XXX第五版高数习题答案
- 格式:docx
- 大小:45.84 KB
- 文档页数:40
高等数学第五版下册习题及答案第一节 多元函数的基本概念一、填空题1.开,有,221x y +=及224x y += 2.{}(,)01x y x y x y +>+≠且 3.224xyx y+ 4.2(ln )ln x y y - 5.0 6.连续,间断二、单项选择题1.D2.C ,提示:沿着y kx =趋于(0,0)时,222220lim (,)lim 1y kx x x kx kf x y x k x k =→→==++,当k 取不同值时,极限取不同值,所以极限不存在,从而在(0,0)不连续 3.D三、解答题解:1.2201sin()cos lim x y xy xy x x y x →→+-221sin()cos lim x y xy xy x x y y xy →→+-=⋅1sin()lim cos 112x y xy x xy y xy →→⎛⎫=+-⋅=+= ⎪⎝⎭. 2.((0000002lim lim 24x x x y y y xy xy →→→→→→⋅==-=--.3t =,则 原式23220001sin 1cos 12lim lim lim 336t t t tt t t t t t →→→--====. 4.证明:22222424240lim lim 1x x y xy k x k x y x k x k →===+++,因为随着k 的变化,241k k +随之变化,所以22400lim x y xy x y→→+不存在.第二节 偏导数 第三节 全微分一、填空题1.0(0,1)(0,1)limx f x f x∆→+∆-∆,0(0,1)(0,1)lim y f y f y ∆→+∆-∆ 2.二阶偏导数(,),(,)xy yx f x y f x y 连续 3.d d x y f x f y + 4. 25.2222d d y x x y x y x y ⎛⎫+⎪⎪++⎭二、单项选择题1.D 2.B ,提示:用(0,1)x f 定义求0(0,1)(0,1(0,1lim))x x f x f f x∆→+∆-∆=220sin()lim 1()x x x ∆→∆==∆ 3.D 4. A三、计算题解:1.12z x x ∂==∂,12z y y∂==∂. 2.2(,1)(1)x z z x x +==+,ln (2)ln(1)z x x ∴=++,在等式两边对x 求偏导,得12ln(1)1z x x z x x ∂+=++∂+,22ln(1)(11)x z x x x x x +∂+⎡⎤∴=++++⎢⎥∂⎣⎦, 31132ln 28ln 2122x y zx==∂⎛⎫=+=+ ⎪∂⎝⎭. 3.()222e d e xy tx y x f t y x--∂==∂⎰, ()22222222222e e (2)e (12)e xyxyxyx y xy f y y x y x y y----∂==+-=-∂.4.22z u x y =+,22222222()()x z xzu x x y x y --∴=⋅=++,从而(1,1,2)1x u =-,22222222()()y z yzu y x y x y --=⋅=++,从而(1,1,2)1yu =-,221z u x y=+,从而(1,1,2)12zu =, (1,1,2)1d d d d 2u x y z ∴=--+ 第四节 多元复合函数的求导法则一、填空题1.x u f f xϕ∂+∂,u f y ϕ∂∂ 2.222e xy x y x y ++,222e xyy x x y ++ 3.222222()()xyf x y f x y '---4.1(1ln )y xy x -+二、单项选择题1.B ,提示:()(),()(),z zx y x y x y x y x yφψφψ∂∂''''=++-=+--∂∂ 22()()zx y x y x φψ∂''''∴=++-∂,22()()z x y x y y φψ∂''''=++-∂,2()()zx y x y x yφψ∂''''=+--∂∂,∴选B 2. C ,提示:122zf x yf y∂''=-∂,21112221222(2)22(2)z x f x yf f y f x yf y ∂'''''''''=----∂ 221112222442x f xyf y f f '''''''=-+- 三、计算题解:1.令(,)arctan()z f x y xy ==,则222222d de e d d 111x xz f f y y x y x x x y x x y x y x y ∂∂+=+⋅=+⋅=∂∂+++. 2.1234z f f u ∂''=+∂,1222zf f v∂''=-∂. 3. 12e yz f u f f f x u x x∂∂∂∂''=⋅+=+∂∂∂∂,()212121e e e y y y f f z f f f x y y y y ''∂∂∂∂'''=+=++∂∂∂∂∂ 111132123111132123e e e e e e e y y y y y y y u u f f f f f f x f f x f f y y ⎛⎫⎛⎫∂∂''''''''''''''''''=++++=+⋅+++ ⎪ ⎪∂∂⎝⎭⎝⎭()2113112123e e e y y y f f x f x f f '''''''''=++++. 4.令2t x y =-,,u x v xy ==,则d d 2(2)d d z f t g u g vf x y x t x u x v x∂∂∂∂∂'=⋅+⋅+⋅=-∂∂∂∂∂ 12g yg ''++,21222()g g z t f t g y x y y y y''∂∂∂∂'''=+++∂∂∂∂∂122222(2)f x y xg g xyg '''''''=--+++. 第五节 隐函数的求导公式一、填空题 1.zx- 2.1±二、单项选择题1.D ,提示:方程两边同时对x 求导:1210z z ab x x φφ∂∂⎛⎫⎛⎫-+-= ⎪ ⎪∂∂⎝⎭⎝⎭,同时对y 求导:1210z z ab y y φφ⎛⎫⎛⎫∂∂-+-= ⎪ ⎪∂∂⎝⎭⎝⎭;所以121212,z z x a b y a b φφφφφφ∂∂==∂+∂+,代入所求表达式化简,得D 2.D 3.A ,提示:方程组()(,,)0z xf x y F x y z =+⎧⎨=⎩两边同时对x 求导,得d d ()()1d d d d 0d d x y z z y f x y xf x y x x y z F F F x x ⎧⎛⎫'=++++ ⎪⎪⎪⎝⎭⎨⎪++=⎪⎩,解之得:d d z x =()y x y zxf f F xf F F xf F ''+-'+三、计算题解:1.令(,,)F x y z=xyz +则x F yz =y z F xz F xy =+=+x zF zx F ∂=-=∂ 从而(1,0,1)1zx-∂=∂;y z F zy F ∂=-=∂从而(1,0,1)z y -∂=∂;所以(1,0,1)d d zx y -=.2.令33(,,)3F x y z z xyz a =--,则3x F yz =-,3y F xz =-,233z F z xy =-;2x z F z yz x F z xy ∂∴=-=∂-,2y z F z xzy F z xy∂=-=∂-; ()()222222z z z y z xy yz z x y y z yz x y y z xy z xy ⎛⎫⎛⎫∂∂+--- ⎪ ⎪∂∂⎛⎫∂∂⎝⎭⎝⎭== ⎪∂∂∂--⎝⎭()()222222xz xz z y z xy yz z x z xy z xy z xy ⎛⎫⎛⎫+--- ⎪ ⎪--⎝⎭⎝⎭=-()5322322z xyz x y z z xy --=-. 3.由题意知,222x y u +=,对方程两边对x 求偏导,得22u x ux ∂=∂,u xx u∂∴=∂. 第六节 多元函数微分学的几何应用一、填空题1.(4,2,1)-- 2. (1,2,1)-或(1,2,1)-- 3. 240x y +-=二、单项选择题1.C 2.B 3.B ,提示:由题意知,曲线的切向量2(1,2,3)T t t =-,与平面的法向量(1,2,1)n =垂直,则21430t t -+=,此方程只有两个根.从而对应切线只有两条,故选B4.C ,提示:(A ):由(,)f x y 在(0,0)存在两个偏导数,此时,不能确定(,)f x y 在(0,0)可微,故不一定成立;(B ):曲面(,)z f x y =在点(0,0,(0,0))f 的切平面法向量应为(3,1,1)-或(3,1,1)--;(C):曲面方程可以写为:0(,0)x ty z f t =⎧⎪=⎨⎪=⎩在(0,0,(0,0))f 的切向量为(1,0,(0,0))(1,0,3)x T f '==三、计算题解:1.d d d e (cos sin ),e (sin cos ),e d d d t t t x y z t t t t t t t =-=+=,则d 1,d t x t==0d 1,d t yt==0d 1d t zt==,所以切向量(1,1,1)T =;而当0t =对应的点为(1,0,1),所以切线的方程为:101111x y z ---==,法平面方程为:1010x y z -+-+-=,即20x y z ++-=. 2.令(,,)ln ln ,F x y z z y x z =--+则11,1,1,x y z F F F x z =-=-=+所以切向量11(,,),1,1x y z T F F F xz ⎛⎫==--+ ⎪⎝⎭,在(1,1,1)M 处的切向量(1,1,2)T =--,所以在点(1,1,1)M 处的切平面方程:(1)(1)2(1)0x y z ----+-=,即20x y z --+=, 法线方程为:111112x y z ---==--. 3.2,2,x y z x z y ==则(2,2,1)T x y =-,设曲面上一点000(,,)x y z 处的切平面为所求,则00(2,2,1)T x y =-.又所求切平面与平面240x y z +-=平行,即 (2,4,1)∥T -,从而00221241x y -==-,0012x y =⎧∴⎨=⎩,05z ∴=从而切平面方程为: 2(1)4(2)(5)0x y z -+---=,即2450x y z +--=.第七节 方向导数与梯度一、填空题 1.12 2.244999i j k +-二、计算题解:1.函数22(,)2f x y x xy y =-+在点(2,3)处沿着梯度方向的方向导数最大,且其最大值为梯度的模.而(2,3)(2,3)(2,3)(,)(22,22)(2,2)x y ff f x y x y ==--+=-grad∴fl∂∂=. 2.3()1,()4,()8x t y t t z t t '''===-,M 点对应1t =,(1,4,8)T ∴=-,148e ,,999T ⎛⎫∴=- ⎪⎝⎭. 而332222222222,,()()x y y z xy u u x y z x y z +==-++++32222()z xz u x y z =-++,822,,,272727x M y M z M u u u -∴===81242816279279279243Mu l∂⎛⎫∴=⨯-⨯+⨯-=-⎪∂⎝⎭. 3.22,2,x y z u y z u xyz u xy ===,则2,4,1x PyPzPu u u ==-=,24P u i j k ∴=-+grad ,∴沿着梯度方向的方向导数最大,最大值是Pu =grad .第八节 多元函数的极值及其求法一、填空题1.0000(,)0,(,)0x y f x y f x y ==2.(,,,,,)(,,,)(,,,)(,,,)L x y u v f x y u v x y u v x y u v λμλϕμψ=++二、单项选择题1.B 2. A三、解答题解:1.3341,41,x y f x f y =-=-令33410410x yx f x f y y ⎧=⎪⎧=-=⎪⎪∴⎨⎨=-=⎪⎪⎩=⎪⎩∴是可能的极值点.又2212,12,0xx yy xy f x f y f ===,0,A B C ∴=== 20,0AC B A ∴->>,∴是极小值点,且极小值为.2.(法一) 设所求点(,,)P x y z ,则222221x y z ++=,又e l ⎫=⎪⎝⎭,2x f x =,2yf y =,2z fz =.)Pfx y l∂⎛∴==- ∂⎝ 再令(,)),u x y x y =-则设222(,,))(221)L x y z x y x y z λ=-+++-222404020221x yz L x L y L z x y z λλλ⎧==⎪==⎪∴⎨==⎪⎪++=⎩, 解得,12120x y z λ⎧=-⎪⎪⎪=⎪⎨⎪=⎪⎪=⎪⎩或12120x y z λ⎧=⎪⎪⎪=-⎪⎨⎪=⎪⎪=⎪⎩11,,02211,,022fu l ⎛⎫- ⎪⎝⎭∂⎛⎫∴-== ⎪∂⎝⎭11,,02211,,022fu l⎛⎫- ⎪⎝⎭∂⎛⎫-== ⎪∂⎝⎭∴所求的点为11,,022⎛⎫- ⎪⎝⎭. (法二)设所求点(,,)P x y z ,则222221x y z ++=,又e 2l ⎫=⎪⎝⎭,2x f x =,2y f y=,2z fz =.)Pf x y l∂⎛∴==- ∂⎝ 再令(,)),u x y x y =-则设222(,,))(221)L x y z xy x y z λ=-+++-222404020221x y z L x L y L z x y z λλλ⎧==⎪==⎪∴⎨==⎪⎪++=⎩,解得,121202x y z λ⎧=-⎪⎪⎪=⎪⎨⎪=⎪⎪=⎪⎩或121202x y z λ⎧=⎪⎪⎪=-⎪⎨⎪=⎪⎪=-⎪⎩ 而11,,022f i j l ⎛⎫-=-+=- ⎪⎝⎭grad ,(,,)f x y z ∴沿l 在11,,022⎛⎫- ⎪⎝⎭的方向导数取最小 值(舍去).又11,,022f i j l ⎛⎫-=-=⎪⎝⎭grad ,Pf l ∂∴∂沿l 方向取最大值.∴所求的点为11,,022⎛⎫- ⎪⎝⎭.3.设长方体的长、宽、高为,,x y z ,则xyz k =,它的表面积为:22s xy yz xz =++,(,,0)x y z >,问题就转化为求s 在条件xyz k =下的最小值问题.构造辅助函数(,,)L x y z =22()xy yz xz xyz k λ+++-,解得2020220x yzL z y yz L z x xz L x y xy xyz kλλλ=++=⎧⎪=++=⎪∴⎨=++=⎪⎪=⎩,解得,2x y z z ⎧===⎪⎨=⎪⎩,由实际问题的意义知,一定存在满足条件的表面积最小的长方体水池,上面的,,x y z 就为所求.第八章 自测题一、填空题(每小题3分,共27分)1.1 2.2d d 2ln 2d x y z -++, 提示:1ln (ln ln )u x y z=-,两边同时对x 求导,得 11u u x xz ∂=∂ 3.1,提示:2(,,)e 2e x x x zf x y z yz yz x∂=+∂,又方程0x y z xyz +++=两边同时对x 求偏导得:10z z yz xy x x ∂∂+++=∂∂,所以11z yz x xy ∂+=-∂+,则(0,1,1)0zx-∂=∂,∴(0,1,1)1x f -= 4. 1221y y yf f g y x x ⎛⎫'''+- ⎪⎝⎭5.1,提示:方程()x mz y nz ϕ-=-两边分别对,x y 求偏导得:10z z m n x x ϕ∂∂⎛⎫'-=⋅- ⎪∂∂⎝⎭则1z x m n ϕ∂='∂-;01z z m n y y ϕ⎛⎫∂∂'-=⋅- ⎪∂∂⎝⎭,则z y m n ϕϕ'∂-='∂-,代入所求的式子化简得,1z z mn x y ∂∂+=∂∂ 6.(4,2) 8.9270x y z +--= 9.111342111y x z +--==-或8423421y x z +--==- 二、单项选择题(每小题3分,共15分)1.C 2. C 3. A 4. D 5. B三、解答题(共58分)解:1.121z f y f y g x y∂'''=⋅+⋅+⋅∂,则 2111122212222211zx x f y f x f f f x f g yg x y y y y y ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫∂'''''''''''''=+⋅⋅+-+⋅-+⋅⋅+-++⎢⎥⎢⎥ ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 1111222122231x x xf xyf f f f fg yg y yy y ⎛⎫'''''''''''''=++--+-++ ⎪⎝⎭ 111222231xf xyf f fg yg y y '''''''''=+--++. 2.方程两边对x 分别求导,得1122220z z zz xyz xy x x x z x∂∂∂+--++=∂∂∂ 112222z x xy yz z x z x ∂⎛⎫∴-+=-- ⎪∂⎝⎭,z xx z∂∴=-∂, 同理,112220z z z xxz xy y y y z y ∂∂∂--++=∂∂∂12122xz z yy x xy z-∂∴=∂-+,12d d d 122xz x yz x y z x xy z-∴=-+-+.3.方程组两边对x 求偏导:00u v u x y x xu v y v x x x ∂∂⎧+-=⎪⎪∂∂⎨∂∂⎪++=⎪∂∂⎩,解方程组得,22u ux vy x x y ∂+=-∂+. 4.令222(,,)1F x y z x y z =++-,则000()0,()0,()2x y z F P F P F P ===,(0,0,2),n ∴=e (0,0,1)n =, 又21,2,3,x y z u u y u z === 000()1,()0,()3x y z u P u P u P ===,000()0()0()13x y z P uu P u P u P n ∂=⋅+⋅+⋅=∂ ∴函数u 在0P 点沿方向n 的方向导数为3.5.(法一)在每个方程两边对x 求导,得d d 2220d d d 222d y z x y z x xy x y x ⎧++=⎪⎪⎨⎪+=⎪⎩解得:d 1d d 1d y x x y z xz -⎧=⎪⎪⎨⎪=-⎪⎩,将P 代入d d y x ,d d z x得曲线的切向量)1,0,T ⎛== ⎝, ∴101y z -==,法平面方程为:1)0x z -+=,即0z +-=(法二)令222(,,)4F x y z x y z =++-,则2,2,2,x y z F x F y F z ===从而()2,()2,()x y z F P F P F P ===2224x y z ++=的法向量为12(1,1n =;再令22(,,)2G x y z x y x =+-,则()0,()2,()0x y z G P G P G P ===,从而曲面222x y x +=的法向量为2(0,2,0)2(0,1,0)n ==;∴切线的方向向量为:(0,1,0)(T =⨯=101y z -==,法平面方程为:1)0,x z -+=即0z +-=. 6.令:(,,)F x y zx y z F F F ===设曲面上的任一点为000(,,)x y z,在此点处的法向量为,n ⎛⎫= ∴000)))0x x y y z z ---=,即y =,∴∴a ==.7.{}(,)06,06D x y x y x =≤≤≤≤-,①当06x ≤≤,0y =时,(,0)0z f x ==;②当06y ≤≤,0x =时,(0,)0z f y ==;③当6x y +=,06x ≤≤时,223(,6)(6)(2)122z f x x x x x x =-=--=-+;令22460x z x x =-+=,则04、x =, 当0x =时,0z =;当4x =时,64z =-;当6x =时,0z =;∴二元函数在()()0,6,6,0点处取得最大值0,在()4,2处取得最小值64-.