§4 矩阵分块法
- 格式:ppt
- 大小:4.32 MB
- 文档页数:26
分块矩阵的方法、技巧与应用内容摘要有时候,我们把一个大矩阵看成是由一些小矩阵组成的,就如矩阵是由数组成的一样。
特别在运算中,把这些小矩阵当作数一样处理。
这就是矩阵的分块。
设A 是一个m*n 矩阵111212122212n n m m mn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦用若干横线将它分成s 块,若干竖线将它分成r 块,于是有*r s 的分块矩阵111212121212s s r r rs A A A A A A A A A A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦其中ij A 表示一个矩阵。
关键词矩阵,分块矩阵,逆矩阵,准对角矩阵1. 导言在理论研究及一些实际问题中,经常遇到阶数很高或结构特殊的矩阵。
对于这些矩阵,在运算时常常采用分块法,使大矩阵的运算化成小矩阵的运算。
分块矩阵可以用来降低较高级数的矩阵级数,使矩阵的结构更清晰明朗,从而使矩阵的相关计算简单化,而且还可以用于证明一些与矩阵有关的问题。
本文将主要介绍分块矩阵的一些初等变换的方法技巧,就分块矩阵的加法与数量乘法、乘法、转置、初等变换等运算性质,以及分块矩阵在矩阵求逆、行列式展开等方面进行一些基本研究。
2.1.分块矩阵的简介矩阵分块为矩阵运算带来便利,最常用的矩阵分块是2*2块A B C D ⎛⎫ ⎪⎝⎭, 其中A 为*m m 矩阵块,D 为*n n 矩阵块。
例:在矩阵21210000010012101101E A A E ⎛⎫ ⎪⎛⎫ ⎪== ⎪ ⎪-⎝⎭ ⎪⎝⎭中,2E 代表2级单位矩阵,而11211A -⎛⎫= ⎪⎝⎭,0000O ⎛⎫= ⎪⎝⎭在矩阵111221221032120124111153B B B B B ⎛⎫ ⎪-⎛⎫ ⎪== ⎪ ⎪-⎝⎭ ⎪-⎝⎭中,111012B ⎛⎫= ⎪-⎝⎭,123201B ⎛⎫= ⎪⎝⎭,211011B ⎛⎫= ⎪--⎝⎭ ,224120B ⎛⎫= ⎪⎝⎭.在计算AB 时,把A ,B 都看成事由这些小矩阵组成的,即按2阶矩阵来运算,于是21112111212212211121112220E B B B B AB A E B B A B B A B B ⎛⎫⎛⎫⎛⎫==⎪⎪⎪++⎝⎭⎝⎭⎝⎭其中11121121010111211341024021111A B B -⎛⎫⎛⎫⎛⎫+=+ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭ 11222123241110120304111332053A B B -⎛⎫⎛⎫⎛⎫+=+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭把上述计算结果作为小块的元素代入,得到1032120124011153AB ⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭通常,矩阵分块可以简化矩阵的运算,实现运算的优化。
引言为了研究行数、列数较高的矩阵,常常对矩阵采用分块的方法。
类似于集合的划分,是把矩阵完全地分成一些互不相交的子矩阵,使得原矩阵的每一个元落到一个分快的子矩阵中。
以这些子块为元素的矩阵就称为分块矩阵。
线形代数以其独特的理论体系和解题技巧而引人入胜。
在线性代数中,分块矩阵是一个十分重要的概念,它可以使矩阵的表示简单明了,使矩阵的运算得以简化.而且还可以利用分块矩阵解决某些行列式的计算问题.而事实上,利用分块矩阵方法计算行列式,时常会使行列式的计算变得简单,并能收到意想不到的效果.而且利用分快矩阵还可以求出某些矩阵的逆矩阵,证明矩阵的秩等。
第一章 矩阵的分块和分块矩阵的定义设A 是数域K 上的m n ⨯矩阵,B 是K 上n k ⨯矩阵,将A 的行分割r 段,每段分别包含12r m m m 个行,又将A 的列分割为s 段,每段包含12s n n n 个列。
A=111212122212s s r r rs A A A A A A A A A ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭于是A 可用小块矩阵表示如下:,其中ij A 是i j m n ⨯矩阵。
对B 做类似的分割,只是要求它的行的分割法和A 的列的分割法一样。
于是B 可以表示为B= 111212122212s s r r rs B B B B B B B B B ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭其中ij B 是i j n k ⨯的矩阵。
这种分割法称为矩阵的分块。
二.分块矩阵加法和乘法运算设()ij m n A a ⨯=()ij m n B b ⨯=为同型矩阵(行和列数分别相等)。
若采用相同的分块法。
