下)》(11学分)期中考试试卷 2011.4开课学院:_理学院_ ,考试形式:_闭卷_,所需时间: 120 分钟考生姓名: 学号: 班级: 任课老师:注意:试卷共2大张,6大题一.(本题7分)求过点M (,,)001和N (,,)300,且与xoy 平面成π3角的平面方程。
二.(本题7分)函数y y x z z x ==(),()由方程组x y e x y z z ++=++=⎧⎨⎩112所确定,求d d ,d d y x zx 。
三.(本题7分)以2x yu =为新的未知函数,变换方程 0)622()4(222=-+-'-+''y x x y x x y x ,并求原方程的通解。
四.(本题7分)容器内有1003m 的盐水,含10kg 的盐,现在以每分钟33m 的均匀速度从A 管放进净水冲淡盐水,又以每分钟23m 的均匀速度将混合均匀后的盐水从B 管抽出,问100分钟后容器内还剩多少盐?1.若0),(00=∂∂y x x f,0),(00=∂∂y x y f ,则),(y x f 在点),(00y x 是 ( )(A )连续且可微; (B )连续但不一定可微;(C )可微但不一定连续; (D )不一定可微也不一定连续。
2.若z f x y =(,)在(,)x y 00处沿x 轴反方向的方向导数A ,则f x y (,)在该点对x 的偏导数 ( )(A )为A (B )为-A (C )不一定存在 (D )一定不存在。
3.设1y ,2y 是一阶线性非齐次微分方程)()(x Q y x P y =+'的两个特解,若常数λ,μ使21y y μλ+是该方程的解,且21y y μλ-是该方程对应齐次方程的解,则 ( )(A )21=λ,21=μ; (B )21-=λ,21-=μ;(C )31=λ,32=μ; (D )32=λ,32=μ。
线性代数期中考试试卷H班级 学号 姓名 成绩 一、填空题(每小题3分共15分)1.已知4阶行列式D 中的第3行元素为3,3,1,1--,其对应的余子式的值为1,2,5,4,则行列式D = 。
2.211203101311112x x ----的展开式中2x 的系数为 。
3.已知,A B 均为n 阶方阵且B O ≠,若AB O =,则||A = 。
4.设123A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,()321B =,k 是正整数,若P AB =,则k P = 。
5.设A 是n 阶方阵,且||2A =,则1*|4|A A --= 。
二、选择题(每小题3分共15分)1.0001002003004000=( )。
A .24-; B .24; C .0; D .12。
2.设,A B 为同阶方阵,且AB O =,则( )。
A .A O =;B .B O =;C .||,||A B 中至少有一个为0;D .,A B 中至少有一个为O 。
3.设111213212223313233a a a A a a a a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,212223111213311132123313a a a B a a a a a a a a a ⎛⎫ ⎪= ⎪ ⎪+++⎝⎭,1010100001P ⎛⎫⎪= ⎪⎪⎝⎭,2100010101P ⎛⎫ ⎪= ⎪ ⎪⎝⎭则( )。
A .12APPB =; B .21AP P B =;C .12PP A B =;D .21P PA B =。
4.设D 为n 行列式,则D ( )写成n 个n 阶行列式之和。
A .一定能;B .不一定能;C .不能;D .只能。
5.设111212122212n n n n nn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭。
111212122212n n n n nn A A A A A A B A A A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,其中ij A 是||A 中元素ij a 的代数余子式(,1,2,,)i j n =,若||1A =,则下列等式不成立的是( )。
杉达专科2011级线性代数期中考试讲评一、单项选择题(在每小题的四个备选答案中选出一个正确答案,每小题2分,共16分。
)1. 设D=|a ij |为5阶行列式,问D 的展开式中,下列哪一项取负号 ( )A 、a 15a 24a 33a 42a 51B 、a 12a 23a 34a 45a 51C 、a 11a 23a 34a 45a 52D 、a 51a 42a 33a 24a 15【讲评】考点:D=|a ij |的展开式中项a 1j 1 a 2j 2 …a nj n 的符号为 (-1)N(j 1,j 2,…,j n ),排列的逆序数的计算。
N(j 1,j 2,…j n )=m 1+m 2+…+m n ,其中m k 表示数码k 前面比k 大的数码的个数。
本题:N(54321)=4+3+2+1+0=10, N(23451)=4+0+0+0+0=4,N(13452)=0+3+0+0+0=3, D 与A 一样。
选:C 。
2.三阶行列式 ⎪⎪⎪⎪⎪⎪20 40 40201 401 399 1 2 3= ( ) A 、-20 B 、70 C 、-70 D 、20【讲评】考点:行列式计算的性质。
行列式可依行(列)提出公因子;将行列式某行(列)乘以一个数加到另一行(列)上去,行列式的值不变。
本题:D=⎪⎪⎪⎪⎪⎪20 40 40201 401 399 1 2 3=20×⎪⎪⎪⎪⎪⎪1 2 21 1 -11 2 3=20×(3-2+4 –2-6+2)= -20 选:A 。
3. 行列式⎪⎪⎪⎪⎪⎪b 0 0 a0 b a 00 a b 0a 0 0 b = ( )A 、a 4- b 4B 、(b 2-a 2)2C 、b 4- a 4D 、a 4b 4 【讲评】考点:四阶行列式计算无对角线法则,必须用展开与降阶的方法。
本题:第一行展开⎪⎪⎪⎪⎪⎪b 0 0 a 0 b a 00 a b 0a 0 0 b = b ⎪⎪⎪⎪⎪⎪b a 0a b 00 0 b - a ⎪⎪⎪⎪⎪⎪0 b a 0 a b a 0 0=b 2(b 2-a 2) – a 2(b 2-a 2)= (b 2-a 2)2 选:B 。