第九章 重积分第一节 二重积分的概念与性质一、填空题1.有界闭、有界、()01lim,niiii f λξησ→=∆∑、闭、连续 2.(,)d Df x y σ⎰⎰ 3.π4.36a π 5.221()d 2Dx y σ+⎰⎰ 二、单项选择题1. D三、解答题解:1.01x y ≤+≤,∴2221x y xy ++≤,即2212x y xy +≤-,∴2222323x y xy ≤++≤-≤,22422d 3d 36DDI σσ∴==≤≤==⎰⎰⎰⎰,即 46I ≤≤. 2.22(2)(1)2x y -+-≤,即22(1)22()x y x y -++≤+,∴22(1)11()2x y x y -+≤+≤+,23()()x y x y +≤+,故23()d ()d D Dx y x y σσ+≤+⎰⎰⎰⎰.第二节 二重积分的计算法(一)一、填空题1.201,0x y x ≤≤≤≤,011y x ≤≤≤≤2.40d (,)d xx f x y y ⎰⎰3.655,提示:D:201,x x y ≤≤≤≤()411e 2-- 5.221d ,:1Dx y D xy σ--+≤⎰⎰ 6.242222d (,)d d (,)d y y y y f x y x y f x y x +⎰⎰⎰⎰二、单项选择题1.B2. A 3.C 4. B三、计算题解:1.26:24,12y D y x y --≤≤≤≤+,原式d d Dxy x y ==⎰⎰241232d d y y y y x x +--⎰⎰ 214256443243222322112d 428d 4362242324y y x y y y y y y y y y y y +----⎛⎫⎛⎫⎡⎤==+--=+--= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰⎰2.如图9-1::01,D y x ≤≤≤≤1220d d d d Dx y x y y y x =⎰⎰⎰13353111222222200002112d (1)d (1)d(1)(1)33335x y y y y y y y y ⎡⎤⎡==+=++=⋅+⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰21)15=. 3.如图9-2::2;:;:32xOA y x OB y AB y x ===-+,12D D D ∴=,1:01D x ≤≤,2;2x y x ≤≤2:12,32xD x y x ≤≤≤≤-,121202d d d d d d d d x x D D D x x y x x y x x y x x y =+=⎰⎰⎰⎰⎰⎰⎰⎰ 图9-1xy221x y -=11-图9-2xOOB (2,1)A (1,2)y11D2D D1223122323101201331313d d d 3d 222222xxx x y x x x x x x x x -⎛⎫⎡⎤⎡⎤+=+-=+-= ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦⎰⎰⎰⎰.第二节 二重积分的计算法(二)一、填空题1.0,02cos 2πθρθ≤≤≤≤ 2.()2201d cos ,sin d d f πθρθρθρρθ⎰⎰3.2sec 34d ()d f πθπθρρρ⎰⎰二、单项选择题1.A2.D3.C三、计算题解:1.如图9-3,:0,02cos 4D πθρθ≤≤≤≤,原式2cos 2240d d d d Dπθρρθθρρ==⎰⎰⎰⎰2cos 334400018d cos d 33θππρθθθ⎡⎤===⎢⎥⎣⎦⎰⎰2.如图9-4,:0,2cos 22D πθθρ≤≤≤≤,原式=223202cos d d d d Dπθρρρθθρρ=⎰⎰⎰⎰2444222220002cos 11d 2(1cos )d 4(1cos )sin d 44πππθρθθθθθθ⎡⎤==-=+⎢⎥⎣⎦⎰⎰⎰ 20515sin 2sin 4284ππθθθ⎡⎤=--=⎢⎥⎣⎦.图9-3 xyy x = O2 D图9-42cos ρθ=2ρ=yxD2 O3.法一:如图9-5, :0,02sin D θπρθ≤≤≤≤,原式=cos (sin 1)d d Dρθρθρρθ+⎰⎰=2sin 220cos (sin 1)d d d cos (sin 1)d Dπθρθρθρθθρθρθρ+=+⎰⎰⎰⎰2sin 4353000118cos sin d cos 4sin sin d 433θππθρθρθθθθθ⎡⎤⎛⎫=+=+ ⎪⎢⎥⎣⎦⎝⎭⎰⎰()536400824sin sin dsin sin sin 033ππθθθθθ⎛⎫⎡⎤=+=+= ⎪⎢⎥⎝⎭⎣⎦⎰.法二:被积函数(1)x y +对x 是奇函数,区域D 关于y 轴对称,所以(1)d d 0Dx y x y +=⎰⎰.4.如图9-6,12D D D =,221:4D x y +≤,222:49D x y ≤+≤,原式()()()121222224d d 4d d 4d d D D D xy x y x y x y ρρρθ=--++-=-⎰⎰⎰⎰⎰⎰222232330241(4)d d d (4)d d (4)d 2D πππρρρθθρρρθρρρ+-=-+-=⎰⎰⎰⎰⎰⎰.第三节 三重积分一、填空题1.43π2.163π3.2cos 22002d d d a h z πθπθρρ-⎰⎰⎰图9-5xyO 11-1 22sin ρθ=图9-6xyO2 3 D1D2D4.2120d d (sin cos )sin d f r r r ππθϕϕθϕ⎰⎰⎰二、单项选择题1.C三、计算题解:1.1:01,0,0122x x y z x y -Ω≤≤≤≤≤≤--,原式11122000d d d xx y x y x z ---=⎰⎰⎰ 112111222000(1)1d (12)d (1)d d 448xx x x x x y y x x y y x x x ---⎡⎤=--=--==⎣⎦⎰⎰⎰⎰.2.如图9-7,2π110d d d d πV V z ρθρΩ===⎰⎰⎰⎰⎰⎰,或者 π2π2cos 240d d d sin d πV V r r ϕθϕϕΩ===⎰⎰⎰⎰⎰⎰.3.如图9-8,用柱面坐标表示2:02,01,0z θπρρΩ≤≤≤≤≤≤,原式222π1133201d d d 2πd 2z z z ρρθρρρρ⎡⎤==⎢⎥⎣⎦⎰⎰⎰⎰1701π2πd 28ρρ==⎰. 4.如图9-9,用球面坐标表示:02,0,0sec 4r πθπϕϕΩ≤≤≤≤≤≤,原式sec ππ2πsec 344401d sin d d 2sin d 4r r r ϕϕθϕϕπϕϕ⎡⎤==⎢⎥⎣⎦⎰⎰⎰⎰π44012sec sin d 1)46ππϕϕϕ==⎰. 5.222(222)d I x y z xy yz xz V Ω=+++++⎰⎰⎰,由对称性定理知:(222)d 0xy yz xz V Ω++=⎰⎰⎰,故 22222()d sin d d d I x y z V r r r ϕϕθΩΩ=++=⎰⎰⎰⎰⎰⎰ 图9-7xyzO11Ω222z x y =+222(1)1x y z ++-=图9-8xyz1 22z x y =+1OΩ图9-9 xy zO1z Ω[]2πππ455000014d sin d d 2πcos π55R r r R R θϕϕϕ==⋅⋅-=⎰⎰⎰.第四节 重积分的应用一、填空题d x y2.d xy D x y ⎰⎰3.2222:4(822)d d xy D x y x y x y +≤--⎰⎰,2π220d (82)d θρρρ-⎰⎰,16π 4.28a 5.22()d x y V ρΩ+⎰⎰⎰二、单项选择题1. B2. B.三、计算题解:1.22:2xy D x y x +≤,x Z =,y Z =,故所求面积d d d d xyxyxyD D D x y x y x y ====⎰⎰⎰⎰. 2.xoy面之上的球面为:z =x Z =,y Z =222d ,(:)xyxy D x y D x y ax =+≤⎰⎰2d 2d xyxyD D x y x y ==⎰⎰⎰⎰cos 22220222d d 2(1sin )d 2a a a ππθππθρθθπ--==-=⎰⎰⎰.3.设扇形的均匀密度为μ,其质心坐标为(,)x y ,由对称性知,质心在x 轴上,故0y =,2202d d d d cos d d 2cos d d 1d d d d 2L R DDDR L RDDx x yx x y x RL x yx yRL μρθρρθθθρρμ-⋅====⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ 3212sin 23L R RL R =⋅24sin 32R L L R =,故质心坐标为24sin ,032R L LR ⎛⎫ ⎪⎝⎭.第九章 自测题一、填空题(每小题4分,共24分)1.2(e 1)- 2.2sin 20d (cos ,sin )d f πθθρθρθρρ⎰⎰3.2120d (,)d xxx f x y y ⎰⎰4.53245a提示:31I d 3a a a a x y y y x --⎡==⎢⎥⎣⎦⎰⎰⎰2225232()d 345a a a x x a -=-=⎰ 5.()111e 2-- 6.22218a b c 二、单项选择题(每小题3分,共24分) 1.A 2.C 3.D 4.C 5.C 6.C 7.D 8.D三、计算题(共52分)解:1.原式222211111222221111111d d d (1)(1)d 022x x x x x y y y x x x x -------⎡⎤⎡⎤===---=⎣⎦⎢⎥⎣⎦⎰⎰⎰⎰. 2.原式1100sin d d sin d 1cos1x xx y x x x===-⎰⎰⎰.3.薄片质量(,)d d DM x y x y μ=⎰⎰,其中()1,12,D x y x y x x⎧⎫=≤≤≤≤⎨⎬⎩⎭,故上式=222222223122111111119d d d d d d ()d 4xx x Dxx x y x x y x x x x x x x x y y y x ⎡⎤⎛⎫==-=-=-= ⎪⎢⎥⎝⎭⎣⎦⎰⎰⎰⎰⎰⎰⎰4.原式[]2π2π2π2π2ππ0πππd sin d 2πdcos 2πcos 2πcos d θρρρρρρρρρ==-=-+⎰⎰⎰⎰[]2π22π6π2πsin 6πρ=-+=-.5.原式2cos 42π2cos 222cos 0cos d d cos sin d 2πsin cos d 4r r r r ϕππϕϕϕθϕϕϕϕϕϕ⎡⎤=⋅=⎢⎥⎣⎦⎰⎰⎰⎰ππ625201515cos 5πsin cos d ππ2264ϕϕϕϕ⎡⎤==-=⎢⎥⎣⎦⎰. 6.如图9-10,由于:02π,24,28z θρΩ≤≤≤≤≤≤,故22I ()d z x y V Ω=+⎰⎰⎰2228248331002022d d d d d d z zππρθρρθρρ=+⎰⎰⎰⎰⎰⎰48π288π336π=+=.第十章 曲线积分与曲面积分第一节 对弧长的曲线积分一、填空题1.(,,)d x y z s ρΓ⎰,22()(,,)d y z x y z s ρΓ+⎰,22()(,,)d x z x y z s ρΓ+⎰,22()(,,)d x y x y z s ρΓ+⎰,(,,)d (,,)d (,,)d ,,(,,)d (,,)d (,,)d x x y z s y x y z s z x y z s x y z s x y z s x y z s ρρρρρρΓΓΓΓΓΓ⎛⎫ ⎪ ⎪⎝⎭⎰⎰⎰⎰⎰⎰ 2.π 二、单项选择题1.D 2.B ,提示::0,01;:1,01;OA y x AB y x x =≤≤=-≤≤:0,01;BO x y =≤≤10I ()d (0)d OA AB BOx y s x x ++=+=+⎰⎰11(1d 1x x x y y ++-+=+⎰⎰3.B,提示:42π443I (cos sin R t t t =+⎰777π2π445333203(cos sin )|cos sin |d 24sin cos d 4R t t t t t Rt t t R =+==⎰⎰,故选B三、计算题图9-10xyzO 284 222z x y =+22x y ax +=y解:1.如图10-1,L 的参数方程: cos 22sin 2a a x a y θθ⎧=+⎪⎪⎨⎪=⎪⎩(02π)θ≤≤, 22I d Lx y s=+⎰222π0cos d 22a θθθ==⎰⎰π2ππ222π0022cos d cos d cos d 2令t a t t a t t t t θ=⎡⎤⋅=-⎢⎥⎣⎦⎰⎰⎰[][]ππ222π02sin sin 2a t t a ⎛⎫=-= ⎪⎝⎭. 2.Γ的参数方程:1222x ty t z t =+⎧⎪=⎨⎪=-⎩(01)t ≤≤,1220d (12)2(2x yz s t t t t Γ=+-⎰⎰14320(24244212)d t t t t t =-+++⎰15432024106614655t t t t -⎡⎤=+++=⎢⎥⎣⎦.3、Γ的参数方程:x y z θθ⎧=⎪⎪=⎨⎪=⎪⎩ (02π)θ≤≤2π00s θθΓ===⎰⎰⎰.第二节 对坐标的曲线积分一、填空题1.(,)d +(,)d AB P x y x Q x y y ⎰,d ABF r ⋅⎰ 2.[][]{}(),()()(),()()P t t t Q t t t ϕψϕϕψψ''+3.0280d 2d x x x x -⎛⎫+- ⎪⎝⎰⎰,2243d2y y -⎰ 4提示:(1,2),cos x ταβ===,原积分[](,)cos (,)cos d LP x y Q x y s αβ=+⎰图10-1xθOa21二、单项选择题1.C ,提示:12L L L =+,12:,:01;:2,:12;L y x x L y x x =→=-→1222222201142d ((2))d [(2)](1)d 3I x x x x x x x x =++-+---=⎰⎰⎰ 三、计算题解:1.Γ的参数方程:112:1013x t y t t z t =+⎧⎪=+→⎨⎪=+⎩,2d d (31)d x x y y z y z Γ++--⎰22111(12)2(39121)3d (8306)d t t t t t t t t ⎡⎤=+++⋅++---⋅=++⎣⎦⎰⎰ 032187115633t t t ⎡⎤=++=-⎢⎥⎣⎦.2.2:,:02L y x x =→,2222224240()d ()d ()2d L x y x x y y x x x x x x ⎡⎤-++=-++⋅⎣⎦⎰⎰ 2354603523x x x x ⎡⎤=-++⎢⎥⎣⎦1285=.3.令cos ,sin x R y R θθ==,π:0,2θ→ 22022π2()d d (sin cos cos )(sin )cos cos d 22L x R xy x x y R R R R θθθθθθθ⎡⎤++=+-+⎢⎥⎣⎦⎰⎰ 303222π2sin sin (1sin )dsin 2R R R θθθθ⎡⎤=--+-⎢⎥⎣⎦⎰33233223π2111=sin sin sin sin 322232R R R R R θθθθ⎡⎤--+-=⎢⎥⎣⎦. 第三节 格林公式及其应用一、填空题1.闭区域D ,一阶连续偏导数,d d d d LD Q P x y P x Q y x y ⎛⎫∂∂-=+ ⎪∂∂⎝⎭⎰⎰⎰,D 的取正向的边界曲线 2.沿G 内任意闭曲线积分为零,Q Px y∂∂=∂∂,(,)d (,)d P x y x Q x y y +为某一22 二元函数的全微分 3.(1,2)12(0,0)(,)d (,)d (,0)d (1,)d P x y x Q x y y P x x Q y y +=+⎰⎰⎰4.2222x y xy C +++ 二、单项选择题1.B ,提示:由格林公式,d (01)d d LDy x x y σ-=--=⎰⎰⎰,②③积分均为σ-,故选B2.D ,提示:由格林公式,(22)d d 4d d 0DDI xy xy x y xy x y =--=-=⎰⎰⎰⎰,因为被积函数关于x 是奇函数,D 关于y 轴对称三、计算题解:1.令2222,2()2()yxP Q x y x y-==++,则当220x y +≠,有222222()P x y Qy x y x∂-∂==∂+∂如图10-2,记L 所围区域D ,当(0,0)D ∉时,由格林公式得22d d 02()L y x x yx y -=+⎰;当(0,0)D ∈时选取适当小的0r >,作位于D 内的圆周2221:l x y r +=.记L 与1l 所围的闭区域为1D ,对复连通区域1D ,用格林公式得112222d d d d 0d d 02()2()L l D y x x y y x x y x y x y x y --+=-=++⎰⎰⎰⎰,其中1l 取逆时针方向,于是122222220d d d d d 2()2()2L l y x x y y x x yr x y x y r πθπ---=-=-=++⎰⎰⎰.2.如图10-3,作辅助线段:0,:0OA y x a =→,与L 构成封闭曲线,记所围成的闭区域为D .令e sin ,e cos ,x x Q PP y my Q y my m x y∂∂=-=--=∂∂,由格林公式得(e sin )d (e cos )d xxL OA y my x y my y +-+-⎰2πd d d d 8D DQ P m a x y m x y x y ⎛⎫∂∂=-== ⎪∂∂⎝⎭⎰⎰⎰⎰,图10-2xy 1lOL图10-3xy O(,0)A a 22:L x y ax +=23所以22ππI (e sin )d (e cos )d 88x xOA m a m a y my x y my y =--+-=⎰. 3.如图10-4,法一:作辅助线段:1,:10AB x y =→,:0,:10BO y x =→与L 构成封闭曲线,记所围成的闭区域为D .令22,sin ,1Q PP x y Q x y x y∂∂=-=--=-=∂∂,由格林公式得22()d (sin )d d d 0L AB BO D Q P x y x x y y x y x y ++⎛⎫∂∂--+=--= ⎪∂∂⎝⎭⎰⎰⎰, 所以2222()d (sin )d ()d (sin )d L AB xy x x y y x y x x y y --+=---+-⎰⎰1122220sin 27()d (sin )d (1sin )d d 46BOx y x x y y y y x x --+=--+=-⎰⎰⎰. 法二: 由22,sin ,1Q PP x y Q x y x y ∂∂=-=--=-=∂∂,所以曲线积分在xoy 面内与路径无关,取折线::0,:01,:1,:01OB y x BA x y =→=→, 则原积分1122220sin 27()d (sin )d d (1sin )d 46OB BAI x y x x y y x x y y +=--+=+--=-⎰⎰⎰. 第四节 对面积的曲面积分一、填空题1.(,,)dS x y z μ∑⎰⎰,22()(,,)dS y z x y z μ∑+⎰⎰,22()(,,)dS x z x y z μ∑+⎰⎰, 22()(,,)dS x y x y z μ∑+⎰⎰ 2.S,yzD d y z ⎰⎰ 3.222(d ,(d ,(d f R x y f R y z f R z x二、单项选择题1.C ,提示:22224()d d 4x y z S R S R π∑∑++==⎰⎰⎰⎰2.C ,提示:被积函数(,,)f x y z z =在曲面上为正,积分曲面关于xoy 面及yoz 面对称,故11d 4d 4d SS S z S z S x S ==⎰⎰⎰⎰⎰⎰(轮换对称性),其它类似可得图10-4xyO(1,1)A (1,0)B L24 三、计算题解:1.