A=111212122212s s r r rs A A A A A A A A A ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭B= 111212122212s s r r rs B B B B B B B B B ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭则可以直接相加 乘法:设,则C 有如下分块形式:C=111212122212s s r r rs C C C C C C C C C ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭ ,其中ij C 是i j m k ⨯矩阵,且 1nij ij ij i C A B ==∑定义 称数域K 上的分块形式的n 阶方阵A=12S A A A ⎛⎫⎪⎪ ⎪ ⎪⎝⎭为准对角矩阵,其中为阶方阵(),其余位置全是小块零矩阵。
§4 矩阵分块法本节我们将介绍矩阵运算的一种有用的技巧——矩阵的分块,这种技巧在处理某些较高阶的矩阵时常常被用到。
一、分块矩阵的概念设A 是一个矩阵,我们在它的行或列之间加上一些直线,把这个矩阵分成若干个小块,例如,设A 是一个43⨯矩阵111213212223313233414243a a a a a a A a a a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ 我们可以把它分成如下的四块111213212223313233414243a a a a a a A a a a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭用这种方法被分成若干个小块的矩阵称为分块矩阵,每一个小块称为A 的一个子块。
在一个分块矩阵中,每一个小块也可以看成是一个矩阵。
例如,上面的分块矩阵A 是由以下四个矩阵组成的111121a A a ⎛⎫= ⎪⎝⎭ 1213122223a a A a a ⎛⎫= ⎪⎝⎭ 312141a A a ⎛⎫= ⎪⎝⎭ 3233224243a a A a a ⎛⎫= ⎪⎝⎭我们可以把A 简单地写成11122122A A A A A ⎛⎫=⎪⎝⎭对一个矩阵来讲,可以有各种不同的分法。
二、分块矩阵的运算规则分块矩阵的运算规则与普通矩阵的运算规则相类似,分别说明如下:(1)分块矩阵的加法设()ij m n A a ⨯=,()ij m n B b ⨯=,采用同样的分块方法得1111r s sr A A A A A ⎛⎫ ⎪= ⎪ ⎪⎝⎭ , 1111r s sr B B B B B ⎛⎫ ⎪= ⎪ ⎪⎝⎭其中ij A 与ij B 的行数与列数都相同,则11111111r r s s sr sr A B A B A B A B A B ++⎛⎫ ⎪+= ⎪ ⎪++⎝⎭(2)数乘分块矩阵设1111r s sr A A A A A ⎛⎫⎪= ⎪ ⎪⎝⎭ ,λ为实数,则1111r s sr A A A A A λλλλλ⎛⎫⎪= ⎪ ⎪⎝⎭(3)分块矩阵的乘法设()ij m l A a ⨯=,()ij l n B b ⨯=,分别分块成1111t s st A A A A A ⎛⎫ ⎪= ⎪ ⎪⎝⎭ , 1111r t tr B B B B B ⎛⎫⎪= ⎪ ⎪⎝⎭其中12,,i i it A A A (1,2,,i s = )的列数分别等于12,,,j j t j B B B (1,2,,j r = )的行数,则1111r s sr C C AB C A ⎛⎫ ⎪= ⎪ ⎪⎝⎭其中1tij ik kj k C A B ==∑(1,2,,i s = ,1,2,,j r = )例1 设1000010012101101A ⎛⎫ ⎪⎪= ⎪- ⎪⎝⎭, 1010120110411120B ⎛⎫ ⎪-⎪= ⎪ ⎪--⎝⎭求乘积AB解 为了求乘积AB ,我们可以对A 、B 进行如下的分块1000010012101101A ⎛⎫ ⎪ ⎪= ⎪- ⎪⎝⎭1E O A E ⎛⎫= ⎪⎝⎭,1010120110411120B ⎛⎫ ⎪- ⎪= ⎪ ⎪--⎝⎭112122B E B B ⎛⎫= ⎪⎝⎭按分块矩阵的乘法可得11111212211121122E O B E B EAB A E B B A B B A B ⎛⎫⎛⎫⎛⎫== ⎪⎪⎪++⎝⎭⎝⎭⎝⎭而 11121121010111211A B B -⎛⎫⎛⎫⎛⎫+=+⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭2411-⎛⎫= ⎪-⎝⎭122124133112031A B -⎛⎫⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故 1010120124331131AB ⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭(4)分块矩阵的转置设1111r s sr A A A A A ⎛⎫⎪= ⎪ ⎪⎝⎭ , 则1111T T s T T T r srA A A A A ⎛⎫ ⎪= ⎪ ⎪⎝⎭(5)分块对角阵在n 阶方阵A 的分块矩阵中,如果只有在主对角线上有非零的小方阵,而其余子块均为零矩阵,即12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭则A 称为分块对角阵。