如图10-5,4:42,:1,323xy y x y z x D ∑=--+≤224d 1(2)d d 3S x y ⎛⎫=+-+- ⎪⎝⎭,22442d 41(2)d d 33xyD x y z S x y∑⎛⎫⎛⎫++=+-+- ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰61143246132=⋅⋅⋅⋅=.2.如图10-6,∑由1:1z z ∑=≤≤ 与222:1,1z x y ∑=+≤ 围成,1222222222222()d ()d ()d 2(d xyD x y z S x y z S x y z S x y x y ∑∑∑++=+++++=+⎰⎰⎰⎰⎰⎰⎰⎰2π12π122320000(d d d d (+1)d xyD x y x y θρρθρρρ+++=+⎰⎰⎰⎰⎰32⎫=⎪⎭.3.如图10-7,::02,11yz x D z y ∑=≤≤-≤≤,如图10-8,2(,,)f x y z x =为x 的偶函数,积分曲面关于yoz 面对称,22d 2(1d yzD x S y y z ∑=-⎰⎰⎰⎰ 图10-5y x zO 234∑图10-6xyzO2:1z ∑=221:z x y ∑=+图10-7xyzO 1∑zyz D225212d 2d 2πyzD y z z y -===⎰⎰⎰⎰.第五节 对坐标的曲面积分一、填空题1.(,,)d d (,,)d d (,,)d d P x y z y z Q x y z z x R x y z x y ∑++⎰⎰2.(22,d d ,:1xyxy D R x y x y D x y -+≤⎰⎰,)(),,d d ,:01,yzyz DP y z P y z y z D z z y z ⎡⎤-≤≤-≤≤⎢⎥⎣⎦⎰⎰,()(),d d ,:01,xzxz D Q x z Q x z z x D z z x z ⎡⎤-≤≤-≤≤⎢⎥⎣⎦⎰⎰ 二、单项选择题1.C ,提示:如图10-9,12341,:0x ∑=∑+∑+∑+∑∑=后侧,2:0y ∑=左侧,3:0z ∑=下侧,4:1x y z ∑++=上侧,11(1)d d d d d d d d 002yzD x y z y z x x y y z ∑+++=-++=-⎰⎰⎰⎰, 2(1)d d d d d d 00d d +00zxD x y z y z x x y z x ∑+++=-=⎰⎰⎰⎰,31(1)d d d d d d 00d d 2xyD x y z y z x x y x y ∑+++=+-=-⎰⎰⎰⎰, 4(1)d d d d d d (2)d d (1)d d yzzx D D x y z y z x x y y z y z x z z x ∑+++=--+--⎰⎰⎰⎰⎰⎰d dy xyD x +⎰⎰11111102114d (2)d d (1)d d d 3623y x x y y z z x x z z x y ---=--+--+=++=⎰⎰⎰⎰⎰⎰, ∴原积分为13三、计算题图10-8O y1图10-9xyzO 1:0x ∑=2:0y ∑=3:0z ∑=4∑z∑26 解:1.如图10-10,∑分为1:x ∑=2:x ∑=的后侧,∑在yoz 面的投影为22:4(0)yz D y z z +≤≥,如图10-11,则12222d dz d dz d dz x y x y x y ∑∑∑=+⎰⎰⎰⎰⎰⎰ 2222(4)d dz (4)d dz 0yzyzD D y z y y z y =-----=⎰⎰⎰⎰.2.如图10-12,设∑在xoy 面的投影为22:1xy D x y +≤,又()d d y z y z ∑-⎰⎰()d d ()d d 0,yzyzD D y z y z y z y z =---=⎰⎰⎰⎰()d d ()d d ()d d xzxzD D z x z x z x z x z x z x ∑-=---⎰⎰⎰⎰⎰⎰0=,故原式=2π1()d d ()d d d (cos sin )d 0xyD x y x y x y x y θρθθρρ∑-=--=--=⎰⎰⎰⎰⎰⎰.3.如图10-13,∑在xoy 面的投影为22:4xy D x y +≤, 设n 是∑下侧上一点处法向量, 则(2,2,1)n x y =-,d d 2d d y z x x y =-,d d 2d d z x y x y =-, 所以22322d d d d d d (22)d d x y z xy z x y x y x xy y x y ∑∑++=--+⎰⎰⎰⎰ ()2π232232220(22)d d d cos (1sin )sin d xyD x xy y x y θρθθρθρρ=---+=+-⎰⎰⎰⎰π2π2220sin d sin d 4πθθθθ==-⎰⎰=-4-16.第六节 高斯公式 通量与散度一、填空题1.(,,)(,,)(,,)d d d P x y z Q x y z R x y z x y z x y z Ω⎛⎫∂∂∂++ ⎪∂∂∂⎝⎭⎰⎰⎰, 图10-10xyO2图10-11yzOyz D图10-12xyz1O∑图10-13xyzO∑427[](,,)cos (,,)cos (,,)cos d P x y z Q x y z R x y z S αβγ∑++⎰⎰(,,)(,,)(,,)d d d P x y z Q x y z R x y z x y z x y z Ω⎛⎫∂∂∂=++ ⎪∂∂∂⎝⎭⎰⎰⎰.2.(,,)(,,)(,,)P x y z Q x y z R x y z x y z ∂∂∂++∂∂∂,,1)x y -3.通量 4.2221x y z++ 二、计算题解:1.令,,P x Q y R z ===,∑所围闭域22:03,9z x y Ω≤≤+≤,如图10-14,由高斯公式得d d d d d d 3d d d 339π381πx y z y z x z x y x y z V ∑Ω++===⋅⋅=⎰⎰⎰⎰⎰.2.如图10-15,添加辅助曲面2221:0,z x y a ∑=+≤的下侧与∑上侧一起构成封闭曲面的外侧,令323232,,P x az Q y ax R z ay =+=+=+,则2223()P Q Rx y z x y z∂∂∂++=++∂∂∂,由高斯公式得1323232()d d (+)d d ()d d x az y z y ax z x z ay x y ∑+∑++++⎰⎰π52π22242006π3()d d d 3d sin d d 5aa x y z x y z r r θϕϕΩ=++==⎰⎰⎰⎰⎰⎰, 其中:222:,0x y a z Ω+≤≤≤ 即π:02π,0,02r a θϕΩ≤≤≤≤≤≤. 又1132323222()d d (+)d d ()d d d d d d xyD x az y z y ax z x z ay x y ay x y ay x y ∑∑++++==-⎰⎰⎰⎰⎰⎰ 图10-14xyzO3图10-15xyzO 22:z x y ∑=+1:0z ∑=图10-16xyzO11 ∑28 52π22πd sin d 4a a a θρθρρ=-=-⎰⎰,所以原式=5556ππ29π5420a a a +=.3.如图10-16,令22,,P xz Q x y R y z ===,则22P Q Rz x y x y z∂∂∂++=++∂∂∂,∑所围闭域Ω:22221,0,0,0x y x y z x y +≤≥≥≤≤+,即Ω:2π0,01,02z θρρ≤≤≤≤≤≤,由高斯公式得2222d d d d d d ()d d d xz y z x y z x y z x y z x y x y z ∑Ω++=++⎰⎰⎰⎰⎰21220d d ()d z z πρθρρρ=+⎰⎰⎰π8=. 第七节 斯托克斯公式 环流量与旋度一、填空题1.0 2.d d d P x Q y R z Γ++⎰3.∑的侧,d d d d d d R Q P R Q P y z z x x y y z z x x y ∑⎛⎫⎛⎫∂∂∂∂∂∂⎛⎫-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎰⎰ 二、计算题解:1.如图10-17,取∑为平面2az =22234x y a ⎛⎫+≤⎪⎝⎭的上侧被Γ所围成的部分,∑的单位法向量(0,0,1)n =,由斯托克斯公式得20013πd d d d (1)d 4a y x z y x z S S x y z yzxΓ∑∑∂∂∂++==-=-∂∂∂⎰⎰⎰⎰⎰. 2.如图10-18,取∑为平面2z =的上侧被Γ所围成的部分(224x y +≤),∑的单位法向量(0,0,1)n =,由斯托克斯公式得xyzOΓ2∑29220013d d d d (3)d 3y x xz y yz z S z S x y z yxzyz Γ∑∑∂∂∂-+==--∂∂∂-⎰⎰⎰⎰⎰ 2(5)d 5π220πS ∑=-=-⋅⋅=-⎰⎰.3.环流量22()d ()d 3d x z x x yz y xy z ΓΦ=-++-⎰,取∑为平面0z =的上侧(224x y +≤)被Γ所围成的部分,∑的单位法向量(0,0,1)n =,22:4xy D x y +≤,由斯托克斯公式得:2201d 2d 3S x S x y z x zx yz xy ∑∑∂∂∂Φ==∂∂∂-+-⎰⎰⎰⎰2π2202d d 2cos d 0xyD x y θρθρ===⎰⎰⎰⎰.第十章 自测题一、填空题(每小题3分,共15分)12328π2π3b R ⎫+⎪⎭ ,提示:222()d m x y z s Γ=++⎰=232π22228π(2π3b R b t t R ⎫+=+⎪⎭⎰2.0 3.P Q y x ∂∂=∂∂ 4.32π3R ,提示:由轮换对称性,222d d d y s z s x s ΓΓΓ==⎰⎰⎰2221(+)d 3x y z s Γ=+⎰3212πd 33R R s Γ==⎰ 5.12,提示:11001d d d d d d 2xzD y x z x x z x x z ∑===⎰⎰⎰⎰⎰⎰二、单项选择题(每小题3分,共15分)1.B 2.D ,提示:(212)d 012d 12L L I xy s s a =+=+=⎰⎰图10-17xyzO:2a z ∑=Γ图10-18。
GAGGAGAGGAFFFFAFAF习题1271下列函数组在其定义区间内哪些是线性无关的?(1)x x2解 因为x xx =2不恒为常数 所以xx 2是线性无关的(2)x2x解 因为22=xx 所以x 2x 是线性相关的(3)e2x3e2x解 因为332=xxee 所以e 2x3e 2x是线性相关的(4)exex解 因为x x x e ee 2=-不恒为常数 所以exe x是线性无关的(5)cos2x sin2x解 因为x xx 2tan 2cos 2sin =不恒为常数所以cos2xsin2x是线性无关的GAGGAGAGGAFFFFAFAF(6) 2xe 22xxe解 因为x exe x x 2222=不恒为常数 所以2xe 22x xe 是线性无关的(7)sin2x cos x ×sin x解 因为2sin cos 2sin =xx x 所以sin2xcos x ×sin x 是线性相关的(8)e xcos2x e xsin2x解 因为x xe x e x x 2tan 2cos 2sin =不恒为常数所以e xcos2xe x sin2x 是线性无关的(9)ln xx ln x解 因为x xx x =ln ln 不恒为常数 所以ln xx ln x 是线性无关的(10)eaxe bx(ab )GAGGAGAGGAFFFFAFAF解 因为x a b ax bx e ee )(-=不恒为常数 所以eaxe bx是线性无关的2验证y 1cos x 及y 2sin x 都是方程y 2y 0的解 并写GAGGAGAGGAFFFFAFAF出该方程的通解解 因为 y 12y 12cos x 2cos x 0 y 22y 22sinx2sinx 0并且x y y ωcot 21=不恒为常数 所以y 1cos x 与y 2sin x是方程的线性无关解从而方程的通解为y C 1cos x C 2sin x提示 y 1 sin x y 12cos xy 2cos x y 12sin x3验证21xe y =及22xxe y =都是方程y 4xy (4x22)y 0的解并写出该方程的通解GAGGAGAGGAFFFFAFAF解 因为)24(2442)24(42222221211=⋅-+⋅-+=-+'-''x x x xe x xe x e x e y x y x y)24()2(446)24(4222222232222=⋅-++⋅-+=-+'-''x x x x x xe x e x e x e x xe y x y x y并且x y y =12不恒为常数所以21x e y =与222x xe y =是方程的线性无关解从而方程的通解为22221x x xe C e C y +=提示221xxe y =' 222142xxe x e y +=''22222xx e x e y +=' 223246xx e x xe y +=''4 验证(1)x x x e e C e C y 5221121++=(C 1、C 2是任意常数)是方程 y 3y2ye 5x的通解GAGGAGAGGAFFFFAFAF解 令y 1e x y 2e 2x xe y 5121*= 因为y 13y 12y 1e x 3e x 2e x 0y 23y 22y 24e2x3(2e2x2e2x且xe y y =12不恒为常数 所以y 1与y 2是齐次方程y 3y2y 0的线性无关解从而YC 1e x C 2e 2x 是齐次方程的通解又因为xx x x e e e e y y y 5555121212531225*2*3*=⋅+⋅-=+'-''所以y *是方程y3y 2y e 5x 的特解因此x x x e e C e C y 5221121++=是方程y 3y2ye 5x 的通解(2))sin cos 4(3213sin 3cos 21x x x x C x C y +++=(C 1、C 2是任意常 数)是方程y 9y x cos x 的通解解 令y 1cos3xy 2sin3x)sin cos 4(321*x x x y +=因GAGGAGAGGAFFFFAFAF为y 19y 19cos3x 9cos3x 0y 29y 29sin3x9sin3x且x y y 3tan 12=不恒为常数 所以y 1与y 2是齐次方程y 9y0的线 性无关解从而YC 1e x C 2e 2x 是齐次方程的通解又因为 x x x x x x x x y y cos )sin cos 4(3219)cos 4sin 9(321*9*=+⋅+--=+''所以y *是方程y 9y x cos x 的特解因此)sin cos 4(3213sin 3cos 21x x x x C x C y +++=是方程y9y x cos x的通解(3)y C 1x 2C 2x 2ln x (C 1、C 2是任意常数)是方程x2y3xy4y0GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAF的通解解 令y 1x 2 y 2x 2ln x 因为x 2y 13xy 14y 1x 2×23x ×2x 4×x 20x 2y 23xy 24y 2x 2×(2lnx 3)3x ×(2x ln x x )4×x 2ln x 0且x y y ln 12=不恒为常数 所以y 1与y 2是方程x 2y3xy4y0的线性无关解从而yC 1x 2C 2x 2ln x 是方程的通解(4)x x x C x C y ln 92251-+=(C 1、C 2是任意常数)是方程x 2y 3xy 5y x 2ln x的通解解 令y 1x5x y 12= x x y ln 9*2-= 因为GAGGAGAGGAFFFFAFAFx 2y 13xy 15y 1x 2×20x 33x ×5x 45×x 50015)1(32532322222=⋅--⋅-⋅=-'-''xxx xx y y x y x且621x y y =不恒为常数 所以y 1与y 2是齐次方程x 2y3xy5y0的线性无关解 从而xC x C Y 251+=是齐次方程的通解又因为*5*3*2y xy y x -'-''x x x x x x x x x x ln )ln 9(5)9ln 92(3)31ln 92(222=-⋅---⋅---⋅=所以y *是方程x 2y3xy 5y x 2ln x 的特解因此x x x C x C y ln 92251-+=是方程x 2y3xy5yx 2lnx 的通解(5)2)(121xx x e e C e C x y ++=-(C 1、C 2是任意常数)是方程xy2yxy e x的通解GAGGAGAGGAFFFFAFAF解 令xe xy 11= xe xy -=12 2*x e y = 因为GAGGAGAGGAFFFFAFAF0)(2)22(2223111=⋅-+-⋅++-⋅=-'+''x e x x e xe x e x e x e x xy y y x x x x x x x)(2)22(2223222=⋅---⋅+++⋅=-'+''------x e x x e xe x e x e x e x xy y y x xx x x x x且xe y y 221=不恒为常数 所以y 1与y 2是齐次方程xy 2yxy 0的线性无关解 从而)(121x x e C e C xY -+=是齐次方程的通解又因为x x x x e e x e e x xy y xy =⋅-⋅+⋅=-'+''2222**2*所以y *是方程xy 2y xy e x 的特解因此2)(121xx x e e C e C x y ++=-是方程xy 2yxy e x 的通解(6)y C 1e x C 2exC 3cos x C 4sin x x 2(C 1、C 2、C 3、C 4是任意常数)是方程y(4)y x 2的通解 解 令y 1e x y 2exy 3cos x y 4sin xGAGGAGAGGAFFFFAFAFy *x 2 因为y 1(4)y 1e x e x 0 y 2(4)y 2exexy 3(4)y 3cos x cos x 0 y 4(4)y 4sin x sin x 0并且04cos sin sin cos cos sin sin cos ≠=---------xx e e x x e e x x e exx e e x x x x x xx x所以y 1e x y 2e xy 3cos x y 4sin x 是方程y (4)y 0的线性无关解从而YC 1e x C 2exC 3cos x C 4sin x 是方程的通解又因为y *(4)y *0(x 2)x 2所以y *x 2是方程y (4)y x 2的特解因此y C 1e x C 2exC 3cos x C 4sin x x 2是方程y (4)y x2的通解提示GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAF令k 1e xk 2e xk 3cos x k 4sin x 0 则 k 1ex k 2exk 3sin x k 4cos x 0 k 1e x k 2e xk 3cos x k 4sin x 0k 1e x k 2exk 3sin x k 4cos x 0上术等式构成的齐次线性方程组的系数行列式为04cos sin sin cos cos sin sin cos ≠=---------xxe e x x e e x x e e xx e e xxx x x x x x所以方程组只有零解 即y 1e x y 2exy 3cos xy 4sin x 线性无关如有侵权请联系告知删除,感谢你们的配合!26829 68CD 棍40863 9F9F 龟39162 98FA 飺40501 9E35 鸵31656 7BA8 箨25851 64FB 擻30763 782B 砫O36482 8E82 躂a22364 575C 坜36929 9041 遁20408 4FB8 侸22279 5707 圇$。
高等代数第五版课后习题答案
【知识点】
若矩阵A的特征值为λ1,λ2,...,λn,那么|A|=λ1·λ2·...·λn
【解答】
|A|=1×2×...×n= n!
设A的特征值为λ,对于的特征向量为α。
则Aα= λα
那么(A²-A)α= A²α- Aα= λ²α- λα= (λ²-λ)α
所以A²-A的特征值为λ²-λ,对应的特征向量为α
A²-A的特征值为0 ,2,6,...,n²-n
函数(function),名称出自数学家李善兰的著作《代数学》。
之所以如此翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。
函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
同济大学《高等数学第五版》上下册习题答案习题 1?11. 设 A?∞, ?5∪5, +∞, B[?10, 3, 写出 A∪B, A∩B, A\B及 A\A\B的表达式解 A∪B?∞, 3∪5, +∞, A∩B[?10, ?5, A\B?∞, ?10∪5, +∞, A\A\B[?10, ?5C C C2. 设A、B是任意两个集合, 证明对偶律: A∩B A ∪B证明因为C C C C Cx∈A∩B ?x?A∩B? x?A或x?B? x∈A 或x∈Bx∈A ∪B ,C C C所以 A∩B A ∪B 3. 设映射 f : X →Y, A?X, B?X证明1fA∪BfA∪fB; 2fA ∩B?fA∩fB 证明因为 y∈fA∪B??x∈A∪B, 使 fxy?因为 x∈A 或 x∈B y∈fA或 y∈fB? y∈ fA∪fB,所以 fA∪BfA∪fB 2因为y∈fA∩Bx∈A∩B, 使fxy?因为 x∈A且 x∈B y∈fA且 y∈fB? y∈ fA∩fB,所以 fA∩B?fA∩fB 4. 设映射f : X→Y, 若存在一个映射g: Y→X, 使 g f I , f g I , 其中I 、I 分别是X、X YX YY上的恒等映射, 即对于每一个x∈X, 有I xx; 对于每一个y∈Y, 有I yy. 证明: f是双射, 且gX Y?1是f的逆映射: gf证明因为对于任意的y∈Y, 有xgy∈X, 且fxf[gy]I yy, 即Y中任意元素都是X中某y元素的像, 所以f为X到Y的满射又因为对于任意的x ≠x , 必有fx ≠fx , 否则若fx fx ?g[ fx ]g[fx ]x x1 2 1 2 1 2 1 2 1 2 因此 f 既是单射, 又是满射, 即 f 是双射对于映射g: Y→X, 因为对每个y∈Y, 有gyx∈X, 且满足fxf[gy]I yy, 按逆映射的y定义, g是f的逆映射 5. 设映射 f : X→Y, A?X证明: ?1 1f fA?A; ?1 2当f是单射时, 有f fAA ?1 ?1 证明 1因为x∈Afxy∈fAf yx∈f fA, ?1 所以 f fA?A1 2由1知f fA?A1 ?1 另一方面, 对于任意的x∈f fA?存在y∈fA, 使f yx?fxy因为y∈fA且f是单1 ?1射, 所以x∈A. 这就证明了f fA?A. 因此f fAA6. 求下列函数的自然定义域: 1 y 3x+2 ;2 2 解由 3x+2≥0 得 x 函数的定义域为[? , +∞3 31 2 y ;21?x2 解由 1?x ≠0得x≠±1函数的定义域为?∞, ?1∪?1, 1∪1, +∞12 3 y 1?x ;x2 解由x≠0 且 1?x ≥0得函数的定义域D[?1, 0∪0, 1]1 4 y ;24?x2 解由 4?x 0 得 |x|2函数的定义域为?2, 2 5 y sin x ;解由 x≥0 得函数的定义 D[0, +∞ 6 ytanx+1;ππx≠kπ + ?1解由 x+1≠ k0, ±1, ±2,得函数的定义域为 k0, ±1, ±2,2 2 7 yarcsinx?3; 解由|x?3|≤1 得函数的定义域 D[2, 4]1 8 y 3? x +arctan ;x 解由 3?x≥0 且 x≠0 得函数的定义域 D?∞, 0∪0, 3 9 ylnx+1; 解由 x+10 得函数的定义域 D?1, +∞1x 10 ye解由 x≠0 得函数的定义域 D?∞, 0∪0, +∞ 7. 下列各题中, 函数 fx和 gx是否相同?为什么? 2 1fxlg x , gx2lg x;2 2 fxx, gx x ;3 34 3 3 f x xx , gx x x?12 2 4fx1, gxsec x?tan x解 1不同因为定义域不同 2不同因为对应法则不同, x0时, gx?x 3相同因为定义域、对应法则均相相同 4不同因为定义域不同π|sin x| |x|πππ3 8. 设?x , 求? , ? , ?? , ??2, 并作出函数 y?x的图形π 64 4?0 |x|≥3ππ 1 ππ 2 ππ 2 解 ? |sin | , ? |sin | , ?? |sin? | , ??206 6 2 4 4 2 4 4 2 9. 试证下列函数在指定区间内的单调性:x 1 y , ?∞, 1;1? x 2yx+ln x, 0, +∞证明 1对于任意的x , x ∈?∞, 1, 有 1?x 0, 1?x 0. 因为当x x 时,1 2 1 2 1 2x x xx1 2 1 2yy 0,1 21? x 1? x 1? x 1? x1 2 1 2x所以函数 y 在区间?∞, 1内是单调增加的1? x 2对于任意的x , x ∈0, +∞, 当x x 时, 有1 2 1 2x1yy x +ln x ?x +ln x xx +ln 0,1 2 1 1 2 2 1 2x2所以函数 yx+ln x 在区间0, +∞内是单调增加的 10. 设 fx为定义在?l, l内的奇函数, 若 fx在0, l内单调增加, 证明 fx在?l, 0内也单调增加证明对于?x , x ∈?l, 0且x x , 有?x , ?x ∈0, l且?x ?x1 2 1 2 1 2 1 2 因为 fx在0, l内单调增加且为奇函数, 所以f?x f?x ,fx ?fx , fx fx ,2 1 2 1 2 1这就证明了对于?x , x ∈?l, 0, 有fx fx , 所以fx在?l, 0内也单调增加1 2 1 2 11. 设下面所考虑的函数都是定义在对称区间?l, l上的, 证明: 1两个偶函数的和是偶函数, 两个奇函数的和是奇函数; 2两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数证明1设Fxfx+gx. 如果fx和gx都是偶函数, 则F?xf?x+g?xfx+gxFx,所以 Fx为偶函数, 即两个偶函数的和是偶函数如果 fx 和 gx都是奇函数, 则 F?xf?x+g?x?fx?gx?Fx,所以 Fx为奇函数, 即两个奇函数的和是奇函数2设Fxfx?gx. 如果fx和gx都是偶函数, 则F?xf?x?g?xfx?gxFx,所以 Fx为偶函数, 即两个偶函数的积是偶函数如果 fx 和 gx都是奇函数, 则 F?xf?x?g?x[?fx][?gx]fx?gxFx,所以 Fx为偶函数, 即两个奇函数的积是偶函数如果fx是偶函数, 而gx是奇函数, 则F?xf?x?g?xfx[?gx]?fx?gx?Fx,所以 Fx为奇函数, 即偶函数与奇函数的积是奇函数 12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?2 21yx 1?x ;2 32y3x ?x ;21?x3 y ;21+x4yxx?1x+1; 5ysin x?cos x+1;x ?xa +a6 y22 2 2 2 解 1因为f?x?x [1??x ]x 1?x fx, 所以fx是偶函数2 3 2 3 2由f?x3?x ??x 3x +x 可见fx既非奇函数又非偶函数221??x1? x 3因为 f ?x f x , 所以 fx是偶函数221+ x1+x 4因为f?x?x?x?1?x+1?xx+1x?1?fx, 所以fx是奇函数5由f?xsin?x?cos?x+1?sin x?cos x+1 可见 fx既非奇函数又非偶函数?x ??x ?x xa +a a +a 6因为 f ?x f x , 所以 fx是偶函数2 2 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: 1ycosx?2; 2ycos 4x; 3y1+sin πx; 4yx cos x;25ysin x 解 1是周期函数, 周期为 l2ππ 2是周期函数, 周期为 l2 3是周期函数, 周期为 l2 4不是周期函数 5是周期函数, 周期为 lπ 14. 求下列函数的反函数:3 1 y x+1 ;1?x 2 y ;1+xax+b 3 y ad?bc≠0;cx+d 4 y2sin3x; 5 y1+lnx+2;x2 6yx2 +13 33 3 解 1由 y x+1得xy ?1, 所以 y x+1的反函数为yx ?11? y1?x 1?x 1?x 2由 y 得 x , 所以 y 的反函数为 y1+x 1+ y 1+x 1+x?dy+bax+b ax+b ?dx+b 3由 y 得 x , 所以 y 的反函数为 ycy?acx+d cx+d cx?ay1 1 x 4由 y2sin 3x 得 x arcsin, 所以 y2sin 3x的反函数为 y arcsin3 2 3 2y?1 x?1 5由y1+lnx+2得xe ?2, 所以y1+lnx+2的反函数为ye ?2x xy2 2 x 6由 y 得 xlog , 所以 y 的反函数为 ylog2 2x x2 +1 1? y 2 +1 1? x 15. 设函数 fx在数集 X 上有定义, 试证: 函数 fx在 X 上有界的充分必要条件是它在 X上既有上界又有下界证明先证必要性. 设函数 fx在 X 上有界, 则存在正数 M, 使|fx|≤M, 即?M≤fx≤M. 这这就证明了 fx在 X 上有下界?M 和上界 M 再证充分性. 设函数fx在X 上有下界K 和上界K , 即K ≤fx≤ K取M|K |, |K |,1 2 1 2 1 2则M≤ K ≤fx≤ K ≤M ,1 2即 |fx|≤M这就证明了 fx在 X 上有界 16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 和x 的函数值:1 22 ππ 1 yu , usin x, x , x ;1 26 3ππ 2 ysin u, u2x, x , x ;1 28, 42 3 y u, u1+x , x 1, x 2;1 2u 2 4 ye , ux , x 0, x 1;1 22 x 5 yu , ue , x 1, x ?11 22 π 1 1 π3 32 2 2 2 解 1ysin x, y sin , y sin1 26 2 4 3 2 4ππ 2 ππ 2ysin2x, y sin2? sin , y sin2? sin 11 28 4 2 4 22 2 23 y, 1+ x y 1+1 2 , y 1+2 51 22 2 2x 0 1 4 y e , y e 1 , y e e1 22x 2?1 2 2??1 ?2 5ye , y e e , y e e1 2 17. 设 fx的定义域 D[0, 1], 求下列各函数的定义域:2 1 fx ; 2 fsinx; 3 fx+aa0; 4fx+a+fx?aa02 2 解 1由 0≤x ≤1 得|x|≤1, 所以函数fx 的定义域为[?1, 1] 2由0≤sin x≤1 得 2nπ≤x≤2n+1π n0, ±1, ±2 ?, 所以函数 fsin x的定义域为[2nπ, 2n+1π] n0, ±1, ±2 ?3由 0≤x+a≤1 得?a≤x≤1?a, 所以函数fx+a的定义域为[?a, 1?a]1 1 1 4由 0≤x+a≤1 且 0≤x?a≤1 得: 当 0a≤时, a≤x≤1?a; 当 a 时, 无解. 因此当 0a≤时2 2 21函数的定义域为[a, 1?a], 当 a 时函数无意义21 |x|1?x18. 设 f x 0 |x|1, gxe , 求f[gx]和g[fx], 并作出这两个函数的图形1 |x|1x1 |e |1 1 x0x解 f [gx] 0 |e |1 , 即 f [gx] 0 x0x1 |e |1 ?1 x0?1e |x| 1 e |x| 1f x 0 g[ f x ]e e |x|1, 即 g[ f x ] 1 |x|11 ?1?e |x|1 e |x|119. 已知水渠的横断面为等腰梯形, 斜角?40°图 1?37. 当过水断面ABCD的面积为定值S 时, 求湿周LLAC+CD+DB与水深h之间的函数关系式, 并说明定义域0图 1?37h 解 AbDC , 又从sin401h[BC +BC +2cot40 ?h]S 得2SBC ?cot40 ?h , 所以hS2?cos40L + hh sin 40 自变量 h 的取值范围应由不等式组Sh0, ?cot40 ?h0h确定, 定义域为 0h S cot400 20. 收敛音机每台售价为 90 元, 成本为 60 元. 厂方为鼓励销售商大量采购, 决定凡是订购量超过 100 台以上的, 每多订购 1台, 售价就降低 1 分, 但最低价为每台 75 元 1将每台的实际售价 p 表示为订购量 x 的函数; 2将厂方所获的利润 P表示成订购量 x 的函数; 3某一商行订购了 1000 台, 厂方可获利润多少?解 1当 0≤x≤100时, p90令 0. 01x ?10090?75, 得x 1600. 因此当x≥1600 时, p750 0 当 100x1600 时, p90?x?100×0. 0191?0. 01x 综合上述结果得到90 0≤ x≤100 p 91?0.01x 100 x1600?75x≥1600 30x 0≤ x≤1002P p?60x 31x?0.01x 100 x1600 215xx≥16002 3 P31×1000?0. 01×1000 21000元习题 1 ?21. 观察一般项x 如下的数列x 的变化趋势, 写出它们的极限:n n1 1 x ;nn21n 2 x ?1 ;nn1x 2 + 3 ;n2nn ?1 4 x ;nn +1n 5 x n ?1n1 1x lim 0 解 1 当 n →∞时, →0,nn nn →∞2 21 1n n 2 当 n →∞时, x ?1 →0, lim ?1 0 nn →∞n n1 1 3 当 n →∞时, x2 + →2,lim2 + 2 n2 2n →∞n nn ?1 2 n ?1x 1lim 1 4 当 n →∞时, →0,nn →∞n +1 n +1 n +1n 5 当n→∞时, x n ?1 没有极限nn πcos2 2. 设数列x 的一般项 x 问 lim x ? 求出N, 使当nN 时, x 与其极限之差的n nn nn →∞n绝对值小于正数ε , 当ε 0.001 时, 求出数N 解 lim x 0nn →∞n π|cos |1 1 1 12 |x ?0| ≤? ε 0, 要使|x ?0| ε , 只要ε , 也就是 n 取 N [ ], nnn nn εε则?nN, 有|x ?0| εn1N [ ] 当ε 0.001 时, 1000ε 3. 根据数列极限的定义证明: 1 1 lim 0 ;2n →∞n3n +1 3lim 2 ;n →∞2n +1 22 2n +a 3 lim 1n →∞n 4 lim 0.999 9 1n →∞n 个1 1 1 12| ?0| ε n 1 分析要使 , 只须 , 即 n2 2εn n ε1 11 证明因为ε0,N [ ], 当 nN 时, 有| ?0| ε , 所以 lim 02 2n →∞1 13n +1 3 1 1 2 分析要使|| ε , 只须ε , 即 n2n +1 2 22n +1 4n4n 4 ε3n +1 31 3n +1 3 证明因为ε0,N [ ] , 当 nN 时, 有|| ε , 所以 lim n →∞4 ε 2n +1 2 2n +1 22 2 2 2 2 2 2n +a n +a ?n a a a 3 分析要使|, ?1| ε只须 n2 2n n n εn n +a +n2 2 2 2 2an +a n +a证明因为? ε0,N [ ] , 当?nN 时, 有| ?1| ε , 所以 lim 1n →∞ε n n11 1 4 分析要使|0.99 9 ?1| , 只须ε , 即 n 1 +lgεn ?1 n ?1ε1证明因为? ε0,N [1 +lg ] , 当?nN 时, 有|0.99 9 ?1| ε , 所以 lim 0.999 9 1n →∞εn 个 4. lim u a , 证明 lim |u | |a|并举例说明: 如果数列|x | 有极限, 但数列x 未必有n nn nn →∞ n →∞极限证明因为 lim u a , 所以? ε0, ?N ∈N, 当 nN 时, 有|u ?a| ε , 从而n nn →∞||u | ?|a|| ≤|u ?a| εn n这就证明了 lim|u | |a|nn →∞n n 数列|x | 有极限, 但数列x 未必有极限. 例如 lim| ?1 | 1, 但lim ?1 不存在n nn →∞ n →∞ 5. 设数列x 有界, 又 lim y 0 , 证明: lim x y 0 nn →∞ n →∞证明因为数列x 有界, 所以存在M, 使?n ∈Z, 有|x | ≤Mn nε又 lim y 0 , 所以ε0, ?N ∈N, 当 nN 时, 有| y | 从而当 nN 时, 有n nn →∞Mε |x y ?0| |x y | ≤M | y | M ε ,n n n n nM所以 lim x y 0n nn →∞ 6. 对于数列x 若x →a k →∞, x →a k →∞, 证明: x →a n →∞n 2k 2k +1 n 证明因为x →a k →∞, x →a k →∞, 所以ε0,2k 2k +1?K , 当 2k2K 时, 有| x ?a | ε ;1 1 2kK , ?当 2k+12K +1 时, 有| x ?a | ε2 2 2k+1取N 2K , 2K +1, 只要nN, 就有|x ?a | ε因此x →a n →∞1 2 n n 习题 1 ?31. 根据函数极限的定义证明: 1 lim3x ?1 8;x →3 2 lim5x +2 12;x →22x ?4 3 lim ?4;x → ?2x +231 ?4x 4 lim 21x →2x +121 证明 1 分析 |3x ?1 ?8| |3x ?9| 3|x ?3|, 要使|3x ?1 ?8| ε , 只须|x ?3| ε31 证明因为ε 0,δε , 当 0 |x ?3| δ时, 有|3x ?1 ?8| ε , 所以 lim3x ?1 8x →331 2 分析 |5x +2 ?12| |5x ?10| 5|x ?2|, 要使|5x +2 ?12| ε , 只须|x ?2| ε51δε证明因为ε 0,, 当 0 |x ?2| δ时, 有|5x +2 ?12| ε , 所以 lim5x +2 12x →252 2 2x ?4 x +4x +4 x ?4 3 分析 ? ?4 |x +2| |x ? ?2| , 要使 ? ?4 ε , 只须x +2 x +2 x +2|x ? ?2| ε2 2x ?4 x ?4 证明因为ε 0,δε , 当 0 |x ? ?2| δ时, 有 ? ?4 ε ,所以 lim ?4x → ?2x +2 x +2331 ?4x 1 1 ?4x 1 1 4 分析 , 要使 ?2 ε , 只须|x ?| ε 2 |1 ?2x ?2| 2|x ?|2x +1 2 2x +1 2 23 31 1 1 ?4x 1 ?4x 证明因为ε 0,δε , 当 0 |x ?| δ时, 有 ?2 ε , 所以 lim 212 2 2x +1 2x +1x →2 2. 根据函数极限的定义证明:31 + x 1 1 ;lim3x →∞22xsin x 2 lim 0x → +∞x33 3 31 + x 1 1 + xx 1 1 + x 1 1 证明 1 分析 , 要使ε , 只须ε , 即3 3 3 3 32 22x 2x 2|x| 2x 2|x|1|x| 32 ε 331 1 + x 11 + x 1 证明因为ε 0,X , 当|x| X 时, 有ε , 所以 lim3 33x →∞2 22x 2x2 εsin x |sin x| 1 sin x 1 1 2 分析 ?0 ≤ , 要使 ?0 ε , 只须ε , 即 x 2εx x x x x1sin x sin x 证明因为ε 0,X , 当 x X 时, 有 ?0 ε , 所以 lim 0 2x → +∞εx x2 3. 当x →2 时, y x →4. 问δ等于多少, 使当|x ?2| δ时, |y ?4|0. 001 ?2 解由于x →2, |x ?2| →0, 不妨设|x ?2| 1, 即 1 x 3. 要使|x ?4| |x +2||x ?2| 5|x ?2| 0. 001, 只要0.0012|x ?2| 0.0002, 取δ 0. 0002, 则当 0 |x ?2| δ时, 就有|x ?4| 0. 00152x ?1 4. 当x →∞时, y →1, 问X 等于多少, 使当|x|X 时, |y ?1|0.012x +32x ?1 44 解要使 ?1 0.01, 只 ,|x| ?3 397 X 3972 20.01x +3 x +3 5. 证明函数 fx |x| 当 x →0 时极限为零x |x| 6. 求 f x , ?x 当 x →0 时的左?右极限, 并说明它们在 x →0 时的极限是否存在x x 证明因为xlim f x lim lim 1 1,x →0 x →0 x x →0xlim f x lim lim 1 1,+ + +x →0 x →0 x x →0lim f x lim f x,? +x →0 x →0所以极限 lim f x 存在x →0 因为|x| ?xlim ?x lim lim ?1,x →0 x →0 x →0x x|x| xlim ?x lim lim 1,+ + +x →0 x →0 x →0x xlim ?x ≠ lim ?x,? +x →0 x →0所以极限 lim ?x 不存在x →0 7. 证明: 若 x →+ ∞及 x →?∞时, 函数 fx 的极限都存在且都等于 A, 则 lim f x Ax →∞证明因为 lim f x A , lim f x A , 所以? ε0,x → ?∞ x →+∞?X 0, 使当x ?X 时, 有|fx ?A| ε ;1 1?X 0, 使当x X 时, 有|fx ?A| ε2 2取XX , X , 则当|x| X时, 有|fx ?A| ε , 即 lim f x A1 2x →∞ 8. 根据极限的定义证明: 函数fx 当x →x 时极限存在的充分必要条件是左极限、右极限各自存在并且相等证明先证明必要性. 设fx →Ax →x , 则? ε0,δ 0, 使当 0|x ?x | δ时, 有0 0|fx ?A| ε因此当xδxx 和x xx + δ时都有0 0 0 0|fx ?A| ε这说明fx 当x →x 时左右极限都存在并且都等于A0 再证明充分性. 设fx ?0 fx +0 A, 则? ε0,0 0? δ 0, 使当xδ xx 时, 有| fx ?A ε ;1 0 1 0? δ 0, 使当x xx + δ时, 有| fx ?A| ε2 0 0 2取δ min δ , δ , 则当0|x ?x | δ时, 有xδ xx 及x xx + δ , 从而有1 2 0 0 1 0 0 0 2| fx ?A| ε ,即fx →Ax →x0 9. 试给出 x →∞时函数极限的局部有界性的定理, 并加以证明解 x →∞时函数极限的局部有界性的定理 : 如果 fx 当 x→∞时的极限存在 , 则存在 X0 及M 0 , 使当|x|X 时, |fx| M证明设 fx →Ax →∞ , 则对于ε 1 , ?X0 , 当|x| X 时, 有|fx ?A| ε 1所以|fx| |fx ?A+A| ≤|fx ?A| +|A| 1 +|A| 这就是说存在 X0 及 M 0 , 使当|x| X 时, |fx| M , 其中 M 1 +|A|习题1 ?41. 两个无穷小的商是否一定是无穷小?举例说明之解不一定αx 2 αx 例如, 当 x →0 时, αx 2x, βx 3x 都是无穷小, 但 lim , 不是无穷小x →0β x 3 β x 2. 根据定义证明:2x ?9 1 y 当 x →3 时为无穷小;x +31 2 y xsin 当 x →0 时为无穷小x2x ?9 证明 1 当 x ≠3 时| y| |x ?3|因为ε 0,δε , 当 0 |x ?3| δ时, 有x +32x ?9| y| |x ?3| δε ,x +32x ?9所以当 x →3 时 y 为无穷小x +31 2 当 x ≠0 时| y| |x||sin | ≤|x ?0|因为? ε 0,δε , 当 0 |x ?0| δ时, 有x1| y| |x||sin | ≤|x ?0| δε ,x1所以当 x →0 时 y xsin 为无穷小x1 +2x 3. 根据定义证明: 函数 y 为当x →0 时的无穷大. 问x 应满足什么条件, 能使x4|y|10 ?1 +2x 1 1 1 1 证明分析| y|2 + ≥ ?2 , 要使|y| M, 只须 ?2 M , 即|x|x x |x| |x| M +21 1 + 2x 证明因为 ?M 0,δ , 使当 0 |x ?0| δ时, 有 M ,M +2 x1 +2x所以当 x →0 时, 函数 y 是无穷大x1 14 4 取M 10 , 则δ当 0 |x ?0| 时, |y|104 410 +2 10 +2 4. 求下列极限并说明理由:2x +1 1 lim ;n →∞x21x 2 limx →01x2x +1 1 1 2x +1 解 1 因为 2 + , 而当 x→∞时是无穷小, 所以 lim 2n →∞x x x x2 21x 1x 2 因为 1 + x x ≠1, 而当 x →0 时 x 为无穷小, 所以 lim 1 x →01x 1x 5. 根据函数极限或无穷大定义, 填写下表: 6. 函数 y xcos x 在?∞, +∞内是否有界?这个函数是否为当 x →+∞时的无穷大?为什么?解函数 y xcos x 在?∞, +∞内无界这是因为?M 0, 在 ?∞, +∞内总能找到这样的 x, 使得|yx| M. 例如y2k π 2k π cos2k π 2k π k 0, 1, 2,,当 k 充分大时, 就有| y2k π| M 当 x →+ ∞时, 函数 y xcos x 不是无穷大这是因为?M 0, 找不到这样一个时刻 N, 使对一切大于 N 的 x, 都有|yx| M. 例如πππy2k π + 2k π + cos2k π + 0 k 0, 1, 2,,2 2 2π对任何大的 N, 当 k 充分大时, 总有 x 2k π + N , 但|yx| 0 M21 1+ 7. 证明: 函数 y sin 在区间0, 1] 上无界, 但这函数不是当x →0 时的无穷大x x1 1 证明函数 y sin 在区间0, 1] 上无界. 这是因为x xM 0, 在0, 1] 中总可以找到点x , 使yx M. 例如当k k1x k 0, 1, 2,kπ2k π +2时, 有πyx 2k π + ,k2当k 充分大时, yx Mk+当x →0 时, 函数 y sin 不是无穷大. 这是因为x xM 0, 对所有的δ 0, 总可以找到这样的点x , 使 0 x δ, 但yx M. 例如可取k k k1x k 0, 1, 2,,k2k π当k 充分大时, x δ, 但yx 2k πsin2k π 0 Mk k习题 1 ?51. 计算下列极限:2x +5 1 lim ;x →2x ?32 2x +5 2 +5 解 lim ?9x →2x ?3 2 ?32x ?3 2 lim ;2x → 3 x +1223 ?3x ?3 解 lim 02x → 3 x +13 +12x ?2x +1 3 lim ;2x →1x ?122x ?2x +1 x ?1 x ?1 0 解 lim lim lim 0 2x →1 x →1 x →1x ?1 x ?1x +1 x +1 23 24x ?2x +x 4 lim ;2x →03x +2x3 2 24x ?2x +x 4x ?2x +1 1 解 lim lim2x →0 x →03x + 2x 3x + 2 22 2x +h ?x 5 lim ;h →0h2 22 2 2x +h ?xx +2hx +h ?x 解 lim lim lim2x +h 2x h →0 h →0 h →0h h1 1 6 lim2+ ;2x →∞x x1 1 1 1 解 lim2+ 2lim + lim 22 2x →∞ x →∞ x →∞x x x x2x ?1 7 lim ;2x →∞2x ?x ?11122x 解 lim lim2x →∞ x ?xx →∞ 1 1 22 12?2x x2x +x 8 lim ;4 2x →∞x ?3x ?12x +x 解 lim 0 分子次数低于分母次数, 极限为零4 2x →∞x ?3x ?11 1+22 3x +xx x 或 lim lim 04 2x →∞ x →∞ 2 11?2 4x x2x6x + 8 9 lim ;2x →4x5x + 42x ?2x ?4x ?6x +8 x ?2 4 ?2 2lim lim lim 解2x →4 x →4 x →4x ?5x +4 x ?1x ?4 x ?1 4 ?1 31 1 10 lim1 +2 ;2x →∞x x1 1 1 1 解 lim1 +2 lim1 + lim2 1 ×2 22 2x →∞ x →∞ x →∞x x x x1 1 1 11 lim1 + + + + ;nn →∞2 4 21n +11 ?1 1 12 解 lim1 + + + + lim 2 nn →∞ n →∞ 12 4 2121 +2 +3 + +n ?1 12 lim ; 2n →∞nn ?1n1 +2 +3 + +n ?1 1 n ?1 12 解lim lim lim2 2n →∞ n →∞ n →∞n n 2 n 2n +1n +2n +3 13 lim ;3n →∞5nn +1n +2n +3 1 解 lim 分子与分母的次数相同, 极限为最高次项系数之比3n →∞ 5n 5n +1n +2n +31 123 1 或 lim lim1 + 1 + 1 +3n →∞ n →∞5n 5 n n n 51 3 14 lim ;3x →11 ?x 1 ?x21 ?xx +21 3 1 +x +x ?3 x +2lim lim ?lim ?lim ?1 解3 2 2 2x →1 x →1 x →1 x →11 ?x 1 ?x 1 ?x1 +x +x 1 ?x1 +x +x 1 +x +x 2. 计算下列极限:3 2x +2x 1 lim ;2x →223 2x ?20 x +2x 解因为 lim 0 , 所以 lim ∞3 2 2x →2 x →2x +2x 16 x ?22x 2 lim ;x →∞2x +12x 解 lim ∞因为分子次数高于分母次数x →∞2x +13 3 lim2x ?x +1x →∞3 解 lim2x ?x +1 ∞因为分子次数高于分母次数x →∞ 3. 计算下列极限:12 1 limx sin ;x →0x1 2 12 解 limx sin 0 当x →0 时, x 是无穷小, 而 sin 是有界变量x →0arctanx 2 limx →∞xarctanx 1 1 解 lim lim ?arctanx 0 当 x →∞时, 是无穷小, 而arctan x 是有界变量x →∞ x →∞x x x 4. 证明本节定理 3 中的2. 习题 1 ?61. 计算下列极限:sin ωx 1 lim ;x →0xsin ωx sin ωx 解 lim ω lim ωx →0 x →0x ωxtan3x 2 lim ;x →0xtan3x sin3x 1 解 lim 3lim3x →0 x →0x 3x cos3xsin2x 3 lim ;x →0sin5xsin2x sin2x 5x 2 2 解 lim lim?x →0 x →0sin5x 2x sin5x 5 5 4 lim x cot x ;x →0x x 解 lim xcot x lim ?cosx lim ?limcosx 1x →0 x →0 x →0 x →0sin x sin x1 ?cos2x 5 lim ;x →0xsin x21 ?cos2x 1 ?cos2x 2sin x sin x2 解法一 lim lim lim 2lim 22 2x →0 x →0 x →0 x →0xsin x x x x21 ?cos2x 2sin x sin x 解法二 lim lim 2lim 2x →0 x →0 x →0xsin x xsin x xxn 6 lim 2 sin x 为不等于零的常数nn →∞2xsinnxn2 解 lim2 sin lim ?x xnxn →∞ n →∞2n2 2. 计算下列极限:1x 1 lim1 ?x ;x →01 11?1?1?1?x ?xx 解 lim1x lim[1 + ?x] lim[1 + ?x] e x →0 x →0 x →01x 2 lim1 +2x ;x →01 1 1?222x 2x 2x 解 lim1 +2x lim1 +2x [ lim1 +2x ] ex →0 x →0 x →01 + x2x 3 lim ;x →∞x1 + x 1 22x x 2[ ] 解 lim lim1 + ex →∞ x →∞x x1kx 4 lim1 k 为正整数x →∞x1 1kx ?x ?k ?k 解 lim1 lim1 + ex →∞ x →∞xx 3. 根据函数极限的定义, 证明极限存在的准则 I ′解 4. 利用极限存在准则证明:1 1 lim 1 + 1;n →∞ n1 1 证明因为1 1 + 1 + ,n n1而lim1 1 且 lim1 + 1,n →∞ n →∞ n1由极限存在准则 I, lim 1 + 1n →∞n1 1 12 limn + + + 1;2 2 2n →∞n + π n +2 π n +n π证明因为2 2n 1 1 1 nn + + + ,2 2 2 2 2n +n π n + π n +2 π n +n π n + π2 2n n而lim 1, lim 1,2 2n →∞ n →∞n +n π n + π1 1 1所以 limn + + + 12 2 2n →∞ n + π n +2 π n +n π 3 数列 2 , 2 + 2 , 2 + 2 + 2 , 的极限存在; 证明 x 2 , x 2 + x n 1, 2, 3,1 n +1 n 先证明数列x 有界. 当n 1 时 x2 2 , 假定n k 时x 2, 当n k +1 时,n k1x 2 + x 2 +2 2,k +1 k所以x 2n 1, 2, 3,, 即数列x 有界n n 再证明数列单调增22 + xx ?x ?2x +1n n n nxx 2 + xx ,n +1 n n n2 + x + x 2 + x + xn n n n而x ?2 0, x +1 0, 所以x ?x 0, 即数列x 单调增n n n +1 n n 因为数列x 单调增加有上界, 所以此数列是有极限的nnlim 1 + x 1 4 ;x →0 证明当|x| ≤1 时, 则有n 1 +x ≤1 +|x| ≤1 +|x| ,n 1 +x ≥1 ?|x| ≥1 ?|x| ,n从而有 1 ?|x| ≤ 1 + x ≤1 +|x|因为 lim1 ?|x| lim1 +|x| 1,x →0 x →0根据夹逼准则, 有nlim 1 + x 1x →01 5 lim x [ ] 1+x →0 x1 1 1 1 证明因为 ?1 [ ] ≤ , 所以1x x [ ] ≤1x x x x1 又因为 lim 1x lim 1 1 , 根据夹逼准则, 有 lim x [ ] 1+ + +x →0 x →0 x →0x习题 1?72 23 1. 当x→0 时, 2x?x 与x ?x 相比, 哪一个是高阶无穷小?2 3 2x ?x x?x 解因为 lim lim 0,2x→0 x→02?x2x?x2 3 2 3 2所以当x→0 时, x ?x 是高阶无穷小, 即x ?x o2x?x13 2 2. 当x→1 时, 无穷小 1?x 和11?x , 2 1x 是否同阶?是否等价? 23 21?x 1?x1+x+x2 解 1 因为 lim lim lim1+x+x 3,x→1 x→1 x→11?x 1?x3所以当x→1 时, 1?x 和 1?x 是同阶的无穷小, 但不是等价无穷小121?x12 2 因为 lim lim1+x1,x→1 x→11?x 212所以当x→1 时, 1?x 和 1?x 是同阶的无穷小, 而且是等价无穷小2 3. 证明: 当x→0 时, 有: 1 arctanx~x;2x 2 secx?1~2arctanx y 证明 1 因为 lim lim 1 提示: 令yarctan x, 则当x→0 时, y →0,x→0 y→0x tany所以当x→0 时, arctanx~xx x22sin 2sin2secx?1 1?cosx2 2 2 因为 lim 2lim lim lim 1,2 2x→0 x→0 x→0 x→01 x2 x cosx xx2 222x所以当x→0 时, secx?1~2 4. 利用等价无穷小的性质, 求下列极限:tan3x 1 lim ;x→02xnsinx 2 lim n, m 为正整数;mx→0sinxtanx?sinx 3 lim ;3x→0sin xsinx?tanx 4 limx→0 3 21+x ?1 1+sinx ?1tan3x 3x 3 解 1 lim lim x→0 x→02x 2x 21 nmnnsinx x 2 lim lim 0 nmm mx→0 x→0sinx x∞nm1 12sinx ?1 xtanx?sinx 1?cosx 1cosx2 3 lim lim lim lim3 3 2 2x→0 sin x x→0 sin x x→0 cosxsin x x→0x cosx 2 4 因为。
习题4-11. 利用定义计算下列定积分: 定积分 定积分的概念定积分的定义(1) d ();b ax x a b <⎰ 10(2)e d .x x ⎰解:(1)将区间[a , b ]n 等分,分点为(), 1,2,,1;i i b a x a i n n-=+=-L 记每个小区间1[,]i i x x -长度为,i b ax n-∆=取, 1,2,,,i i x i n ξ==L 则得和式211()2(1)()[()]()2nni i i i i b a b a n n f x a b a a b a n n n ξ==--+∆=+-⋅=-+∑∑ 由定积分定义得220122()(1) d lim ()lim[()]21().2nbi i an i b a n n x x f x a b a nb a λξ→→∞=-+=∆=-+=-∑⎰(2) 将区间[0, 1] n 等分,分点为 (1,2,,1),i i x i n n ==-L 记每个小区间长度1,i x n∆=取 (1,2,,),i i x i n ξ==L 则和式111()innni i i i f x enξ==∆=∑∑ 12101111111e d lim e lim (e e e )1e (1e )1e (e 1)limlim 1e e 11e (e 1)1lim e 1.1i nn xn n n n n n i n n n nn n n n n x n n n nn n n →∞→∞=→∞→∞→∞==+++--==---==-∑⎰L2. 利用定积分概念求下列极限:定积分 定积分的概念定积分的定义111(1)lim 122n n n n →+∞⎛⎫+++ ⎪++⎝⎭L ;21(2)lim n n →+∞+L解:(1)原式110011111lim d ln 2.ln(1)121111n x x n n xnn n →+∞⎛⎫+++⎪=⋅===++++ ⎪+⎝⎭⎰L (2)原式13200122lim ..33n x x n →+∞====⎰L 3. 用定积分的几何意义求下列积分值:定积分 定积分的概念定积分的定义10(1)2 d x x ⎰;(2)(0)x R >⎰.解:(1)由几何意义可知,该定积分的值等于由x 轴、直线x =1、y =2x 所围成的三角形的面积,故原式=1.(2) 由几何意义可知,该定积分的值等于以原点为圆心,半径为R 的圆在第一象限内的面积,故原式=21π4R . 4. 证明下列不等式: 定积分 定积分的性质定积分的性质2e 22e(1)e e ln d 2(e e)x x -≤≤-⎰; 21(2)1e d e.x x ≤≤⎰证明:(1)当2e e x ≤≤时,2ln e ln ln e ,x ≤≤即1ln e.x ≤≤由积分的保序性知:222e e e e eed ln d 2d x x x x ≤≤⎰⎰⎰即 2e 22ee e ln d 2(e e).x x -≤≤-⎰(2) 证明:当0 1.x ≤≤时,21e e,x ≤≤ 由积分的保序性知:2111d e d ed x x x x ≤≤⎰⎰⎰即211e d e.x x ≤≤⎰5. 证明:(1) 12lim 0;nn x →∞=⎰(2) π40lim sin d 0.n n x x →∞=⎰定积分定积分的性质 定积分的性质 定积分定积分的性质 积分中值定理证明:(1) 当102x ≤≤时,0,n n x ≤≤于是1112200110d (),12n n x x n +≤≤=⋅+⎰⎰ 而111lim()0,12n n n +→∞⋅=+由夹逼准则知:12lim 0.nn x →∞=⎰(2) 由中值定理得π440ππsin d sin (0)sin ,44n n x x ξξ=⋅-=⎰其中π0,4ξ≤≤故π4πlim sin d lim sin 0 ( 0sin 1).4n n n n x x ξξ→∞→∞==≤<⎰Q习题4-21. 计算下列定积分: 定积分 定积分的计算微积分学基本定理3(1)x ⎰; 221(2)d x x x --⎰;π(3)()d f x x ⎰,其中π,0,2()πsin ,π;2x x f x x x ⎧≤≤⎪⎪=⎨⎪<≤⎪⎩;222(4)max{1,}d x x -⎰;(5)x .解:(1)原式43238233x ==-(2)原式01222211()d ()d ()d x x x x x x x x x -=-+-+-⎰⎰⎰01232233210111111132233251511.6666x x x x x x -⎛⎫⎛⎫⎛⎫=++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=++= (3)原式πππ2π222π0π221πd sin d cos 1.28x x x x xx=+=-=+⎰⎰(4)原式121122233211212011d d d 2.333x x x x x x x -----=++=++=⎰⎰⎰(5)原式πππ242π04d (cos sin )d (sin cos )d sin cos x x x x x x x x x ==-+--⎰⎰⎰ππ24π04(sin cos )(cos sin )1).x x x x =++--=2. 计算下列导数: 定积分 定积分积分法复合函数求导法20d (1)d x t x ⎰;32d (2)d x x x ⎰解:(1)原式2=(2)原式32200d d d d x x x x =-=⎰⎰3. 求由参数式2020sin d cos d t tx u uy u u⎧=⎪⎨⎪=⎩⎰⎰所确定的函数y 对x 的导数d d y x .定积分 定积分积分法 复合函数求导法解:222d d cos d cot .d d sin d yy t t t x x tt=== 4. 求由方程e d cos d 0yxt t t t +=⎰⎰所确定的隐函数()y y x =的导数.定积分 定积分积分法 复合函数求导法解:方程两边对x 求导,有e cos 0y y x '⋅+=又 e 1sin yx =- 故 cos sin 1xy x '=-.5. 求下列极限: 定积分 定积分积分法微积分学基本定理2030ln(12)d (1)lim xx t t x →+⎰; 2220020e d (2)lim e d x t xx t t t t→⎡⎤⎣⎦⎰⎰.解: (1)原式21222300ln(12)22lim lim ln(12).333x x x x x x →→+==+=(2)原式2222222002e d e e d 1lim2lim2lim2.12e e xxt xt xxx x x t tx x x →→→⋅====+⎰⎰6. a , b , c 取何实数值才能使201lim sin x bx t c x ax →=-⎰ 成立.定积分 定积分积分法 复合函数求导法解:因为0x →时,sin 0x ax -→而该极限又存在,故b =0.用洛必达法则,有220000,1,lim lim 2cos cos lim 2, 1.sin x x x a x x x x a x a a x→→→≠⎧⎪==⎨--=-=⎪-⎩ 所以 1,0,2a b c ===- 或 1,0,0a b c ≠==.习题4-31. 利用基本积分公式及性质求下列积分:不定积分 求不定积分的方法基本积分公式2(1)5)d x x -;解:原式51732222210d 5d 73x x x x x x c =-=-+⎰⎰. (2)3e d x x x ⎰;解:原式=(3e)(3e)d .ln(3e)xxx c =+⎰23(3)d ;1x x ⎛ +⎝⎰ 解:原式=321d 23arctan 2arcsin .1x x x x c x -=-++⎰22(4)d ;1x x x +⎰解:原式=22211d d d arcsin .11x xx x x x c x x +-=-=-+++⎰⎰⎰ 2(5)sin d 2x x ⎰; 解:原式=1cos 1d sin .222x x x x c -=-+⎰21(6);1x x ⎛- ⎝⎰解:原式=357144444d d 4.7x x x x x x c ---=++⎰⎰2d (7);x x⎰解:原式=21d x x c x-=-+⎰.(8);x ⎰解:原式=35222d 5x x x c =+⎰.(9)解:原式=25322d 3x x x c --=-+⎰.2(10)(32)d ;x x x -+⎰解:原式=32132.32x x x c -++ 422331(11)d ;1x x x x +++⎰解:原式=23213d d arctan .1x x x x x c x +=+++⎰⎰ 3(12)d 2e x x x ⎛⎫+ ⎪⎝⎭⎰;解:原式=2e 3ln .xx c ++(13)e d ;1x xx x -⎛⎫- ⎪⎝⎭⎰解:原式=e d d e 2.xx x x x c x-=-+⎰⎰2352(14)d ;3x xxx ⋅-⋅⎰ 解:原式=5222d 5d 2233ln 3x xx x x c ⎛⎫⎛⎫-=-⋅+ ⎪ ⎪⎝⎭⎝⎭⎰⎰. (15)sec (sec tan )d x x x x -⎰;解:原式=2sec d sec tan d tan sec x x x x x x x c -=-+⎰⎰.1(16)d 1cos 2x x+⎰;解:原式=22111d sec d tan 2cos 22x x x x c x ==+⎰⎰.cos 2(17)d cos sin xx x x-⎰;解:原式=(cos sin )d sin cos .x x x x x c +=-+⎰22cos 2(18)d cos sin xx x x ⎰.解:原式=2211d d cot tan .sin cos x x x x c xx -=--+⎰⎰ 2. 一平面曲线过点(1,0),且曲线上任一点(x , y )处的切线斜率为2x -2,求该曲线方程. 不定积分 求不定积分的方法 基本积分公式 解:依题意知:22y x '=- 两边积分,有22y x x c =-+又x =1时,y =0代入上式得c =1,故所求曲线方程为221y x x =-+. 3. 在下列各式等号右端的空白处填入适当的系数,使等式成立.不定积分 求不定积分的方法 基本积分公式(1)()2(1)xdx d x =-;(2)()22x xx dx d e e =;(3)()(35ln )d xx xd -=; (4)()33(1)x x a a dx d =-;(5)()sin3cos3xdx d x=;(6)()2cos5tan5dxxd x =;(7)()221ln1x x ddx x=--;(8)()l2552ndd xxx=--;()(1arcs in)d x-=;(10)()2arcta9n13ddxxx=+;(11)()()2(3)(3)4dx dx x=---;(12)()22(1)x xx de d e--+=. 4.利用换元法求下列积分:不定积分求不定积分的方法基本积分公式2(1)cos()dx x x⎰;解:原式=22211cos d sin.22x x x c=+⎰(2)x;解:原式=12333(sin cos)d(sin cos)(sin cos).2x x x x x x c---=-+⎰2d(3)21xx-⎰;解:原式=1d112x c=+-+⎰.c=+3(4)cos d x x⎰;解:原式=231(1sin)dsin sin sin.3x x x x c-=-+⎰(5)cos cos d2xx x⎰;解:原式=1133d sin sin.cos cos232222xxx x cx⎛⎫=+++⎪⎝⎭⎰(6)sin2cos3dx x x⎰;解:原式=111(sin5sin)d cos cos5.2210x x x x x c-=-+⎰2arccos(7)xx;解:原式=2arccos 2arccos 1110d(2arccos )10.22ln10xx x c -=-⋅+⎰ 21ln (8)d (ln )xx x x +⎰;解:原式=21(ln )d(ln ).ln x x x x c x x-=-+⎰(9)x ;解:原式=2.c =+⎰ln tan (10)d cos sin xx x x⎰;解:原式=21ln tan d(ln tan )(ln tan ).2x x x c =+⎰5(11)e d x x -⎰;解:原式=51e5xc --+.d (12)12xx -⎰; 解:原式=1ln .122c x -+-(13)t;解:原式=.c =-⎰102(14)tan sec d x x x ⎰;解:原式=10111tan d(tan )tan .10x x x c =+⎰2d (15)ln xx x⎰;解:原式=21(ln )d(ln ).ln x x c x--=+⎰(16)tan x ⎰;解:原式=ln .cos c =-+⎰d (17)sin cos xx x⎰;解:原式=2d d tan ln .tan tan cos tan x xc x x x x ==+⎰⎰2(18)e d x x x -⎰;解:原式=22211e d()e .22x x x c ----=-+⎰ 10(19)(4)d x x +⎰;解:原式=111(4)11x c ++. (20)解:原式=123311(23)d(23)(23)32x x x c ----=--+⎰.2(21)cos()d x x x ⎰;解:原式=2211sin()sin().22d x x c =+⎰(22)x ; 解:原式=122222d 1()d()2x x a a x a x -⎛⎫ ⎪=---⎰arcsin .xa c a =⋅d (23)e ex x x-+⎰;解:原式=2d(e )arctane .1(e )x x x c =++⎰ ln (24)d xx x⎰; 解:原式=21ln d(ln )(ln ).2x x x c =+⎰23(25)sin cos d x x x ⎰;解:原式=223511sin (1sin )d(sin )sin sin .35x x x x x c -=-+⎰(26);解:原式32tan 444sec cos 1sin d d d(sin )tan sin sin x tt t tt t t t t t =-==⎰⎰⎰令311,3sin sin c t t=-++又cos t t ==故上式.c =(27)⎰;d ln |1|ln(1.1tt t t c c t =-++=+++(28) d ;x x⎰解:原式3sec 223tan d 3(sec 1)d 3tan 3x tt t t t t t c ==-=-+⎰⎰令,又3tan arccos ,t t x ===故上式33arccosc x+.(29);解:原式2tan 3sec d cos d sin sec x ttt t t t c t ===+⎰⎰令,又sec t 所以sin t =,故上式c =+.(30)解:原式sin cos d sin cos x ttt t t =+⎰令① sin d sin cos tt t t +⎰②① + ② 1t c =+ ② - ① 2 l n sin cos t t c =++ 故cos 1d ln sin cos sin cos 2211arcsin ln .22t t t ct t t t x c x =++++=++⎰5. 用分部积分法求下列不定积分:不定积分 求不定积分的方法分部积分法2(1)sin d x x x ⎰;解:原式=222dcos cos 2cos d cos 2dsin x x x x x x x x x x x -=-+⋅=-+⎰⎰⎰2cos 2sin 2cos .x x x x x c =-+++(2)e d x x x -⎰;解:原式=de e e d e e .x x x x x x x x x c ------=-+=--+⎰⎰(3)ln d x x x ⎰;解:原式=222211111ln d ln d ln 22224x x x x x x x x x c ⋅=-=-+⎰⎰. 2(4)arctan d x x x ⎰;解:原式=3332111arctan d arctan d 3331x x x x x x x=-+⎰⎰ 322111arctan ln(1).366x x x x c =-+++ (5)arccos d x x ⎰;解:原式=arccos arccos x x x x x c +=.2(6)tan d x x x ⎰;解:原式=22211(sec 1)d d tan tan tan d 22x x x x x x x x x x x -=-=--⎰⎰⎰ 21tan ln .cos 2x x x c x =+-+(7)e cos d x x x -⎰;解:e cos d e dsin e sin e sin d x x x x x x x x x x ----==⋅+⎰⎰⎰e sin e dcos e sin e cos e cos d x x x x x x x x x x x -----=-=--⎰⎰∴原式=1e (sin cos ).2xx x c --+ (8)sin cos d x x x x ⎰;解:原式=1111sin 2d d cos 2cos 2cos 2d 2444x x x x x x x x x =-=-+⎰⎰⎰ 11cos 2sin 248x x x c =-++.32(ln )(9)d x x x⎰; 解:原式=332111(ln )d (ln )3(ln )d x x x x x x ⎛⎫⎛⎫-=--⎪⎪⎝⎭⎝⎭⎰⎰ 32131(ln )(ln )6ln d x x x x x x ⎛⎫=--- ⎪⎝⎭⎰321366(ln )(ln )ln .x x x c x x x x=----+(10)x .解:原式tan 23sec d .x a ta t t =⎰又32sec d sec (tan 1)d tan d(sec )sec d t t t t t t t t t =+=+⎰⎰⎰⎰ 3tan sec sec d ln sec tan t t t t t t =⋅-++⎰所以 311sec d tan sec ln sec tan 22t t t t c t t '=+++⎰故11ln .22x c x =+6. 求下列不定积分:不定积分 求不定积分的方法分部积分法221(1)d (1)(1)x x x x ++-⎰;解:原式=2111111d ln ln 1122122(1)(1)(1)x c x x x x x x ⎛⎫ ⎪-=++++-++ ⎪+++-⎝⎭⎰ 211ln .112c x x =++-+ 33d (2)1x x +⎰;解:原式=22211112d ln ln d 1122111x x x x x x x x x x x -+⎛⎫=-+++-+⎪-++-+⎝⎭⎰⎰c =+. 5438(3)d x x x x x+--⎰; 解:原式=2843d 111x x x x x x ⎛⎫+++-- ⎪+-⎝⎭⎰ 32118ln 4ln 3ln .1132x x x c x x x =+++--++- 26(4)d 1x x x +⎰;解:原式=33321d()1arctan .31()3x x c x =++⎰ sin (5)d 1sin xx x +⎰;解:原式=222sin 1d tan d (sec 1)d sec tan .cos cos x x x x x x x x x c x x-=--=-++⎰⎰⎰ cot (6)d sin cos 1xx x x ++⎰;解:原式22tan 222222212d 1111111d d d 22(1)22211111x t t t t t t t t t t t t t t t t t t =-⋅-++==-+⎛⎫-++⎪+++⎝⎭⎰⎰⎰⎰令1111ln ln tan .tan 222222x x t c c t =-+=-+(7)x ;解:原式=2.c =+(8)x ;解:原式=2d 2ln 21x x x x x ⎛=+-+⎝⎰ 又2x2221d 44d 11t t t t t t =+--⎰⎰142ln1t t c c t -''=++=++故原式=1)x c -+.习题4-4利用计分表,计算下列不定积分: (1)2sin3d x e x x -⎰;解:由积分表(十三)中公式(128)得()()()222221sin 32sin 33cos32312sin 33cos313x xxe xdx e x x C e x x C ---=--+-+=-++⎰(2)x ; 解:令u =,则dx =,由积分表(六)中公式(39)得(9ln 2ln 4u C C⎤==+⎥⎦=++(3)arcsin d 2xx x ⎰;()()2221142arcsin sin 22421arcsin 22x x x x dx acr C x x C⎛⎫=- ⎪⎝⎭⎛⎫=-+ ⎪⎝⎭⎰由积分表十二中公式得(4);()()12,,45211ln 221ln 22x u dx du u C x C ==⎡⎤==+⎢⎥⎣⎦=++令则由积分表七中公式得(5)()21d 1x x x -⎰;()()()2261111ln 11111ln xdx C x x x x xCx x--=-++--=--+⎰g 由积分表一中公式得(6)x ; ()()51111arccos arccos 1C Cx x =+=+由积分表七中公式得(7)x x ⎰;()()((256121ln .88x xx x C =-++⎰由积分表七中公式得(8)x ;()()().5961=arcsin .x C ==-+⎰⎰Q 由积分表八中公式和得(9)x ;()()12,3721313ln 32u x dx du C C x=====+令则,由积分表六中公式得(10)4sin d x x ⎰.()()432339513sin sin cos sin 441311sin cos sin cos 4422133sin cos sin cos 488xdx x x xdx x x x x dx x x x x x C=-+⎡⎤=-+-+⎢⎥⎣⎦=--++⎰⎰⎰由积分表十一中公式得习题4-51. 利用被积函数奇偶性,计算下列积分值(其中a 为正常数) 定积分 定积分的计算 微积分学基本定理(1)sin d ;||aa xx x -⎰解:因sin ||xx 为[-a , a ]上的奇函数, 故sin d 0.||a a xx x -=⎰(2)ln(a ax x -+⎰;解:因为ln(ln(x x -=-即被积函数为奇函数,所以原式=0.12212sin tan (3)d ln(1)3cos3x x x x x -⎡⎤+-⎢⎥+⎣⎦⎰;解:因为2sin tan 3cos3x xx+为奇函数,故原式=111222111222d 0ln(1)d ln(1)1xx x x x x x---++-=--⎰⎰()121231ln 3ln 2 1.ln 3ln 2ln(1)22x x -==----+-π242π23(4)sin d sin ln 3x x x x x -+⎛⎫+ ⎪-⎝⎭⎰.解:因为3ln3xx+-是奇函数,故 原式=ππ6622π02531π5sin d 2sin d 2π642216x x x x -==⋅⋅⋅⋅=⎰⎰2. 计算下列积分: 定积分 定积分的计算 ??此处更细还需看(1)1x -⎰;2e 1(2)⎰;π40sin (3)d 1sin xx x+⎰;0(4)x ⎰;231(5)ln d x x x ⎰; π220(6)e cos d x x x ⎰;322d (7)2x x x +-⎰;21(8)x ⎰; ππ3π(9)sin d 3x x ⎛⎫+ ⎪⎝⎭⎰; 2120(10)e d t t t -⎰;π22π6(11)cos d u u ⎰.解:(1)()()()()111111311122115451415441554541616125542541631616xx xx x----------=-=-+=---=---=⎰⎰⎰⎰⎰⎰g g(2)原式=221e211).(1ln)d(1ln)x x-=++=⎰(3)原式=πππ244422000sin(1sin)sind d tan dcos cosx xx x x xx x-=-⎰⎰⎰π4π12.tan4cosx xx⎛⎫==+-+⎪⎝⎭(4)原式=πππ2π0002d cos d cos dcosx x x x x xx==⎰⎰ππ2π02x x==(5)原式=22243411111151ln d d4ln2.ln44164x x x xx x=-=-⎰⎰(6)ππππ22222222000e cos d e dsin e sin2e sin dx x x xx x x x x x==⋅-⎰⎰⎰πππ2π2π222200e2e d cos e2e cos4e cos dx x xx x x x=+=+-⎰⎰所以,原式=π1(e2)5-.(7)原式=3322111111d ln ln2ln5.333122xxx x x-⎛⎫==--⎪-++⎝⎭⎰(8)原式11611d6d(1)t1t tt t t⎫=-⎪++⎝⎭()67ln 26ln ln ln(1)1t t ==--+(9)原式ππ3πcos 03x ⎛⎫=-=+ ⎪⎝⎭ (10)原式=2212122ed e 12t t t --⎛⎫-=-=-- ⎪⎝⎭⎰(11)原式=ππ22ππ661π11(1cos 2)d sin 22624u u u u ⎛⎫+==+ ⎪⎝⎭⎰3. 证明:2321()d ()d 2aa x f x x xf x x =⎰⎰ (a 为正常数);定积分 定积分的计算 换元法证明:左222222000111()d()()d ()d 222a a a x t x f x x tf t t xf x x ====⎰⎰⎰ 令右所以,等式成立.4. 证明:ππ2200sin cos πd d sin cos sin cos 4x x x x x x x x ==++⎰⎰,并由此计算0a⎰(a 为正常数)定积分 定积分的计算换元法证明:ππ2200sin cos d d sin cos sin cos x xx x x x x x=++⎰⎰又 πππ222000sin cos πd d d .sin cos sin cos 2x x x x x x x x x +==++⎰⎰⎰故等式成立.a⎰πsin 20cos πd .sin cos 4x a tx t t t ==+⎰令5. 已知201(2),(2)0,()d 12f f f x x '===⎰, 求120(2)d x f x x ''⎰.定积分定积分积分法分部积分法解:原式=11122000111d (2)2(2)d (2)222x f x xf x x x f x ''='-⎰⎰11100012001111(2)d (2)0(2)d (2)22221111(2)(2)d(2)1()d 1402444f x f x f x x xf x f f x x f t t '=-=-+=-+=-+=-+⨯=⎰⎰⎰⎰习题4-61. 用定义判断下列广义积分的敛散性,若收敛,则求其值: 定积分 反常积分 反常积分的计算:定积分的计算22π11(1)sin d x x x+∞⎰; 解:原式=22ππ1111lim sin d lim coslim cos1.b bb b b x bx x →+∞→+∞→+∞⎛⎫-=== ⎪⎝⎭⎰ 2d (2);22xx x +∞-∞++⎰解:原式=02200d(1)d(1)arctan(1)arctan(1)(1)1(1)1x x x x x x +∞+∞-∞-∞+++=+++++++⎰⎰πππππ.4242⎛⎫=-+-=- ⎪⎝⎭ 0(3)e d n x x x +∞-⎰(n 为正整数)解:原式=100e d deen x n xn xn x x x x +∞+∞+∞----+-=-⎰⎰100e d !e d !n xx n x x n x n +∞+∞---=+===⎰⎰L(4)(0)aa >⎰;解:原式=000πlim lim arcsin lim arcsin .12a a xa a εεεεεε+++--→→→⎛⎫===- ⎪⎝⎭⎰e1(5)⎰;解:原式=()e e 0110πlim arcsin(ln )lim lim arcsin .ln(e )2x εεεεεε+++--→→→===-⎰1(6)⎰.解:原式=1120+⎰22122111202lim 2lim πππlim lim 2222π.424εεεεε++-→→→→=⎛⎫=+=⋅+=- ⎪⎝⎭⎰2. 讨论下列广义积分的敛散性:定积分 定积分的计算 反常积分的计算:定积分的计算2d (1)(ln )kxx x +∞⎰; 解:原式=2122112,1ln(ln )1d(ln ),1(ln )1(ln )1(ln 2),1(ln )11k kkk k x x k x k x k x kk +∞+∞-+∞-+∞-⎧=∞=⎪⎪⎪=∞<=⎨-⎪⎪=>⎪--⎩⎰ 故该广义积分当1k >时收敛;1k ≤时发散.d (2)()()bkaxb a b x >-⎰.解:原式=1100011lim ()()1,1lim ()d()1lim 1ln()b k k b a k a b a k b x b a k k b x b x k k b x εεεεεε+++-----→→-→⎧>⎧⎪⎪=-⎨--⎪-<---=⎪⎨-⎩⎪⎪-=-⎩⎰ 发散,发散, 综上所述,当k <1时,该广义积分收敛,否则发散. 3. 已知0sin πd 2x x x +∞=⎰,求:定积分 定积分的计算反常积分的计算:定积分的计算sin cos (1)d ;x xx x+∞⎰220sin (2) d .x x x +∞⎰ 解:(1)原式=001sin(2)1sin πd(2)d .2224x t x t x t +∞+∞==⎰⎰ (2)222002200200020000sin 1cos 2d d 21cos 2d d 22111d cos 2d 2211111d cos 2dcos2222111sin 2cos 2d2222ππ0.22xx x xx x x x x x x x x x xx x x x x xx x xx x x +∞+∞+∞+∞+∞+∞+∞+∞+∞+∞+∞-==-=+=+⋅-⎡⎤=-+⋅+⎢⎥⎣⎦=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰4. 证明:无穷积分敛散性的比较判别法的极限形式,即节第六节定理2. 定积分 反常积分 反常积分敛散性定理 证明:如果|()|lim0()x f x g x ρ→+∞=≠,那么对于ε(使0ρε->),存在x 0,当0x x ≥时|()|0()f xg x ρερε<-<<+ 即 ()()|()|()()g x f x g x ρερε-<<+ 成立,显然()d ag x x +∞⎰与|()|d af x x +∞⎰同进收敛或发散.如果0ρ=,则有|()|()f x g x ε<, 显然()d ag x x +∞⎰收敛, 则|()|d af x x +∞⎰亦收敛.如果ρ=+∞,则有|()|()()f x g x ρε>-,显然()d ag x x +∞⎰发散,则|()|d af x x +∞⎰亦发散.习题四1.填空题(1)设40ln sin d I x x π=⎰,40ln cot d J x x π=⎰,40ln cos d K x x π=⎰,则,,I J K 的大小关系是 I K J << . 定积分 定积分积分法 牛顿莱布尼兹公式 (2)设2x e -是函数()f x 的一个原函数,则(2)d f x x =⎰2412x e C -+ .定积分 定积分的计算 换元法(3)设[]x 表示不超过x 的最大整数,则定积分[]()2012d x x x -⎰的值是多少 1006 .定积分 定积分的计算 牛顿莱布尼兹公式(4)已知函数()f x ,则1()()d f x f x x '''⎰的值为14.定积分定积分的计算复合函数求导法(5)反常积分220d (1)x x x +?+ò的值为 12.定积分 反常积分的计算定积分的计算2.选择题(1)设函数()f x 与()g x 在(,)-∞+∞内皆可导,且()()f x g x <,则必有( A ).定积分定积分的性质定积分性质A.0lim ()lim ()x x x x f x g x →→< B.()()f x g x ''< C.d ()dg()f x x < D.()d ()d xxf t tg t t <⎰⎰(2)下列定积分中,积分值不等于零的是( D ).定积分 定积分的计算A.20ln(sin x x π⎰B. 2cos 0sin(sin )d x e x x π⎰C.cos 2d x x ππ-⎰ D.2222sin cos d cos 2sin x xx x x ππ-++⎰(3)设()F x 是连续函数()f x 的一个原函数,“⇔M N ”表示“M 的充分必要条件是N ”,则必有( A ). (05年全国考研题第(8)题)定积分 定积分基本公式 原函数定义A.()F x 是偶函数⇔()f x 是奇函数B.()F x 是奇函数⇔()f x 是偶函数 B.()F x 是周期函数()⇔f x 是周期函数 D.()F x 是单调函数()⇔f x 是单调函数 (4)设ln xx为()f x 的一个原函数,则()d xf x x '=⎰( D ).定积分定积分基本公式 原函数定义A.ln x C x + B.2ln 1x C x ++ C.1C x + D.12ln xC x x-+ (5)设函数1()sin()d ,()ln(1)d xf x x t tg x x xt t =-=+⎰⎰,则当0x →时,()f x 是()g x 的( C ).定积分 定积分的计算 牛顿莱布尼兹公式A.高阶无穷小量B.低阶无穷小量C.等价无穷小量D.同阶但不等价无穷小量 3.利用定积分概念求下列极限:定积分 定积分的概念 定积分的定义(1)lim n →∞; 解:(1)()()11112001=lim 12131333nn n i n x d x →∞=-===++==⎰⎰g原式(2)1lim ln 1ln 1ln 1n n →∞⎡⎤⎛⎛⎛+++++⎢⎥ ⎢⎥⎝⎝⎝⎣⎦L . 解:(2)有定积分的定义可得(101lim ln 1ln 1ln 1ln 1n dx n →∞⎛⎫⎛⎛⎛+++++=+ ⎪ ⎪⎝⎝⎝⎝⎭⎰L ()120ln 1u du =+⎰(令2x u =)2111200011ln(1)ln 2(1)011u u u du u du du u u =+-=---++⎰⎰⎰11ln 21ln 222=-+-=4*. 已知曲线在点(,)x y 处的斜率为2sin cos x x +,且曲线过点(,0)π,求该曲线的方程. 不定积分 不定积分的计算 基本积分公式解:由已知2sin cos ,(2sin cos )2cos sin y x x y x x dx x x C '=+=+=-++⎰,由于曲线过(,0)π,则有2C =-,因此所求曲线方程为2cos sin 2y x x =-+-.5*. 设函数()f x 连续,且满足0()()d (2)2xx x t f t t x x e x -=-+⎰.(1)求函数()f x 的表达式;定积分定积分的计算 牛顿莱布尼兹公式(2)求函数()f x 的单调区间与极值.微分中值定理 函数的单调性与凹凸性 函数凹凸性判别法解:(1)00()()()()(2)2xxxx x t f t dt xf t dt tf t dt x x e x -=-=-+⎰⎰⎰,方程两边对x 求导数,则有20()(2)2xx f t dt e x =-+⎰,再对x 求导数得2()(22)x f x e x x =+-.(2)()(4)xf x x x e '=+,令()0f x '=得04x x ==-或.所以,函数()f x 的单调增加区间为(),4(0,)-∞-+∞与;单调减少区间为[]4,0-.函数()f x 的极大值为()446f e --=,极小值为()02f =-.6*.设函数2202(1)d ,0,(),0,x t e t x f x x A x ⎧-⎪≠=⎨⎪=⎩⎰问当A 取何值时,()f x 在0x =处可导,并求出(0)f '的值. (国防科大09-10年秋季第三大题第2小题)解:()()()()()()()()()()()22222224222020022020304221214limlimlim 02010lim lim 000110limlim2124limlim 33xt x x x x xt x x xt xt x x x x x e dte xx xxf x x e dtA f x f x x xA A e dt e dt x f xx exx →→→→→→→→→--====---=-==--'==-==⎰⎰⎰⎰Q g 若在处可导,则存在,若,则上述的极限不存在为无穷大,故于是283x =定积分 定积分的计算牛顿莱布尼兹公式7*.设函数()f x 在,22ππ⎡⎤-⎢⎥⎣⎦上连续,且满足2222()cos ()d x f x x xe f t t ππ-=++⎰,求()f x 的表达式.定积分定积分的计算 牛顿莱布尼兹公式解:设22()a f x dx ππ-=⎰,则有22()cos x f x x xe a =++,所以有222222(cos )2cos 2x a x xe a dx xdx a a ππππππ-=++=+=+⎰⎰,解得2(1)a ππ=-,因此所求函数的表达式为22()cos 2(1)xf x x xe ππ=++-.8. 求下列不定积分,并用求导方法验证其结果正确否:d (1)1exx+⎰; 不定积分 求不定积分的方法基本积分公式解:原式=e d 11de ln(1e ).e (1e )e 1e x x xx x x xx x c ⎛⎫==-++- ⎪++⎝⎭⎰⎰ 验证:e 1(ln(1e ))1.1e 1ex xx xx c '-++=-=++ 所以,结论成立.(2)ln(x x +⎰;不定积分求不定积分的方法分部积分法解:原式=ln(ln(.x x x x x c -=+-验证:ln(ln(x x x x c '⎡⎤=+++-⎣⎦ln(x =+所以,结论成立.2(3)ln(1)d x x +⎰;不定积分求不定积分的方法分部积分法解:原式=2222ln(1)2d ln(1)22arctan 1x x x x x x x x c x+-=+-+++⎰. 验证:2222222ln(1)2ln(1).ln(1)22arctan 11x x x x x x x x c x x'=++⋅-+=+⎡⎤+-++⎣⎦++ 所以,结论正确.(4)x ;不定积分 求不定积分的方法 基本积分公式解:原式=9212)arcsin (.232x x x c ++=++验证: 921arcsin (232x x '+⎡++⎢⎣211(2)32x=+==所以,结论正确.(5)sin(ln)dx x⎰;不定积分求不定积分的方法基本积分公式解:1sin(ln)d sin(ln)cos(ln)dx x x x x x xx=-⋅⋅⎰⎰sin(ln)cos(ln)sin(ln)dx x x x x x=--⎰所以,原式=().sin(ln)cos(ln)2xcx x+-验证:()sin(ln)cos(ln)2xcx x'⎡⎤+-⎢⎥⎣⎦()111sin(ln)cos(ln)cos(ln)sin(ln)22sin(ln).xx x x xx xx⎛⎫=+-⋅+⋅⎪⎝⎭=故结论成立.2e(6)d(e1)xxxx+⎰;不定积分求不定积分的方法分部积分法解:原式=1e1d d de1e1e11ee1xx x x xxx xx x x--⎛⎫-=-+=-+⎪+++++⎝⎭⎰⎰⎰ln(1e).e1xxxc--=-+++验证:22(e1)e e eln(1e)(e1)1e(e1)e1x x x xxx x xxx xxc---'-++--⎡⎤=-=-++⎢⎥++++⎣⎦.故结论成立.23/2ln(7)d(1)xxx+⎰;不定积分求不定积分的方法分部积分法解:原式=1ln d d ln(.x x x cx=-=++⎰验证:ln(x c '⎤-++⎥⎦2223/223/2(1ln )(1)ln ln .(1)(1)x x x x x x x =++-==++所以,结论成立.sin (8)d 1cos x x x x++⎰;不定积分 求不定积分的方法分部积分法解:原式=2d cos d d tan ln(1cos )1cos 22cos 2x x xx x x x x -=-++⎰⎰⎰tantan d ln(1cos )22tan ln(1cos )ln(1cos )2tan 2x xx x x xx x x c x x c=--+=++-++=+⎰验证:2221sin sin (tan)tan sec 22221cos 2cos 2cos 22x x x x x x xx c x x x x +'+=+⋅=+=+ 所以,原式成立.(9)()d xf x x ''⎰;不定积分求不定积分的方法分部积分法解:原式=d ()()()d ()().x f x xf x f x x xf x f x c ''''=-=-+⎰⎰验证:[]()()()().()()f x xf x f x xf x xf x f x c ''''''''=+-=-+ 故结论成立.(10)sin d n x x ⎰ (n >1,且为正整数).不定积分求不定积分的方法分部积分法解:1sin d sindcos nn n I x x x x -==-⎰⎰1221212cos sin (1)cos sin d cos sin (1)sin d (1)sin d cos sin (1)(1)n n n n n n n nx x n x x xx x n x x n x x x x n I n I ------=-+-=-+---=-+---⎰⎰⎰故 1211cos sin .n n n n I x x I n n---=-+ 验证: 1211cos sin sin d n n n x x x x n n --'-⎡⎤-+⎢⎥⎣⎦⎰ 22222111sin cos (1)sin cos sin 111sin (1sin )sin sin sin .n n n n n n n n x x n x x x n n n n n x x x x n n n x -----=-⋅-⋅+--=--+= 故结论成立.9. 求不定积分max(1,)d x x ⎰.不定积分求不定积分的方法 基本积分公式解: ,1max(1,)1,11,1x x x x x x -<-⎧⎪=-≤≤⎨⎪>⎩故原式=212231,12,111,12x c x x c x x c x ⎧-+<-⎪⎪+-≤≤⎨⎪⎪+>⎩又由函数的连续性,可知:213111,1,2c c c c c c =+=+= 所以 221,121max(1,)d ,11211,12x c x x x c x x x c x ⎧-+<-⎪⎪⎪=++-≤≤⎨⎪⎪++>⎪⎩⎰10.计算下列积分:(1)1解:210210211220,1,2,3110422=2111212ln 1112ln 2t x t dx tdt x t x t t tdt dtt t dt t t t ==-=-====-∴=--⎛⎫=+=⎡+-⎤ ⎪⎣⎦-⎝⎭=-⎰⎰⎰则当时,,当时,原式 (2)1定积分 定积分的计算基本积分公式解:原式=211112⎛⎫+ ⎪-== (3) ln3ln 2d e ex xx--⎰;定积分 定积分的计算基本积分公式解:原式=ln3ln32ln 2ln 2de 113e 1ln ln .(e )1222e 1x x x x -==-+⎰(4)x ⎰;定积分 定积分的计算分部积分法解:原式=π33π222π02d sin d sin sin d sin x x x x x x =-⎰⎰⎰ππ55222π02422.sin sin 555x x =-=(5)120ln(1)d (2)x x x +-⎰;定积分定积分的计算分部积分法解:原式=111000111ln(1)ln(1)d d 2212x x x x x x x ++=-⋅--+-⎰⎰101100111ln 2d 321111ln 2ln 2ln(2)ln(1)333x x x x x ⎛⎫=-+ ⎪-+⎝⎭=+-=-+⎰(6){}230max ,d x x x ⎰.解:{}2123301122401max ,1151724244x x dx xdx x dxxx =+=+=+=⎰⎰⎰11. 计算下列积分(n 为正整数): (1)1;n x ⎰定积分 定积分的计算换元法解:令sin x t =,d cos d x t t =, 当x =0时t =0,当x =1时t=π2, ππ12200sin cos d sin d cos n n n tx t t t t t==⎰⎰⎰由第四章第五节例8知11331π, 24221342, 253n n n n n n x n n n n n --⎧⋅⋅⋅⋅⋅⎪⎪-=⎨--⎪⋅⋅⋅⋅⎪-⎩⎰L L为偶数, 为奇数.(2)π240tan d .n x x ⎰定积分 定积分的计算分部积分法解:πππ2(1)22(1)22(1)4440π2(1)411tantan d tansec d tan d 1tan d tan 21n n n n n n n I x x x x x x x xx x I I n ------==-=-=--⎰⎰⎰⎰由递推公式 1121n n I I n -+=- 可得 111(1)(1)[(1)].43521n nn I n π--=---+-+-L。
高等数学同步练习第八章 多元函数微分法及其应用第一节 多元函数的基本概念1. 求定义域(1){(x,y ) 1xy e e≤≤};(2)},122),{(22N k k y x k y x ∈+≤+≤; (3){(x,y,z )22219x y z <++≤}.2.求极限(1)001)2x y →→=;(2)0 ;(3)22222002sin2lim 0()xyx y x y x y e →→+=+; (4)20sin cos lim.2x y xy xyx xy →→=.3.判断下列极限是否存在,若存在,求出极限值(1)沿直线y=kx 趋于点(0,0)时,2222222201lim 1x x k x k x k x k→--=++,不存在; (2)沿直线y =0,极限为1;沿曲线y,极限为0,不存在 ;(3)222222221100x y x y x y x y x y x y x y x y+≤≤+≤+=+→+++.极限为0 .4.因当220x y +≠时,2222220.x y x y y x y x y ≤=≤++, 所以0lim (,)0(0,0)x y f x y f →→==,故连续.1. 求下列函数的偏导数(1)2(1).2(1)xy y y xy +=+; 2x (1+xy ); (2)yz cos(xyz )+2xy ; xz cos(xyz )+2x ; (3)22()1()x y x y -+- , 22()1()x y x y --+-. 2.6π.3.11(11xy y =+-==. 4.1222222222222222222222222222221ln()ln(),212.,2()2,()()()z x y x y z x x x x y x y z x y x x y x x y x y z y x y x y -=+=-+∂=-=-∂++∂+--=-=∂++∂-=∂+5.22002202010sin,lim (,)0(0,0),1sin00lim 10sin 00(0,0)lim 0x y x y x x x yf x y f x f x x xf y y y→→∆→∆→≤≤+==∆-∂∆+=∂∆-∂+∆==∂∆g 因为所以连续.(0,0),不存在,.1. 求下列函数的全微分 解:(1)21z z dz dx dy x y x ∂∂=+∂∂-=+=.(2)1ln ln yz yz yz u u u du dx dy dz x y zyzx dx zx xdy yx xdz -∂∂∂=++∂∂∂=++.2.解:33222222220033332222(0,0)0033322322200,(,)(0,0)lim (,)0(0,0),000000(0,0)lim 1,lim 11x y x y x y x y x y x y x y x y x y x y x y f x y f y x yx f f x y x y x x y x y y x y z x y →→∆→∆→+≤=+≤+→→+++==+∆∆+--+∆∆+====∆∆∆+∆∆+∆∆+∆∆+∆-∆∆∆==∆+∆.所以连续.两个偏导数都存在,为222222211(0,0)0,.x y x y x yx y x y x y y x ρρ→→-∆∆∆∆+∆∆=∆+∆-∆+∆∆+∆=→==≠g g 当沿时,故不可微第四节 1.解:322235221''(1)22323(21)(5456)1(2)1(3)()ln()v vdzuv w u v w x u v x x x xdxdzdx xdz z du z duvu f x u u g xdx u dx v dx-=⋅+⋅+⋅=++-===+∂∂=⋅+⋅=⋅+⋅∂∂...2.解:(1)222221121(arctan ln21()uxy xy vz z x z y u uvye xe e u vuu x u y u u v u v vv∂∂∂∂∂=+=⋅⋅+⋅=+∂∂∂∂∂+++.221(arctanuvz z x z y ue u vv x v y v u v v∂∂∂∂∂=+=-∂∂∂∂∂+.(2)'''()(1)()()()uf x xy xyz y yzxuf x xy xyz x xzyuf x xy xyz xyz∂=++++∂∂=+++∂∂=++⋅∂3. 解:''''1212.z z zf a f b f ft x yz z za bt x y∂∂∂=⋅+⋅==∂∂∂∂∂∂=+∂∂∂,,,所以,4. 解:'222'222''2222''22''22()22(()2())2()24()zf x y xxzf x y x f x yxzx f x y y xyf x yx y∂=+⋅∂∂=+++∂∂=⋅+⋅=+∂∂第五节1.解:令(,,)sin()01cos()1cos()1cos()1cos()x z y z F x y z x y z xyz F z yz xyz x F xy xyz F z xz xyz y F xy xyz =++-=∂-=-=-∂-∂-=-=-∂- 2. .解:令22222222(0,0,1)2(,,)10()|1x z F x y z x y z F z x x F z z xz x z x zx z x z zzx=++-=∂=-=-∂∂-⋅--∂∂=-=-∂∂=-∂ 3.证明:''11''''1212'1''12()().x z c c zx a b a b c z y a b z zab C x yφφφφφφφφφφφ⋅⋅∂=-=-=∂-+-+⋅∂=∂+∂∂+=∂∂所以6.(1)解:方程两边对y 求导,得:222460222642146212622242(62)(62)2(61)(61)22(61)61dz dxx ydy dy dx dz x y z dydy dx dz x y dy dy dx dz x z y dy dyy y z x x zx yx ydx y z y z dyx z x z dz y dy x z z =+++=-=-+=-------⎧⎪⎨⎪⎩⎧⎪⎨⎪⎩-++===-++-==++(3)''12''12()(1)2u u v f u x f x x x v u vg g vy x xx ∂∂∂=⋅++⋅∂∂∂∂∂∂=⋅-+⋅⋅∂∂∂⎧⎨⎩'''121'''121''12'''''''1212121''''''''21212112''12''11''11'''''212121(1)(21)212221121122u v xf f uf x x u v g vyg g x xuf f g vyg uvyf g uf f g u x vyg vxyf g xf f g xf f g vyg xf uf g g uy vyg vxyf g xf f g ∂∂-⋅-=∂∂∂∂+-=∂∂---+∂==∂-++-----∂=∂-++'''''11111'''''''2121211221g xf g uf g vyg vxyf g xf f g --=--++-7.证明:x t dy f dx f dt =+ →x tdy dtf f dx dx=+ ① 0x y t dF F dx F dy F dt =++= → x y tF dx F dydt F +=-→y x t t F F dtdy dx F F dx=--⋅ ② ②代入①,得:()(1)y x x t t t t y t x x t tt t y x t t xt t x t t x t t yF F dydy f f dx F F dx f F f Fdy f F dx F F f F f F f F dy F dx F f F f F dy dx F f F =+--⋅+=-+-⋅=-∴=+第六节 多元函数微分学的几何应用1.解:切向量),cos ,sin (=b t a t a T 。
第八章典型习题一、填空题、选择题 1、yx z +=1的定义域为 ; 111122---=y xz 的定义域为 ;()xy z ln =的定义域为 ; ()2221ln 4yxy x z ---=的定义域为 ;答案:(){},0x y x y +>;(){}2,1,11x y y x >-<<;(){},0x y xy >;(){}222,4,01x y x y xy ≥<+<2、11lim0-+→→xy xy y x ;()xy y x xy 1001lim +→→;()102lim 1xx y xy →→+ ()102lim 1yx y xy →→+ ()x xy y x tan lim20→→; 答案:11lim-+→→xy xy yx)0001lim12x x y y xy→→→→===()102lim 1xx y xy →→+()1202lim 1y xyx y xy e ⋅→→=+=()x xy y x tan lim20→→()02tan lim x y xy y xy →→=⋅()0022tan lim lim 2x x y y xy y xy →→→→=⋅= 3、设()xy z ln =,x z∂∂= ; 答案:()()1211ln 2z xy y x xy -∂=⋅⋅=∂ 设⎪⎭⎫ ⎝⎛=x y xf z , x z ∂∂= ; 答案:2z y y y y y y f xf f f x x x x x x x ∂⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''=+⋅-=- ⎪ ⎪ ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭设y x z =,xz ∂∂= ; 答案:1y zyx x -∂=∂设()yxy z +=1, 21==∂∂y x xz= ;答案:()1112216y x x y y z y xy y x-====∂=+⋅=∂设xy z 3=,xz ∂∂= ; 答案:3ln 3xy zy x ∂=⋅∂设()22y x f z -=,()u f 是可微函数,其中22y x u -=,求yz ∂∂; 答案:()()()222222zf x y y yf x y y∂''=-⋅-=--∂ 4、设yx yx z -+=,求dz ;解:()()()()222222x yx y x y y x dz dx dy dx dy xdy ydx x y x y x y x y x y ''⎛⎫⎛⎫++-=+=+=- ⎪ ⎪-----⎝⎭⎝⎭ 设()22ln y x z +=,求dz ;解:222222x ydz dx dy x y x y =+++ 设y x xy z +=,求dz ; 解:21x dz y dx x dy y y ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭ 设y e z x sin =,求dz ; 解:()()sin cos x x dz e y dx e y dy =+设yxz arctan =,求dz ;解:222222222221y y x ydx xdydz dx dy y x y x y y y x x y⎛⎫=⋅+⋅-=- ⎪++++⎝⎭ 设x ye z =,求dz ;解:()2211y y yxx x y dz e dx e dy e xdy ydx x x x ⎛⎫=⋅-+⋅=- ⎪⎝⎭5、设方程0122=-+y x 确定了函数()x y y =,求()1,0dx dy; 解:设()22,1F x y x y =+-, 则2dF x dx =,2dF y dy =, 从而,()1,0dx dy()0,1202x y =-=设03=--z xy z ,求xz ∂∂; 解:设()3,,F x y z z xy z =--,则F y x ∂=-∂,231F z z ∂=-∂,从而,231x z F z yx F z ∂=-=∂- 曲面0=-xyz e z 确定了函数()y x z z ,=,求x z ∂∂;答案:z z yzx e xy∂=∂- 由方程zyx e xyz e=++确定了函数()y x z z ,=,求x z ∂∂。
___《高等数学》第五版下册习题答案以下是练8-1的答案:1.对于第一题,我们可以使用分部积分法来求解。
具体来说,我们可以将被积函数拆分成两个部分,一部分是三角函数,另一部分是指数函数。
然后,我们可以分别对这两个部分进行积分,并利用分部积分公式将它们结合起来,最终得到原函数的表达式。
2.第二题是一个比较简单的求导题。
我们只需要利用链式法则和乘法法则,对给定的函数进行求导即可。
需要注意的是,有些项可能需要使用指数函数的求导公式来进行求导。
3.第三题是一个求极限的题目。
我们可以利用洛必达法则来求解。
具体来说,我们可以将被积函数化为一个分式,然后对分子和分母分别求导,最后利用洛必达法则求出极限的值。
4.第四题是一个求解微分方程的问题。
我们可以先将微分方程化为标准形式,然后利用分离变量法或者其他的求解方法来求解。
需要注意的是,有些微分方程可能需要使用变量代换或者其他的技巧来进行求解。
5.第五题是一个求解曲线长度的问题。
我们可以利用弧微分公式来求解。
具体来说,我们可以将曲线分成若干小段,然后对每一小段进行求解,最后将它们相加得到曲线的长度。
需要注意的是,有些曲线可能需要使用参数方程或者其他的表示方法来进行求解。
练9-2:本题要求证明一个三次方程的根的关系式。
先根据题目中给出的条件,将三次方程化为标准形式,然后利用___定理求出三个根的和、积,再利用___引理求出其中两个根的积的模,最后代入关系式中验证即可。
练9-3:本题要求证明一个函数的连续性。
先根据定义分别讨论左极限和右极限是否相等,若相等,则证明函数在该点处连续。
若不相等,则需要进一步讨论函数在该点处是否有间断点,若有,则证明函数在该点处不连续;若无,则证明函数在该点处跳跃,但仍是连续的。
练9-4:本题要求求出一个定积分的值。
首先根据积分的定义,将被积函数分解为正负两部分,然后利用线性性质将定积分分解为两个简单积分的和,再利用换元法或分部积分法求解即可得到最终结果。
XXX第五版高数习题答案1.设 $u=a-b+2c,v=-a+3b-c$,则 $2u-3v=2(a-b+2c)-3(-a+3b-c)=5a-11b+7c$。
2.假设平面四边形 $ABCD$ 的对角线 $AC$ 和 $BD$ 互相平分,设 $M$ 为 $AC$ 和 $BD$ 的交点,则$\overrightarrow{AM}=\frac{1}{2}(\overrightarrow{AB}+\overri ghtarrow{AC})$,$\overrightarrow{BM}=\frac{1}{2}(\overrightarrow{BD}+\overri ghtarrow{BA})$。
由此可得$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{A M}$,$\overrightarrow{BD}+\overrightarrow{BA}=2\overrightarrow{B M}$。
将两式相加得$\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{B D}+\overrightarrow{BA}=2(\overrightarrow{AM}+\overrightarro w{BM})$,即$\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD }+\overrightarrow{DA}=0$。
因此,四边形 $ABCD$ 是平行四边形。
3.设 $D_1,D_2,D_3,D_4$ 分别为 $\triangle ABC$ 的边$BC$ 上的五等分点,则$\overrightarrow{AD_1}=\frac{1}{5}\overrightarrow{AB}+\frac{ 4}{5}\overrightarrow{AC}$,$\overrightarrow{AD_2}=\frac{2}{5}\overrightarrow{AB}+\frac{ 3}{5}\overrightarrow{AC}$,$\overrightarrow{AD_3}=\frac{3}{5}\overrightarrow{AB}+\frac{ 2}{5}\overrightarrow{AC}$,$\overrightarrow{AD_4}=\frac{4}{5}\overrightarrow{AB}+\frac{ 1}{5}\overrightarrow{AC}$。
4.设 $\overrightarrow{MM'}=\overrightarrow{M'}-\overrightarrow{M}$,则 $\overrightarrow{MM'}=(1-0,-1-1,0-2)=(1,-2,-2)$,$\overrightarrow{MM'}=(0-1,1-(-1),2-0)=(-1,2,2)$。
5.单位向量的长度为 $1$,因此平行于向量$\overrightarrow{a}=(6,7,-6)$ 的单位向量为$\frac{1}{\sqrt{6^2+7^2+(-6)^2}}(6,7,-6)=\frac{1}{\sqrt{121}}(6,7,-6)=\frac{1}{11}(6,7,-6)$ 或 $-\frac{1}{11}(6,7,-6)$。
6.点$A(1,-2,3)$ 在第四卦限,点$B(2,3,-4)$ 在第五卦限,点 $C(2,-3,-4)$ 在第八卦限,点 $D(-2,-3,1)$ 在第三卦限。
7.在 $xOy$ 平面上的点的坐标为 $(x,y,0)$,在 $yOz$ 平面上的点的坐标为 $(0,y,z)$,在 $zOx$ 平面上的点的坐标为$(x,0,z)$。
在 $x$ 轴上的点的坐标为 $(x,0,0)$,在 $y$ 轴上的点的坐标为 $(0,y,0)$,在 $z$ 轴上的点的坐标为 $(0,0,z)$。
点$A(3,4,0)$ 在 $xOy$ 平面上,点 $B(0,4,3)$ 在 $yOz$ 平面上,点 $C(3,0,0)$ 在 $x$ 轴上,点 $D(0,-1,0)$ 在 $y$ 轴上。
8.(1) 点 $(a,b,c)$ 关于 $xOy$ 平面的对称点为 $(a,b,-c)$,关于 $yOz$ 平面的对称点为 $(-a,b,c)$,关于 $zOx$ 平面的对称点为 $(a,-b,c)$。
(2) 点 $(a,b,c)$ 关于 $x$ 轴的对称点为 $(a,-b,-c)$,关于 $y$ 轴的对称点为 $(-a,b,-c)$,关于 $z$ 轴的对称点为 $(-a,-b,c)$。
(3) 点 $(a,b,c)$ 关于坐标原点的对称点为 $(-a,-b,-c)$。
9.点 $P(x,y,z)$ 在 $xOy$ 平面上的垂线上的垂足为$(x,y,0)$,在 $yOz$ 平面上的垂线上的垂足为 $(0,y,z)$,在$zOx$ 平面上的垂线上的垂足为 $(x,0,z)$。
在 $x$ 轴上的垂足为 $(x,0,0)$,在 $y$ 轴上的垂足为 $(0,y,0)$,在 $z$ 轴上的垂足为 $(0,0,z)$。
18.给定向量的终点为点B(2,-1,7),它在x轴、y轴和z轴上的投影分别为4,-4,7.求起点A的坐标。
解:设点A的坐标为(x,y,z),根据已知条件可列出以下方程组:解得x=-2,y=3,z=0.因此,点A的坐标为A(-2,3,0)。
19.给定向量m=3i+5j+8k,n=2i-4j-7k和p=5i+j-4k。
求向量a=4m+3n-p在x轴上的投影和在y轴上的分向量。
解:将向量a表示为4m+3n-p的形式,得a=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k。
因此,向量a在x轴上的投影为13,而在y轴上的分向量为7j。
题7-21.给定向量a=3i-j-2k和b=i+2j-k,求a·b和a×b。
解:根据向量的点乘和叉乘公式,可得:a·b=3×1+(-1)×2+(-2)×(-1)=3a×b=(3i-j-2k)×(i+2j-k)=(-4i-7j-5k)2.给定三个单位向量a、b、c,且满足a+b+c=0,求a·b+b·c+c·a。
解:根据向量点乘的分配律和结合律,有:a·b+b·c+c·a=(a+b+c)·(a+b+c)-XXX·c将a+b+c=0代入,得:a·b+b·c+c·a=-a·a-b·b-c·c=-(|a|²+|b|²+|c|²)因为a、b、c都是单位向量,所以|a|=|b|=|c|=1,因此有:a·b+b·c+c·a=-(1+1+1)=-33.已知三个点M1(1,-1,2),M2(3,3,1)和M3(3,1,3),求与M1M2、M1M3同时垂直的单位向量。
解:向量M1M2和M1M3分别为:M1M2=(2,4,-1)M1M3=(2,2,1)设所求单位向量为u=(x,y,z),根据向量垂直的定义,可得:u·M1M2=0u·M1M3=0代入向量的点乘公式,得:2x+4y-z=02x+2y+z=0解得x=-2/3,y=2/3,z=1/3.因此,所求的单位向量为u=(-2/3,2/3,1/3)。
4.一质量为100kg的物体从点M1(3,1,8)沿直线移动到点M2(1,4,2),求重力所作的功(假设重力方向为z轴负方向,长度单位为m)。
解:重力F的大小为:F|=mg=100×9.8=980N重力F在M1M2方向上的分量为:F·(M2-M1)/|M2-M1|=980×(-2,3,-6)/|(2,-3,6)|=-980/7 N因此,重力所作的功为:W=F·S=-980/7×|(2,-3,6)|=-840J5.在杠杆上,支点O的一侧和另一侧分别有两个点P1和P2,它们与点O的距离均为x,分别受到与杠杆成角度为θ1和θ2的力F1和F2的作用。
问θ1、θ2、x、|F1|、|F2|应该满足怎样的条件,才能使杠杆保持平衡?解:根据杠杆的平衡条件,有:F1x1-F2x2=0其中,x1和x2分别为F1和F2所在直线与杠杆的交点到支点O的距离。
根据正弦定理,可得:x1=xsinθ1x2=xsinθ2代入上式,得:F1sinθ1=F2sinθ2因此,使杠杆保持平衡的条件为F1sinθ1=F2sinθ2.同时,由于杠杆保持平衡时力矩为零,所以|F1|xsinθ1=|F2|xsinθ2,即|F1|=|F2|sinθ2/sinθ1.因此,θ1、θ2、x、|F1|、|F2|应该满足F1sinθ1=F2sinθ2和|F1|=|F2|sinθ2/sinθ1才能使杠杆保持平衡。
3.方程x+y+z−2x+4y+2z=0表示一个平面,其法向量为(−1,4,2)。
2.已知向量a=(4,−3,4),向量b=(2,2,1),求向量a在向量b上的投影。
解:向量a在向量b上的投影为:projb a=(a⋅b/|b|2) b,其中a⋅b为向量a和向量b的数量积,|b|为向量b的模长。
则有projba=((4×2)+(−3×2)+(4×1))/((2×2)+(2×2)+(1×1))×(2,2,1)=(12/9)(2,2, 1)=(8/3,8/3,8/9)。
7.设a=(3,5,−2),b=(2,1,4),问λ与μ有怎样的关系,能使得λa+μb与z轴垂直?解:λa+μb=(3λ+2μ,5λ+μ,−2λ+4μ),λa+μb与z轴垂直等价于λa+μb⊥k,即(3λ+2μ,5λ+μ,−2λ+4μ)⋅(0,0,1)=0,即−2λ+4μ=0,所以λ=2μ。
当λ=2μ时,λa+μb与z轴垂直。
8.试用向量证明直径所对的圆周角是直角。
证明:设AB是圆O的直径,C点在圆周上,则向量AC=CO+OA,向量BC=CO+OB,由向量的加法和数量积的分配律可得AC·BC=(CO+OA)·(CO+OB)=CO·CO+CO·OA+CO·OB+OA·OB =|CO|2+0+0+|OA|·|OB|=|CO|2−R2,其中R为圆的半径。
由勾股定理可知,若AC·BC=0,则∠C=90°,即圆周角为直角。